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GLOBAL OPTIMALITY CONDITIONS FOR A DYNAMIC
BLOCKING PROBLEM

Alberto Bressan
1

and Tao Wang
1

Abstract. The paper is concerned with a class of optimal blocking problems in the plane. We
consider a time dependent set R(t) ⊂ R

2, described as the reachable set for a differential inclusion. To
restrict its growth, a barrier Γ can be constructed, in real time. This is a one-dimensional rectifiable
set which blocks the trajectories of the differential inclusion. In this paper we introduce a definition
of “regular strategy”, based on a careful classification of blocking arcs. Moreover, we derive local and
global necessary conditions for an optimal strategy, which minimizes the total value of the burned
region plus the cost of constructing the barrier. We show that a Lagrange multiplier, corresponding to
the constraint on the construction speed, can be interpreted as the “instantaneous value of time”. This
value, which we compute by two separate formulas, remains constant when free arcs are constructed
and is monotone decreasing otherwise.
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1. Introduction

Aim of this paper is to derive global necessary conditions satisfied by an optimal strategy, for the dynamic
blocking problem introduced in [4]. As described in [4,5], these problems were originally motivated by the
control of wild fires or the spatial spreading of a contaminating agent.

At each time t ≥ 0, we denote by R(t) ⊂ R
2 the region burned by the fire. In absence of control, for each

t ≥ 0 the set R(t) is described as the reachable set for a differential inclusion:

ẋ ∈ F (x) x(0) ∈ R0, (1.1)

where the upper dot denotes a derivative w.r.t. time. In other words,

R(t) =
{
x(t); x(·) absolutely continuous, x(0) ∈ R0, ẋ(τ) ∈ F

(
x(τ)

)
for a.e. τ ∈ [0, t]

}
.

We assume that the initial set R0 ⊂ R
2 is open and bounded. Moreover, we assume that F : R

2 �→ R
2 is

a Lipschitz continuous multifunction with compact, convex values, and satisfies

0 ∈ F (x) for all x ∈ R
2. (1.2)
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Clearly, this implies
R(t1) ⊆ R(t2) whenever t1 < t2. (1.3)

In our model, the growth of the reachable set (i.e., the spreading of the fire) can be controlled by constructing
barriers, in real time. Let ψ : R

2 �→ R+ be a continuous, strictly positive function. Calling γ(t) ⊂ R
2 the

portion of the wall constructed within time t ≥ 0, we make the following assumptions:

(H1) For any t1 < t2 one has γ(t1) ⊆ γ(t2).

(H2) For every t ≥ 0, the total length of the wall satisfies∫
γ(t)

ψ dm1 ≤ t, (1.4)

where m1 denotes the one-dimensional Hausdorff measure, normalized so that m1(Γ) yields the usual length of
a smooth curve Γ.

In the above formula, 1/ψ(x) is the speed at which the wall can be constructed, at the location x. In particular,
if ψ(x) ≡ σ−1 is constant, then (1.4) simply means that the length of the curve γ(t) is ≤ σt. A strategy γ
satisfying (H1)–(H2) will be called an admissible strategy. In addition, we say that the strategy γ is complete
if it satisfies:

(H3) For every t ≥ 0 there holds ∫
γ(t)

ψ dm1 = t, γ(t) =
⋂
s>t

γ(s). (1.5)

Moreover, if γ(t) has positive upper density at a point x, i.e. if

lim sup
r→0+

m1

(
B(x, r) ∩ γ(t)

)
r

> 0,

then x ∈ γ(t). Here B(x, r) is the open ball centered at x with radius r.
As proved in [5], for every admissible strategy t �→ γ(t) one can construct a second admissible strategy

t �→ γ̃(t) ⊇ γ(t), which is complete.
When a barrier is being constructed, the set reached by the fire is reduced. Namely, we define

Rγ(t) .=
{
x(t); x(·) absolutely continuous, x(0) ∈ R0,

ẋ(τ) ∈ F
(
x(τ)

)
for a.e. τ ∈ [0, t], x(τ) /∈ γ(τ) for all τ ∈ [0, t]

}
.

(1.6)

The existence of a blocking strategy, keeping Rγ(t) uniformly bounded for all t ≥ 0, was studied in [8,10].
To define an optimization problem, we need to introduce a cost functional. In general, this should take into

account:

– The value of the area burned by the fire.
– The cost of building the barrier.

As in [4], we thus consider two continuous, non-negative functions α, β : R
2 �→ R+ and define the functional

J(γ) =
∫

Rγ
∞
α dm2 +

∫
γ∞

β dm1, (1.7)
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where the sets Rγ∞, γ∞ are defined respectively as

Rγ
∞

.=
⋃
t≥0

Rγ(t), γ∞
.=
⋃
t≥0

γ(t). (1.8)

In (1.7), m2 denotes the two-dimensional Lebesgue measure, while m1 is the one-dimensional Hausdorff measure.
In the case of a fire, α(x) is the value of a unit area of land at the point x, while β(x) is the cost of building
a unit length of wall at the point x. This leads to:

(OP1) Optimization Problem 1. Find an admissible strategy t �→ γ(t) for which the corresponding func-
tional J(γ) at (1.7) attains its minimum value.

For this problem, the existence of an optimal solution was proved in [5], under the following assumptions:

(A1) The initial set R0 is open and bounded. Its boundary satisfies m2(∂R0) = 0.

(A2) The multifunction F is Lipschitz continuous w.r.t. the Hausdorff distance. For each x ∈ R
2 the set F (x)

is nonempty, closed and convex and contains the origin in its interior.

(A3) For every x ∈ R
2 one has α(x) ≥ 0, β(x) ≥ 0, α(x)+β(x) > 0, and ψ(x) ≥ ψ0 > 0. Moreover, α is locally

integrable, while β and ψ are both lower semicontinuous.

In its original formulation, a strategy is a set-valued map t �→ γ(t) ⊂ R
2 describing the portion of the wall

constructed within a given time t ≥ 0. The subsequent paper [9] showed that the above problem can be
reformulated in a simpler way, where a strategy is entirely determined by assigning one single rectifiable set
Γ ⊂ R

2. We shall briefly review this equivalence result.
Consider a rectifiable set Γ ⊂ R

2 which is complete, in the sense that it contains all of its points of positive
upper density:

lim sup
r→0+

m1

(
B(x, r) ∩ Γ

)
r

> 0 =⇒ x ∈ Γ.

Define the reachable set for the differential inclusion (1.1) restricted to R
2 \ Γ

RΓ(t) .=
{
x(t); x(·) absolutely continuous, x(0) ∈ R0,

ẋ(τ) ∈ F
(
x(τ)

)
for a.e. τ ∈ [0, t], x(τ) /∈ Γ for all τ ∈ [0, t]

}
.

(1.9)

Throughout the following, S will denote the closure of a set S. We say that the rectifiable set Γ is admissible
in connection with the differential inclusion (1.1) and the bound on the construction speed (1.4) if∫

Γ∩RΓ(t)

ψ dm1 ≤ t for all t ≥ 0. (1.10)

Of course, this means that the strategy

t �→ γ(t) .= Γ ∩RΓ(t) (1.11)

is admissible according to (1.4). One can then consider:
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(OP2) Optimization Problem 2. Find an admissible rectifiable set Γ ⊂ R
2 such that, calling RΓ∞

.=⋃
t≥0R

Γ(t), the cost

J(Γ) =
∫

RΓ∞

α dm2 +
∫

Γ

β dm1 (1.12)

attains the minimum possible value.
As proved in [9], under the assumptions (A1)–(A3) the two formulations are equivalent. Namely, if t �→ γ(t)

is a complete, optimal strategy for (OP1), then the rectifiable set

Γ .=

⎛⎝⋃
t≥0

γ(t)

⎞⎠ \

⎛⎝⋃
t≥0

Rγ(t)

⎞⎠ (1.13)

is admissible and provides an optimal solution to the minimization problem (OP2). Vice versa, if the set Γ
provides an optimal solution to (OP2), then the strategy γ(·) in (1.11) is optimal for (OP1).

Remark 1.1. For each t ≥ 0, the set γ(t) in (1.11) is the part of the wall Γ touched by the fire at time t. This
is the portion that actually needs to be put in place within time t, in order to constrain the fire. The remaining
portion Γ \ γ(t) can be constructed at a later time. On the other hand, given a strategy γ(·), the set Γ consists
of the “useful” part of all walls constructed by γ. Portions of a wall, which are constructed in a region already
reached by the fire, are clearly useless.

Remark 1.2. By the assumption (A2), each velocity set F (x) is a neighborhood of the origin. Hence the set
RΓ∞

.=
⋃

t≥0R
Γ(t) of all points reached by the fire without crossing Γ can be characterized as the union of all

connected components of R
2 \ Γ which intersect R0 .

Some necessary conditions for optimality were derived in [4], in the special case where β ≡ 0 and ψ ≡ 1,
i.e. when there is no construction cost and the construction speed is constant. These conditions were essentially
of local nature, obtained by perturbing the optimal strategy in a neighborhood of a given point.

The main goal of the present paper is to derive general optimality conditions, also of global nature. In
particular, we study necessary conditions which must be satisfied at points of junction between two different
arcs. We also analyze the case where the fire propagates along two or more fronts, and describe the optimal
strategy at the time when one of these advancing fronts is extinguished.

As a preliminary, in Section 2 we introduce a concept of “regular strategy”, and provide a careful classification
of arcs. In particular, we observe that portions of an optimal barrier Γ may be constructed not only to block
the fire, but also to slow down its advancement. These will be called “delaying arcs”. Their presence increases
the time needed for the fire to reach some regions of the plane.

Sections 3 and 4 describe necessary conditions for the optimality of “free arcs”, constructed away from the
advancing fire front, and “boundary arcs”, constructed right along the edge of an advancing front.

Section 6 deals with necessary conditions at junctions. In particular, we show that optimal arcs must join
tangentially and we study the relations between Lagrange multipliers associated to different arcs.

Our analysis shows the existence of a scalar function W (·), which arises naturally as a global Lagrange
multiplier, and can be interpreted as the “instantaneous value of time”. Roughly speaking, W (τ) measures by
how much the total cost could be reduced if the constraint (1.10) is replaced by∫

Γ∩RΓ(t)

ψ dm1 ≤
{
t if t < τ,
t+ ε if t ≥ τ.

The paper is concluded with two examples, where the optimal strategies and the value of time can be explicitly
computed.

For the basic theory of differential inclusions and the minimum time function we refer to [1,2].
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Figure 1. Here we take R0 = F (x) = B(0, 1), the unit disc centered at the origin. The two
thick arcs denote the portion Γd ⊂ Γ which contributes to slowing down the propagation of the
fire. Notice that T Γ(x) = T (x) for x ∈ Ω0, but T Γ(x) > T (x) for x ∈ Ω1 ∪ Ω2. The thick arc
next to the shaded region Ω1 lies in Γd \ Γb, the thick arc next to Ω2 lies in Γd ∩ Γb.

2. Regular strategies and classification of arcs

In this section, we introduce the basic framework and the regularity assumptions, in order to derive suitable
necessary conditions for optimality.

Let Γ be an admissible barrier for the differential inclusion (1.1), so that (1.10) holds. We observe that the
construction of the barrier Γ has two effects, namely: (i) it restricts the fire to the set RΓ∞, consisting of all
connected components of R

2 \ Γ which intersect the initial domain R0, and (ii) within the set RΓ
∞, it can slow

down the advancement of the fire.
This fact, illustrated in Figure 1, can be better described as follows. Given the differential inclusion (1.1)

and the barrier Γ, the minimum time function is defined as

T Γ(x) .= inf
{
t ≥ 0; x ∈ RΓ(t)

}
. (2.1)

Calling T (x) the minimum time function for the problem (1.1) without any barrier, one clearly has

0 ≤ T (x) ≤ T Γ(x) for all x ∈ R
2.

We say that a point x ∈ Γ belongs to the delaying portion of the barrier if, by modifying the set Γ in an
arbitrarily small neighborhood of x, one can change the minimal time function somewhere else. More precisely,
we introduce:

Definition 2.1. The subset Γd ⊆ Γ of delaying walls is the set of all points x ∈ Γ such that, for some δ > 0,
the following holds. For every ε > 0 there exists an admissible rectifiable set Γ′ with Γ′ \ B(x, ε) = Γ \ B(x, ε)
and such that T Γ′

(y) �= T Γ(y) at some point y ∈ RΓ
∞ \B(x, δ).

We think of Γd as a portion of the barrier Γ which contributes to slowing down fire propagation. In addition,
the barrier Γ will contain an outer portion Γb, separating the burned from the unburned region.

Definition 2.2. The subset Γb ⊆ Γ of blocking walls is defined as

Γb .= Γ ∩ ∂(RΓ∞). (2.2)

Remark 2.1. If Γ is optimal, and the construction cost is strictly positive, then Γ = Γd ∪ Γb. Indeed, any arc
Γ′ ⊂ Γ contained in the interior of the reachable set RΓ

∞ must be part of Γd. Otherwise the alternative strategy
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Γ̃ .= Γ \ Γ′ would also be admissible, with a smaller cost. On the other hand, as shown in Figure 1, one can
have Γd ∩ Γb �= ∅.

Given an admissible barrier Γ, a further classification of arcs can be achieved as follows. Define the set of
times

S .=

{
t ≥ 0;

∫
Γ∩RΓ(t)

ψ dm1 = t

}
. (2.3)

These are the times where the constraint is saturated, i.e. it is satisfied as an equality. We can further classify
points x ∈ Γ by setting

ΓS
.= {x ∈ Γ; T Γ(x) ∈ S}, ΓF

.= {x ∈ Γ; T Γ(x) /∈ S}.

As in [4], arcs lying in the subset ΓF will be called free arcs.
A very general result on the existence of optimal blocking strategies was recently proved in [5]. However, this

provides little information about the regularity of these optimal strategies. Namely, if Γ is optimal, then Γ must
be the union of countably many compact, connected, rectifiable sets, plus a set whose 1-dimensional Hausdorff
measure is zero. In order to derive necessary condition for optimality, additional regularity assumptions will be
imposed.

Motivated by the definition of regular synthesis for an optimal control problem [3,6,11,13], we consider
a decomposition

R
2 = M1 ∪ · · · ∪MM (2.4)

with the following properties.

(i) Each Mj ⊂ R
2 is an embedded, connected C2 submanifold.

(ii) If j �= k, then Mj ∩Mk = ∅.
(iii) If Mj ∩Mk �= ∅, then Mj ⊂ Mk.

We call dk
.= dim(Mk) ∈ {0, 1, 2}, the dimension of the submanifold Mk. In particular, dk = 0 if Mk consists

of a single point and dk = 2 if Mk is an open subset of R
2. In the case dk = 1, the above assumptions imply

that Mk is a curve admitting a C2 parameterization in terms of arc-length.
Throughout the following, we assume that there exists a decomposition (2.4) such that the following holds.

(RA1) The barrier Γ admits the decomposition

Γ =
⋃
k∈B

Mk, for some B ⊂ {1, 2, . . . ,M}.

Moreover, this decomposition is consistent with the previous classifications. Namely, each of the subsets
Γd,Γb,ΓS ,ΓF can be represented as a union of some of the manifolds Mk.

(RA2) Restricted to each submanifold Mj, the minimum time function T Γ is a C2 function, or else T Γ ≡ +∞.

Concerning the differential inclusion (1.1) we assume:

(RA3) The velocity sets F (x) are uniformly convex, have C2 boundary, and contain the origin as an interior
point. Moreover, denoting by 〈·, ·〉 the Euclidean inner product, the map

(p, x) �→ arg max
y∈F (x)

〈p, y〉

is C2 on the set where p �= 0.
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We observe that, away from the barrier Γ, the minimum time function T Γ is Lipschitz continuous and provides
a viscosity solution to the Hamilton-Jacobi equation

H(x,∇V ) − 1 = 0, H(x, p) .= max
y∈F (x)

〈p, y〉. (2.5)

We denote by

h(x) .=
1

|∇T Γ(x)| = max
y∈F (x)

〈n(x), y〉 n(x) .=
∇T Γ(x)
|∇T Γ(x)| , (2.6)

the propagation speed of the fire front, in the normal direction, at the point x.

Remark 2.2. The assumption (RA1) implies that each submanifold Mk with k ∈ B is a portion of the
barrier Γ falling in one single class of the above classification. For example, if Mk contains a point x ∈ ΓS ,
then Mk ⊆ ΓS and Mk ∩ ΓF = ∅.
Remark 2.3. If γ ⊂ ΓF \ Γd, then, as will be proved in the next section, any local perturbation of the arc γ
requiring the same construction time yields another admissible strategy. This is not true if γ ⊂ ΓF ∩Γd. Indeed,
in this case a local perturbation of γ will affect the minimum time function T Γ in other regions. Therefore,
other arcs γ̃ ⊂ ΓS may not be admissible any more.

Remark 2.4. Consider an arc γ ⊂ ∂RΓ \ Γd. Then, the minimum time function T Γ can be extended from RΓ

to a whole neighborhood of each point x ∈ Γ. Indeed, this extended value function T̃ is constructed by solving
the Hamilton-Jacobi equation (2.5) with data assigned along γ:

max
y∈F (x)

∇T̃ (x) · y = 1, T̃ (x) = T Γ(x) for x ∈ γ. (2.7)

In particular, the gradient ∇T Γ(x) and the normal propagation speed h(x) in (2.6) are well defined also for
x ∈ γ, by a continuous extension.

3. Necessary conditions for free arcs

In this section we consider an arc γ ⊂ ΓF . Intuitively, this means that at the time where this portion of wall
is constructed, the fire has not yet reached points in γ. In addition, we assume that γ ⊆ Γb \ Γd. This means
that γ is a purely blocking arc. All minimum-time trajectories for the fire terminate when they reach a point
of γ.

We seek necessary conditions for optimality of the arc γ. To fix the ideas, let s �→ γ(s) ∈ R
2, s ∈ [a, b], be

a C2 parameterization of γ in terms of arc-length. Throughout the sequel, an upper dot will denote a derivative

w.r.t. s. Given two vectors v =
(
a
b

)
and w =

(
c
d

)
, their wedge product will be written as v ∧ w .= ad − bc.

By t(s) .= γ̇(s) and n(s) we denote the unit vectors respectively tangent and perpendicular to the curve γ at
the point γ(s), oriented so that t ∧ n = 1.

We say that γ is a normal arc if there exists a smooth scalar function ϕ� : [a, b] �→ R with ϕ�(a) = ϕ�(b) = 0
such that, calling T (γ�

ε) the time needed to construct the arc γ�
ε described by

s �→ γ�
ε(s)

.= γ(s) + εϕ�(s)n(s), (3.1)

there holds [
d
dε

T (γ�
ε)
]

ε=0

.=

[
d
dε

∫ b

a

ψ(γ�
ε(s)) · |γ̇�

ε(s)| ds
]

ε=0

< 0. (3.2)

This implies that one can join the endpoints P = γ(a) and Q = γ(b) with some arc which can be constructed
in a slightly shorter time: the curve γ is not a time-minimizer. By possibly taking a small perturbation, it is
not restrictive to assume that ϕ�(s) = 0 for s in a neighborhood of a and b.
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Given a smooth function ϕ : [a, b] �→ R with ϕ(s) = 0 for s in a neighborhood of a and b, and given ε, η close
to zero, consider the perturbed curve

s �→ γε,η(s) .= γ(s) + (εϕ(s) + ηϕ�(s))n(s). (3.3)

By (3.2) and the implicit function theorem, for every ε in a neighborhood of zero there exists a unique η(ε)
such that the time needed to construct the curves γ and γε,η(ε) is the same. Calling γε

.= γε,η(ε), we thus have

[
d
dε

T (γε)
]

ε=0

=
d
dε

[∫ b

a

ψ(γε(s)) · |γ̇ε(s)| ds
]

ε=0

= 0. (3.4)

We recall that ṅ(s) = κ(s) t(s), where κ(s) is the curvature of γ at the point γ(s). Since |γ̇| ≡ 1, computing
a derivative at ε = 0 we find[

d
dε

|γ̇ε|
]

ε=0

=
〈
γ̇ ,

d
dε
γ̇ε

〉
ε=0

= κ(s)
(
ϕ(s) + η′(0)ϕ�(s)

)
.

The equation (3.4) can thus be written as∫ b

a

{〈
∇ψ(γ(s)), n(s)

〉
+ ψ(γ(s))κ(γ(s))

}
·
(
ϕ(s) + η′(0)ϕ�(s)

)
ds = 0. (3.5)

For notational convenience, given a scalar function g : R
n → R we define

G(g, γ, s) .=
〈
∇g(γ(s)), n(s)

〉
+ g(γ(s))κ(s). (3.6)

With this notation, from (3.5) it follows

η′(0) = −
∫ b

a
G(ψ, γ, s)ϕ(s) ds∫ b

a G(ψ, γ, s)ϕ�(s) ds
· (3.7)

Notice that in (3.7) the denominator is �= 0, because by (3.2)∫ b

a

G(ψ, γ, s)ϕ�(s) ds =
[

d
dε

T (γ�
ε)
]

ε=0

< 0.

Recalling that γ ∈ ΓF \ Γd, we now show that, for all ε sufficiently close to zero, the barrier Γε obtained
from Γ replacing the arc γ by γε is still admissible. To show this, we first observe that the map

t �→
∫

Γ∩RΓ(t)

ψ dm1

is non-decreasing and right-continuous, hence it is upper semicontinuous. In turn, the excess map

E(t) .= t−
∫

Γ∩RΓ(t)

ψ dm1 (3.8)

is lower semicontinuous.
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To fix the ideas, assume T Γ(γ(s)) ∈ ]τ0, τ [ for s ∈ ]a, b[ , with ]τ0, τ [ ∩ S = ∅. Moreover, assume that the
perturbations ϕ,ϕ� in (3.3) are supported in the compact subset [a + σ, b − σ]. By lower semicontinuity and
compactness, there exists δ > 0 such that

E(T (γ(s))) > δ s ∈ [a+ σ, b− σ].

Choose times τ0 < τ1 < . . . < τN = τ such that τi − τi−1 < δ/2 for every i = 1, . . . , N . For each i, we can now
choose εi > 0 small enough such that, for |ε| ≤ εi, there holds∫

Γε∩RΓε (τi)

ψ dm1 <
δ

2
+

∫
Γ∩RΓ(τi)

ψ dm1.

Setting ε̄ .= min{ε1, . . . , εN}, we now prove that the barrier Γε is admissible whenever |ε| ≤ ε̄. Indeed, when
τi−1 < t ≤ τi we have∫

Γε∩RΓε (t)

ψ dm1 ≤
∫

Γε∩RΓε (τi)

ψ dm1 <
δ

2
+

∫
Γ∩RΓ(τi)

ψ dm1 =
δ

2
+ τi − E(τi) ≤ τi −

δ

2
≤ t. (3.9)

Next, call J(Γε) the total cost associated with this perturbed strategy. If Γ is optimal, then[
d
dε

J(Γε)
]

ε=0

= 0. (3.10)

Assuming that the normal vector n points toward the outside of the burned region, by the previous analysis (3.10)
can be written as ∫ b

a

{
α(γ(s)) + G(β, γ, s)

}
·
(
ϕ(s) + η′(0)ϕ�(s)

)
ds = 0. (3.11)

Inserting the value of η′(0) given at (3.7), and adopting the shorter notation α(s) .= α(γ(s)), from the above
equation we obtain ∫ b

a

{
α(s) + G(β, γ, s)

}
ϕ(s) ds + λ ·

∫ b

a

G(ψ, γ, s)ϕ(s) ds = 0. (3.12)

Here the constant λ has the role of a Lagrange multiplier:

λ =
−

∫ b

a
{α(s) + G(β, γ, s)}ϕ�(s) ds∫ b

a G(ψ, γ, s)ϕ�(s) ds
· (3.13)

Since (3.12) holds for all smooth functions ϕ with ϕ(a) = ϕ(b) = 0, recalling the definition of G(·) we conclude

α(s) +
〈
∇(β(s) + λψ(s)), n(s)

〉
+

(
β(s) + λψ(s)

)
κ(s) = 0 (3.14)

for all a < s < b. Written as

− (β(s) + λψ(s)) κ(s) = α(γ(s)) +
〈
∇(β(s) + λψ(s)), n(s)

〉
, (3.15)

this necessary condition takes the form of a second order nonlinear O.D.E., determining the curvature of γ. In
the special case where ψ and β are constant, the above equation reduces to

κ(s) = − α(s)
β + λψ

, (3.16)
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(b)

(a)γ

#

ε

’

n(s)

γ(s)

γ (s) = t (s)

γ

γε

γ

γ

γ
r

θ r−

Figure 2. Left: The shaded region denotes the burned set. Since ṅ(s) = κ(s)t(s), here the
curvature κ is negative. Center: For a normal extremal, one can find perturbations γ�

ε that can
be constructed in shorter time. Right: When a free arc γ of radius r is replaced by an arc γ′ of
smaller radius r− ε, the burned area increases by θrε while the length of the barrier decreases
by θε (neglecting infinitesimals of higher order w.r.t. ε). If α, β in (1.7) satisfy β > rα, then
the total cost changes by αθrε− βθε < 0 and the arc γ is not optimal.

showing that the curvature of γ must be proportional to the local value of land α. In particular, if α is also
constant, then the free arc γ is an arc of circumference.

Remark 3.1. The Lagrange multiplier λ can be interpreted as the (constant, non-negative) value of time, during
the construction of the arc γ. Indeed, given any smooth scalar function ϕ : [a, b] �→ R with ϕ(a) = ϕ(b) = 0,
for ε in a neighborhood of zero consider the perturbed arc γ̃ε(s)

.= γ(s) + εϕ(s)n(s). The time T (γ̃ε) needed to
construct this arc satisfies [

d
dε

T (γ̃ε)
]

ε=0

=
∫ b

a

G(ψ, γ, s)ϕ(s) ds. (3.17)

Calling Γε the barrier obtained from Γ by replacing the arc γ with γ̃ε, the cost J(Γε) satisfies[
d
dε
J(Γε)

]
ε=0

=
∫ b

a

{α(s) + G(β, γ, s)}ϕ(s) ds. (3.18)

The ratio [decrease of the total cost]
[increase in the construction time] now yields the value of time. Assuming that the quantity in (3.17)

does not vanish, this ratio can be computed as[
− d

dεJ(Γε)
d
dεT (γε)

]
ε=0

=
−

∫ b

a
{α(s) + G(β, γ, s)}ϕ(s) ds∫ b

a G(ψ, γ, s)ϕ(s) ds
= λ. (3.19)

Indeed, by (3.13) and (3.12), the ratio does not depend on the choice of the function ϕ.

In the special case where the construction speed σ = 1/ψ and the construction cost β are constant, calling
r = −1/κ the radius of curvature, from (3.16) it follows

λ = (αr − β)σ. (3.20)

Notice that, in an optimal strategy, one must have αr − β ≥ 0. A geometric explanation of this inequality was
provided in Figure 2.
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Next, we consider the case where ]τ0, τ1[ ∩ S = ∅, and the portion of wall constructed during this time
interval consists of not just one but several free arcs, say{

x ∈ Γ; T Γ(x) ∈ ]τ0, τ1[
}

= γ1 ∪ · · · ∪ γν ⊆ ΓF \ Γd.

Let the ith arc be parameterized by arc-length, say s �→ γi(s), s ∈ ]ai, bi[ . Assume that at least one of these
arcs, say γ1, is normal. Then we can find a compactly supported perturbation ϕ�

1 so that (3.2) holds.
Given a set of smooth perturbations with compact support ϕi : ]ai, bi[ �→ R, i = 1, . . . , ν, for any ε sufficiently

close to zero we can find η(ε) such that the total time needed to construct the ν perturbed curves

γ1,ε(s) = γ1(s) + [εϕ1(s) + η(ε)ϕ�
1(s)]n1(s), γi,ε(s) = γi(s) + εϕi(s)ni(s) i = 2, 3, . . . , ν,

is the same for all ε. Hence

d
dε

ν∑
i=1

T (γi,ε) =
d
dε

[
ν∑

i=1

∫ bi

ai

ψ(γi,ε(s)) · |γ̇i,ε(s)| ds
]

≡ 0. (3.21)

A similar argument as in (3.7) yields

η′(0) = −
ν∑

i=1

∫ bi

ai
G(ψ, γi, s)ϕi(s) ds∫ b1

a1
G(ψ, γ1, s)ϕ

�
1(s) ds

· (3.22)

As before, one can show that the strategy Γε obtained by replacing each arc γi with γi,ε is still admissible, as
long as ε remains sufficiently small. Since Γ is optimal, the identity (3.10) must hold. In the present case, this
yields ∫ b1

a1

(
α(γ1(s)) + G(β, γ1, s)

)
· η′1(0)ϕ�

1(s) ds+
ν∑

i=1

∫ bi

ai

(
α(γi(s)) + G(β, γi, s)

)
ϕi(s) ds = 0. (3.23)

Hence there exists a Lagrange multiplier

λ = −
∫ b1
a1
{α(γ1(s)) + G(β, γ1, s)}ϕ�

1(s) ds∫ b1
a1

G(ψ, γ1, s)ϕ
�
1(s) ds

(3.24)

such that ∫ b

a

{
α(γi(s)) + G(β, γi, s)

}
ϕi(s) ds+ λ ·

∫ b

a

G(ψ, γi, s)ϕi(s) ds = 0 (3.25)

for all i = 1, . . . , ν and all perturbations ϕi with compact support in ]ai, bi[. As in (3.14)–(3.15), setting
αi(s)

.= α(γi(s)), βi(s)
.= β(γi(s)), . . ., and recalling the definition of G, we conclude that

αi(s) +
(
〈∇(βi(s) + λψi(s)) , ni(s)〉 + (βi(s) + λψi(s)) κi(s)

)
= 0 (3.26)

for all ai < s < bi.
Summarizing the previous analysis, we now state a necessary condition for optimality, valid when several free

arcs are simultaneously constructed.

Theorem 3.1 (necessary conditions for free arcs). Let γ1, . . . , γν ⊂ ΓF \ Γd be free arcs, simultaneously con-
structed by an optimal strategy Γ during the time interval t ∈ ]τ0, τ1[ . Assume that at least one of these arcs
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is normal, and let s �→ γi(s) be a parameterization of γi by arc-length, with s ∈ ]ai, bi[ . Then there exists
a Lagrange multiplier λ ≥ 0 such that

− (βi(s) + λψi(s))κi(s) = αi(s) +
〈
∇(βi(s) + λψi(s)) , ni(s)

〉
(3.27)

for all i = 1, . . . , ν, ai < s < bi.

We recall that all curvatures κi are negative, as explained in Figure 2.
As in Remark 3.1, the Lagrange multiplier λ can be interpreted as the value of time. Note that this value is the

same for all arcs γ1, . . . , γν , and remains constant throughout the time interval ]τ0, τ1[ where the constraint (1.4)
is unsaturated.

4. Necessary conditions for boundary arcs

Let Γ be an optimal barrier, and assume that for t ∈ [a, b] the constraint (1.10) is saturated i.e. it is satisfied
as an equality. To fix the ideas, assume that the subset

Γ[a,b]
.= {x ∈ Γ; a ≤ T Γ(x) ≤ b}

consists of ν boundary arcs γ1, . . . , γν ⊂ ΓS \ Γd, simultaneously constructed. Let each of these arcs be
parameterized by time: t �→ γi(t), t ∈ [a, b], so that T Γ(γi(t)) = t for each i = 1, . . . , ν. We seek here necessary
conditions for the optimality of these arcs. These will extend the conditions derived in [4] to the case where the
cost functions α, β and the construction speed 1/ψ are allowed to depend on the space variable x.

We say that γi is a normal arc if, at every t ∈ [a, b], the tangent vector γ̇i(t) is not parallel to the gradient
of the value function ∇T Γ(γi(t)). Since T Γ(γi(t)) = t for all t, this is equivalent to the strict inequality

|γ̇i(t)| > h(x). (4.1)

In other words, the speed at which the arc γi is constructed is strictly greater than the local propagation speed
h(x) of the fire front, defined at (2.6). Throughout the following, we assume that all the arcs γ1, . . . , γν are
normal.

We begin by choosing a suitable set of coordinates, around each arc γi . Let T̃ be the minimum time
function, extended to a neighborhood of each arc γi, as in Remark 2.4. The assumption that the arcs γi are
normal guarantees that these extensions are well defined. For t ∈ [a, b] and s close to zero, define a coordinate
system (t, s) �→ xi(t, s) so that xi(t, 0) = γi(t), while, for each fixed time t, the map s �→ xi(t, s) provides an
arc-length parameterization of the curve {x; T̃ (x) = t}. To fix the ideas, we choose the orientation so that the
points xi(t, s) with s > 0 fall outside the set RΓ reached by the fire, as in Figure 3. This implies〈

ei(t), γ̇i(t)
〉
< 0, (4.2)

where ei(t)
.= ∂xi(t,s)

∂s

∣∣
s=0

denotes the unit vector tangent to the curve {x; T̃ (x) = t} at the point γi(t). In
addition, we let ni(t) be the unit vector parallel to ∇T̃ (hence perpendicular to ei(t)) at the point γi(t), as in
Figure 3.

Let w∗
i (t) > 0 be the amount of resources allocated at time t to the construction of the arc γi, so that

|γ̇i(t)| =
w∗

i (t)
ψ(γi(t))

,

ν∑
i=1

w∗
i (t) ≡ 1 t ∈ [a, b].

Consider an alternative strategy w = (w1, . . . , wν). This will result in the construction of different arcs t �→ yi(t),
determined by the equations

|ẏi(t)| =
wi(t)
ψ(yi(t))

, T̃ (yi(t)) = t.
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x (t,s)i
Γ

R (t) T(x) = t
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θ
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e
i

Figure 3. Choice of the coordinates (t, s) in a neighborhood of the arc γi.

R  (t)Γ R  (t)
Γ

good solution

γ
i

γ
i

ei ei

T(x) = t
~ x (t,s)i

Figure 4. In equation (4.4), one should take fi as the larger or the smaller solution, respec-
tively if the burned region lies to the right or to the left of the barrier γi.

Using our previous coordinate system, let yi(t) = xi(t, si(t)). For each i = 1, . . . , ν, the scalar function si(t) will
then satisfy an O.D.E. of the form

ṡi = fi(t, si(t), wi(t)). (4.3)

Here the right hand side fi is implicitly determined by the scalar constraint∣∣∣∣∂xi(t, si)
∂t

+ fi(t, si, wi)
∂xi(t, si)
∂si

∣∣∣∣ =
wi

ψ(xi(t, si))
· (4.4)

We observe that the equation (4.4) admits solutions provided that

h(xi(t, si)) ≤ wi

ψ(xi(t, si))
· (4.5)

Indeed, the speed at which the barrier is constructed cannot be smaller than the propagation speed of the fire
front, in the normal direction. In the case of a strict inequality, the equation (4.4) has exactly two solutions.
The choice of the solution clearly depends on the side occupied by the burned region (see Fig. 4).

Assuming that the strategy t �→ w∗(t) = (w∗
1 , . . . , w

∗
ν)(t) is optimal for the fire blocking problem, we now

construct an auxiliary control problem for which w∗ is optimal as well. Consider the control system consisting
of the ν equations (4.3), supplemented by the initial and terminal constraints,

si(a) = si(b) = 0 i = 1, . . . , ν. (4.6)

Calling

R
ν
+

.=
{
w = (w1, . . . , wν); wi ≥ 0 for all i = 1, . . . , ν

}
,
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the family of admissible control functions is defined as

W .=

{
w : [a, b] �→ R

ν
+; w measurable,

ν∑
i=1

∫ t

a

wi(τ) dτ ≤ t− a for all t ∈ [a, b]

}
. (4.7)

Now consider the optimization problem

minimize: Λ(w) .=
ν∑

i=1

∫ b

a

Li(t, si(t), wi(t)) dt, (4.8)

where the running costs are

Li(t, si, wi)
.= β(xi(t, si))

wi(t)
ψ(xi(t, si))

+
∫ si

0

h(xi(t, ξ))α(xi(t, ξ)) dξ, (4.9)

with h(·) as in definition (2.6). The minimum in (4.8) is sought among all control functions w ∈ W . Notice that
the first term in (4.9) accounts for the cost of building the wall, while the second term is related to the value of
the burned area. We are assuming here that the burned region has the representation {xi(t, s); s < si(t)}.

It is convenient to introduce two additional state variables, to account for the cost functional (4.8) and for
the integral constraint in (4.7), which will be reformulated as a pointwise state constraint. We thus consider
the variables s0, sν+1, governed by the equations

s0(a) = 0, ṡ0(t) = f0(w(t)) .= −1 +
ν∑

i=1

wi(t), (4.10)

sν+1(a) = 0, ṡν+1(t) = fν+1(t, s(t), w(t)) .=
ν∑

i=1

Li(t, si(t), wi(t)). (4.11)

For a system with state variables s = (s0, s1, . . . , sν+1) and dynamics (4.3), (4.6), (4.10), (4.11), we now consider
the optimization problem

minimize: sν+1(b) (4.12)
with state constraint

s0(t) ≤ 0 for all t ∈ [a, b]. (4.13)
The minimum is sought among all measurable controls w = (w1, . . . , wν) : [a, b] �→ R

ν
+.

By construction, the control w∗(t) = (w∗
1(t), . . . , w∗

ν(t)) corresponding to the trajectory t �→ (s0(t), s1(t), . . . ,
sν(t)) ≡ (0, 0, . . . , 0) is optimal for this auxiliary optimal control problem. We recall that

w∗
i (t) > 0,

ν∑
i=1

w∗
i (t) = 1 t ∈ [a, b].

Using a version of the Pontryagin maximum principle in the presence of the state constraints (see [12,15]), we
conclude that there exists λ0 ≥ 0, and a map t �→ q(t) = (q0(t), . . . , qν(t)), not both equal to zero, such that
the following holds. The map q0 satisfies

q0(b) = 0, q0(t) = q0(a) −
∫ t

a

dμ

where μ is any positive measure supported on the set where s0 = 0. Since by assumption this set is the entire
interval [a, b], this is equivalent to

t �→ q0(t) is bounded, non-increasing, q0(b) = 0. (4.14)
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Moreover, the other components q1, . . . , qν are absolutely continuous functions such that

q̇i(t) = −qi
∂fi

∂si
(t, 0, w∗

i (t)) − λ0
∂Li

∂si
(t, 0, w∗

i (t)) i = 1, . . . , ν (4.15)

for a.e. t ∈ [a, b]. Finally, for a.e. t ∈ [a, b] there holds

q0(t) + λ0

ν∑
i=1

Li(t, 0, w∗
i (t)) +

ν∑
i=1

qi(t) fi(t, 0, w∗
i (t))

= min
w∈R

ν
+

(
q0(t)

ν∑
i=1

wi + λ0

ν∑
i=1

Li(t, 0, wi) +
ν∑

i=1

qi(t) fi(t, 0, wi)

)
. (4.16)

Differentiating w.r.t. w1, . . . , wν , from (4.16) we deduce

− qi(t)
∂fi

∂wi
(t, 0, w∗

i (t)) − λ0
∂Li

∂wi
(t, 0, w∗

i (t)) = q0(t) i = 1, . . . , ν. (4.17)

We now work out a more explicit form of the equations (4.15) and of the conditions (4.17). From the definition
of Li at (4.9) it follows

∂Li

∂si
(t, 0, w∗

i (t)) =
〈
∇

(
β

ψ

)(
γi(t)

)
, ei(t)

〉
w∗

i (t) + hi(γi(t))α(γi(t)). (4.18)

Toward the computation of ∂fi/∂si, consider a family of perturbed trajectories of the form

t → γε
i (t) = γi(t, εζ(t) + O(ε2)) = γi(t) + εζ(t)ei(t) + O(ε2), (4.19)

such that for all ε, t
|γ̇ε

i (t)| · ψ(γε
i (t)) = |γ̇i(t)| · ψ(γi(t)) = w∗

i (t).
In particular, the above identities imply

d
dε

[
|γ̇ε

i (t)|2 ψ2(γε
i (t))

]
ε=0

= 0. (4.20)

Using (4.19) in the above equation, we obtain〈
γ̇i(t), ζ̇(t)ei(t) + ζ(t)ėi(t)

〉
ψ(γi(t)) +

〈
∇ψ(γi(t)), ζ(t)ei(t)

〉
|γ̇i(t)|2 = 0. (4.21)

Solving (4.21) for ζ̇ and recalling (4.20), we derive the first order linear O.D.E.:

ζ̇ = −
〈
γ̇i(t), ėi(t)

〉
ψ(γi(t)) +

〈
∇ψ(γi(t)), ei(t)

〉 ∣∣γ̇i(t)
∣∣2〈

γ̇i(t), ei(t)
〉
ψ(γi(t))

ζ. (4.22)

On the other hand, we observe that the scalar functions sε
i = εζ(t) + O(ε2) in (4.19) are solutions to the same

O.D.E.
ṡε

i (t) = fi(t, sε
i (t), w

∗
i (t)),

with possibly different initial data. Hence the first order term ζ(·) in the expansion provides a solution to the
linear equation

ζ̇ =
∂fi

∂si
(t, 0, w∗

i (t)) ζ. (4.23)
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Comparing (4.22) with (4.23) we conclude

∂fi

∂si
(t, 0, w∗

i (t)) = −
〈
γ̇i(t), ėi(t)

〉
ψ(γi(t)) +

〈
∇ψ(γi(t)), ei(t)

〉 ∣∣γ̇i(t)
∣∣2〈

γ̇i(t), ei(t)
〉
ψ(γi(t))

· (4.24)

The equations (4.18) and (4.24) provide a more explicit expression of the right hand side of (4.15).
To compute the partial derivative ∂fi/∂wi at points (t, 0, w∗

i (t)), we start by writing (4.4) in the equivalent
form ∣∣∣∣∂xi(t, si)

∂t
+ fi(t, si, wi)

∂xi(t, si)
∂si

∣∣∣∣2 =
(

wi

ψ(xi(t, si))

)2

· (4.25)

Since our choice of coordinates (t, si) implies ∂xi

∂si
(t, 0) = ei(t) and fi(t, 0, w∗

i (t)) ≡ 0, differentiating (4.25)
w.r.t. wi we obtain 〈

γ̇i(t), ei(t)
〉 ∂fi

∂wi
(t, 0, w∗

i (t)) =
w∗

i (t)
ψ2(γi(t))

· (4.26)

For convenience, we denote by θi(t) the angle between the barrier γ and the level set {T̃ (x) = t}, as in Figure 3.
Notice that this implies 〈

γ̇i(t)
|γ̇i(t)|

, ei(t)
〉

= − cos θi(t).

Recalling that the optimal control is w∗
i (t) = |γ̇i(t)| · ψ(γi(t)), from the identity (4.26) we deduce

∂fi

∂wi
(t, 0, w∗

i (t)) = − 1
ψ(γi(t))

· 1
cos θi(t)

< 0. (4.27)

We observe that the map wi �→ fi(t, 0, wi) is well defined and monotone decreasing, for wi in a neighborhood of
w∗

i (t). Intuitively, if we increase the amount wi of resources allocated to the construction of the barrier γi, then
the construction speed |γ̇| increases. As a result, the angle θi decreases and the barrier will be shifted toward
the left, further reducing the region burned by the fire (see Fig. 3).

We also notice that (4.14) implies that q0(t) ≥ 0 for all t ∈ [a, b]. Summarizing the above arguments, we
now state a set of necessary conditions for the optimality of multiple arcs which are constructed simultaneously.
Recall that fi, Li are the functions in (4.3) and (4.9), while θi is the angle between the barrier and the fire front.

Theorem 4.1 (necessary conditions for boundary arcs). Let γ1, . . . , γν ⊂ ΓS \ Γd be the boundary arcs si-
multaneously constructed by an optimal strategy Γ, during the time interval t ∈ [τ1, τ2]. Assume that each arc
t �→ γi(t) is normal, parameterized by time t = T Γ(γi(t)), and call ei(t) the unit vector tangent to the boundary
of the reachable set RΓ(t) at the point γi(t), oriented toward the outside of the reachable set. Then there exist
a constant λ0 ≥ 0, and an adjoint vector q = (q0, q1, . . . , qν), not both equal to zero, satisfying the following
conditions. The map t �→ q0(t) is non-negative and non increasing, while for i = 1, . . . , ν the map t �→ qi(t) is
absolutely continuous and satisfies

q̇i(t) = qi(t) ·
〈
γ̇i(t), ėi(t)

〉
ψ(γi(t)) +

〈
∇ψ(γi(t)), ei(t)

〉 ∣∣γ̇i(t)
∣∣2〈

γ̇i(t), ei(t)
〉
ψ(γi(t))

−λ0

[〈
∇

(
β

ψ

)(
γi(t)

)
, ei(t)

〉
w∗

i (t) + hi(γi(t))α(γi(t))
]
.

(4.28)

The optimality conditions

q0(t)w∗
i (t) + λ0 Li(t, 0, w∗

i (t)) + qi(t) fi(t, 0, w∗
i (t)) = min

ω≥0

{
q0(t)ω + λ0 Li(t, 0, ω) + qi(t) fi(t, 0, ω)

}
(4.29)
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hold for every i = 1, . . . , ν and τ1 < t < τ2. Moreover, the functions

Wi(t)
.=

1
cos θi(t)

qi(t)
ψ(γi(t))

− λ0 ·
β(γi(t))
ψ(γi(t))

i = 1, . . . , ν, (4.30)

are non-negative, non-increasing, and all equal to each other.

Indeed, the first part of the theorem is a reformulation of the Pontryagin maximum principle. Concerning
the last statement, recalling (4.27), (4.9), and the above definition of Wi, by (4.17) we conclude

Wi(t) = −qi(t)
∂fi

∂wi
(t, 0, w∗

i (t)) − λ0
∂Li

∂wi
(t, 0, w∗

i (t)) = q0(t) i = 1, . . . , ν. (4.31)

5. Necessary conditions at junctions

The necessary conditions for optimality derived in the previous two sections were of local nature. Indeed, we
always used perturbations of free arcs or of boundary arcs which kept the endpoints fixed. In this section, we
shall obtain stronger optimality conditions, of global nature, by allowing changes also at the endpoints of the
various arcs.

We recall that, for a free arc γ, the Lagrange multiplier λ introduced at (3.19) could be interpreted as the
value of time, which is constant during the interval when the free arc is constructed. If the construction cost β
and the construction speed σ = 1/ψ are constant, then by (3.20) this value of time is computed as

W (t) = (αr − β)σ. (5.1)

Here α is the unit value of the land, while r is the radius of curvature of the barrier γ. According to Theorem 3.1,
if several free arcs γ1, . . . , γν are simultaneously constructed, the values (α(γi(x))ri(x) − β)σ are all equal to
each other.

On the other hand, when boundary arcs are constructed, the functions Wi(t) in (4.30) are defined only up to
a positive constant. Indeed, they depend on the choice of the adjoint variables qi, λ0. In the present section we
consider some particular configurations of optimal barriers, where one can take λ0 = 1 and let (q1, . . . , qν) = ∇V
be the gradient of a value function. In this case, the instantaneous value of time is well defined as

W (t) = Wi(t) =
1

cos θi(t)
qi(t)

ψ(γi(t))
− β(γi(t))
ψ(γi(t))

i = 1, . . . , ν. (5.2)

5.1. Two boundary arcs joining together

We start by examining the case where two boundary arcs γ1, γ2 join together at the terminal point P at
time T , thus completing the wall construction, as in Figure 5.

We show that this situation can be modelled by an optimal control system in standard form, with free
terminal time. Indeed, let (t, s) �→ x(t, s) be a system of coordinates, chosen so that:

• for each fixed t, the map s �→ x(t, s) is an arc-length parameterization of the boundary ∂RΓ(t), so that

T Γ(x(t, s)) = t,

∣∣∣∣ ∂∂sx(t, s)
∣∣∣∣ ≡ 1.

We introduce an auxiliary optimal control problem, with state s = (s0, s1, s2) and control variable w = (w1, w2).

Minimize: s0(T ) (5.3)
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Figure 5. Left: two boundary arcs joining at the terminal point. Right: if the construction
is completed as the two walls meet at P , one can consider the perturbed problem, where at
time t the position of the wall γ2 is shifted by ε along the fire front {x; T (x) = t}. This yields
a slightly different cost Jε. One can then uniquely determine the adjoint variable by setting
q2(t) =

[
d
dεJε

]
ε=0

.

for the system with dynamics ⎧⎨⎩
ṡ0 = f0(t, s1, s2, w1, w2)
ṡ1 = f1(t, s1, w1)
ṡ2 = f2(t, s2, w2)

(5.4)

and terminal constraints

s1(T ) − s2(T ) = 0. (5.5)

Here the controls w1, w2 satisfy the constraints

wi(t) ∈ [0, 1], w1(t) + w2(t) ≤ 1. (5.6)

Moreover,

f0(t, s1, s2, w1, w2)
.= β(x(t, s1(t)))

w1(t)
ψ(x(t, s1(t)))

+ β(x(t, s2(t)))
w2(t)

ψ(x(t, s2(t)))

+
∫ s2(t)

s1(t)

h(x(t, ξ))α(x(t, ξ)) dξ.

(5.7)

The first two terms in the definition of f0 account for the cost of building the two walls, while the integral term
keeps track of the increase in the burned area. As in (2.6), h(x) is the normal velocity of the advancing fire
front, at the point x. The functions f1, f2 are implicitly determined by the identities∣∣∣∣∂x(t, si)

∂t
+ fi(t, si, wi) ·

∂x(t, si)
∂si

∣∣∣∣ =
wi

ψ(x(t, si))
i = 1, 2. (5.8)

As remarked in the previous section, each equation in (5.8) has two solutions. If the orientation of the vector
e = ∂x(t,s)

∂s is as shown in Figure 5, one should choose the larger solution for i = 1 and the smaller solution for
i = 2.

Let t �→ w∗(t) = (w∗
1 , w

∗
2)(t) be an optimal control, and let t �→ s∗(t) = (s∗1, s∗2)(t) be the corresponding

optimal trajectory. Then, by the Pontryagin maximum principle [7], there exists an absolutely continuous
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adjoint vector p(t) = (p0, p1, p2)(t) such that the following holds:

ṗ0 ≡ 0, ṗi = −
2∑

k=0

∂fk

∂si
pk i = 1, 2, (5.9)

2∑
i=0

pi(t) · fi(t, s∗(t), w∗(t)) = min
w1+w2≤1

2∑
i=0

pi(t) · fi(t, s∗(t), wi) (5.10)

at almost every time t. Assuming that both arcs are normal, as in (4.1), we can here normalize the adjoint
vector by taking p0 ≡ 1. By (5.5), at the terminal time t = T ∗ one has

(p0, p1, p2)(T ∗) = (1,−η, η) (5.11)

for some real number η. This Lagrange multiplier can be determined using the further relation

min
w1+w2≤1

{
f0(T ∗, s∗(T ∗), w1, w2) − ηf1(T ∗, s∗1(T

∗), w1) + ηf2(T ∗, s∗2(T
∗), w2)

}
= 0. (5.12)

By the first equation in (5.9) and the terminal conditions (5.11) it follows p0(t) ≡ 1. Setting

ξi(t)
.=

2∑
k=0

pk(t)
∂

∂wi
fk(t, s∗(t), w∗(t)) =

β(γ∗i (t))
ψ(γ∗i (t))

− pi(t)
ψ(γ∗i (t)) · cos θi(t)

i = 1, 2,

from the optimality condition (5.10) it follows

ξ1(t) = ξ2(t) =
d
dε

[
min

w1+w2 ≤ 1+ε

2∑
i=0

pi(t) · fi(t, s∗(t), w)

]
ε=0

. (5.13)

The positive quantity W (t) .= −ξi(t) is the instantaneous value of time.
At the terminal time t = T ∗ one has s1 = s2 and γ1(T ∗) = γ2(T ∗) = P . From the necessary condition (4.30),

taking into account the orientations of e1 = −e and e2 = e, it thus follows

θ1(T ∗) = θ2(T ∗).

In particular, the control that achieves the minimum in (5.10) is w1 = w2 = 1/2, hence f0 = β/ψ. To compute
the difference f1 − f2, observe that at the terminal point P one has

f1

(
T ∗, s1(T ∗),

1
2

)
− f2

(
T ∗, s2(T ∗),

1
2

)
=

cos θi(T ∗)
ψ(P )

,

where θ1, θ2 are the angles between the barriers γ1, γ2 and the fire front, as in Figure 5. At the terminal time
t = T ∗ these two angles are equal, and can be determined by the identity

h(P ) =
sin θi(T ∗)

2ψ(P )
· (5.14)

Using these relations in (5.12) we obtain

β(P )
ψ(P )

− η
cos θi(T ∗)
ψ(P )

= 0, η =
β(P )

cos θi(T ∗)
·
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Figure 6. Four boundary arcs, joining at different times.

According to (4.30), the terminal value of time is computed by

W (T ∗) =
1

cos θi

η

ψ
− β

ψ
=

(
1

cos2 θi(T ∗)
− 1

)
β(P )
ψ(P )

=
4ψ2(P )h2(P )

1 − 4ψ2(P )h2(P )
· β(P )
ψ(P )

> 0.

Indeed, by (5.14) we have cos2 θi(T ∗) = 1 − 4ψ2(P )h2(P ).
For future use, we shall denote by V (τ, s̄1, s̄2) the value function, i.e. the minimum cost corresponding to

initial data
s(τ) = s̄1, s2(τ) = s̄2. (5.15)

5.2. Four boundary arcs joining at different times

Next, we study the case of four boundary arcs, shown in Figure 6. The two arcs γ3, γ4 join together at a time
τ1, while γ1 and γ2 join at a later time τ2 > τ1.

This can be modelled by a control system with state s = (s0, s1, s2, s3, s4) and control functions w =
(w1, w2, w3, w4).

Minimize: s0(T ) + V (T, s1(T ), s2(T )) (5.16)
for the system with dynamics {

ṡ0 = f0(t, s, w),
ṡi = fi(t, si, wi) i = 1, 2, 3, 4. (5.17)

Here V (τ, s̄1, s̄2) is the value function corresponding to the previous problem with two walls, considered at (5.15).
Moreover,

f0(t, s, w) =
4∑

i=1

β(x(t, si(t)))
wi(t)

ψ(x(t, si(t)))
+

(∫ s2(t)

s1(t)

+
∫ s4(t)

s3(t)

)
h(x(t, ξ))α(x(t, ξ)) dξ, (5.18)

while the functions f1, . . . , f4 are implicitly determined by the identities∣∣∣∣∂x(t, si)
∂t

+ fi(t, si, wi) ·
∂x(t, si)
∂si

∣∣∣∣ =
wi

ψ(x(t, si))
i = 1, 2, 3, 4. (5.19)

The controls satisfy the constraints

wi(t) ∈ [0, 1],
4∑

i=1

wi(t) ≤ 1, (5.20)
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while the terminal set is described by the identity:

s3(T ) − s4(T ) = 0. (5.21)

Let t �→ w∗(t) be an optimal control, with optimal trajectory t �→ s∗(t). Then by the Pontryagin necessary
conditions [7,12,14], there exists a nontrivial absolutely continuous adjoint vector p(t) .= (p0, p1, p2, p3, p4)(t)
such that

ṗ0(t) = 0 q̇i(t) = −
4∑

k=0

pk
∂fk

∂si
, i = 1, . . . , 4, (5.22)

4∑
i=0

pi(t) · fi(t, s∗(t), w∗(t)) = min
w1+w2+w3+w4≤1

4∑
i=0

pi(t) · fi(t, s∗(t), w) (5.23)

at almost every time t. In addition, at the terminal time t = τ1 one has

(p0, p1, p2, p3, p4)(τ1) = (1, Vs1 , Vs2 ,−η, η) (5.24)

for some real number η. This Lagrange multiplier can be determined using the further relation

min
w1+w2+w3+w4≤1

4∑
i=0

pi(τ1) · fi(τ1, s∗(τ1), w) = 0. (5.25)

From the minimality condition (5.23) it follows that, by setting

ξj(t)
.=

4∑
i=0

pi(t) ·
∂

∂wj
fi(t, s∗(t), w∗(t)) =

−pj(t)
cos θj(t)ψ(γj(t))

− β(γj(t))
ψ(γj(t))

, (5.26)

one has

ξ1(t) = ξ2(t) = ξ3(t) = ξ4(t) =
d
dε

[
min

w1+w2+w3+w4 ≤ 1+ε

4∑
i=0

pi(t) · fi(t, s∗(t), w(t))

]
ε=0

. (5.27)

As in the previous case, the positive quantity W (t) .= −ξi(t) yields the instantaneous value of time.

5.3. Junctions between a free arc and a boundary arc

We now consider a free arc γ and a boundary arc γ�, joining at a point P , as shown in Figure 7. In [4] it was
proved that, if these arcs are part of an optimal strategy minimizing the total burned area, then they must be
tangent at P . Here we study a more general case and derive further necessary conditions for optimality.

To fix the ideas, we assume that T Γ(x) ≤ τ1 for all x ∈ γ and T Γ(x) ≥ τ1 for all x ∈ γ�. We assume that
the free arc γ is normal and parameterized by arc-length: s �→ γ(s) with s ∈ [a, b]. It joins the boundary arc γ�

at the endpoint P = γ(b). As in Figure 2, we denote by t(s) and by n(s) respectively the unit tangent vector
and the unit normal vector to γ and the at the point γ(s). As in (3.1), let ϕ� : [a, b] �→ R be a smooth function
which vanishes in a neighborhood of a and b, and such that (3.2) holds.

Given any vector v ∈ R
2 and scalar ρ ∈ R, we shall construct a family of perturbed curves γε : [a, b] �→ R

2

having endpoints
γε(a), γε(b) + εv, (5.28)

and such that the total time needed to construct each γε is

T (γε) = T (γ) + ερ+ o(ε). (5.29)



GLOBAL OPTIMALITY CONDITIONS FOR A DYNAMIC BLOCKING PROBLEM 145

R
ap

id
e 

N
ot

eH
ighlight

T(x) = τ

γ

γ

θ
P

e
#

t

n

Figure 7. A junction between a free arc γ and a boundary arc γ�.

Here and in the sequel, the Landau symbol o(ε) denotes an infinitesimal of higher order w.r.t. ε. Toward this
goal, choose a smooth function ϕ : [a, b] �→ R

2 such that

ϕ(b) = v, ϕ(s) = 0 for s in a neighborhood of a,

and let ϕ1, ϕ2 be the normal and the tangential components of ϕ, so that

ϕ(s) = ϕ1(s)n(s) + ϕ2(s)t(s).

Moreover, define

η′0
.=

(∫ b

a

G(ψ, γ, s)ϕ�(s) ds

)−1 (
ρ− ψ(γ(b))ϕ2(b) −

∫ b

a

G(ψ, γ, s)ϕ1(s) ds

)
, (5.30)

γε(s)
.= γ(s) + εϕ(s) + εη′0ϕ

�(s)n(s) s ∈ [a, b]. (5.31)

Recalling that ϕ� vanishes at s = a and at s = b, it is clear that the end-point conditions (5.28) are satisfied.
We claim that (5.29) also holds.

Since now we are perturbing γ also in the tangential direction, computing the derivative of the time needed
to construct γε as in (3.5) we obtain an additional term. Namely, calling κ(s) the curvature of γ, in place
of (3.5) one has[

d
dt

T (γε)
]

ε=0

=
∫ b

a

{〈
∇ψ(γ(s)), n(s)

〉
+ ψ(γ(s))κ(γ(s))

}
·
(
ϕ1(s) + η′0ϕ

�(s)
)

ds

+
∫ b

a

{〈
∇ψ(γ(s)), t(s)

〉
ϕ2(s) + ψ(γ(s))

〈
t(s),

d
ds

[ϕ2(s)t(s)]
〉}

ds = I1 + I2.

(5.32)
We observe that the identity (3.17) was true for every scalar function φ vanishing at the endpoints a, b. By
a density argument, it still holds for a smooth function ϕ1 which does not vanish at s = b. Using this identity,
together with 〈t(s), ṫ(s)〉 ≡ 0, we obtain

I1 =
∫ b

a

G(ψ, γ, s) (ϕ1(s) + η′oϕ
�(s)) ds = ρ− ψ(γ(b))ϕ2(b), (5.33)

I2 =
∫ b

a

{
d
ds

(
ψ(γ(s))ϕ1(s)

)}
ds = ψ(γ(b))ϕ2(b). (5.34)

In connection with (5.32), this yields (5.29).
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We now consider the cost J(γε) associated with the perturbed arc γε. The change in the cost of building the
wall is described by

d
dε

[∫ b

a

β(γε(s)) |γ̇ε(s)| ds
]

ε=0

=
∫ b

a

{〈
∇β(γ(s)), n(s)

〉
+ β(γ(s))κ(γ(s))

}
·
(
ϕ1(s) + η′0ϕ

�(s)
)

ds

+
∫ b

a

{
d
ds

[β(γ(s))ϕ2(s)]
}

ds.

(5.35)
On the other hand, the change in the cost related to the burned area is estimated by

ε

∫ b

a

α(γ(s))
(
ϕ1(s) + η′0ϕ

�(s)
)

ds+ o(ε). (5.36)

We now use the fact that the free arc γ is optimal, hence (3.12) holds (with ϕ replaced by ϕ1). Comparing (5.35)–
(5.36) with (5.30), and using (3.19), we obtain

d
dε
J(γε)

∣∣∣∣
ε=0

= ϕ2(b)(ψ · η + β) − ρη, (5.37)

where η is the Lagrange multiplier defined at (3.13). It is understood that the functions ψ, β are here computed
at the terminal point γ(b).

Remark 5.1. The value λ in (3.13) and (3.19) describes the value of time, which remains constant as long as
the free arc is being built. The formula (5.37) thus has a simple interpretation. If the free arc γ is part of an
optimal strategy, the only change in the cost functional associated to the perturbation γε is due to (i) the cost
of building the additional portion of wall near the endpoint γ(b), and (ii) the change in the construction time.

We can now state the main result of this section.

Theorem 5.1 (necessary conditions at junctions). Let γ1, . . . , γν ⊂ ΓF \ Γd be free arcs, simultaneously con-
structed by an optimal strategy Γ during the time interval t ∈ ]τ0, τ1[ . Assume that at least one of these arcs is
normal, and let s �→ γi(s) be a parameterization of γi by arc-length, with s ∈ ]ai, bi[.

Let γ∗1 , . . . , γ
∗
ν ⊂ ΓS \ Γd be boundary arcs, all normal, simultaneously constructed by the optimal strategy

during the time interval t ∈ [τ1, τ2].
Assume that each pair of arcs γi, γ

∗
i have a common endpoint

Pi = γi(bi) = γ∗i (τ1), (5.38)

and that the angle θi between the barrier γi and the fire front {T Γ(x) = τ1} at the junction point Pi (see Fig. 7)
satisfies

0 < θi <
π

2
i = 1, . . . , ν. (5.39)

Then there exists constants λ0 = 1 and λ, and adjoint variables qi(t), such that all necessary conditions stated
in Theorems 3.1 and 4.1 hold, together with the following matching conditions, valid for i = 1, . . . , ν.

qi(τ1) =
(
β(Pi) + λψ(Pi)

)
cos θi, (5.40)

Wi(τ1) = λ. (5.41)

Moreover, for each i the curves γi and γ∗i meet tangentially at the point Pi.
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�
i produce an outward corner. Center: two arcs producing

an inward corner. Right: the angles θ, θ∗ formed by the arcs γ, γ� with the normal vector n to
the level set T (x) = τ1 at P .

Remark 5.2. We recall that Wi(t) is the instantaneous value of time for the boundary arc γ∗i , defined at (4.30).
This function is the same for all i = 1, . . . , ν, but can decrease in time. On the other hand, λ is the constant
value of time corresponding to the free arcs. The identity (5.41) says that the value of time is continuous at
t = τ1, when the junction occurs.

To motivate the identities (5.40), we observe that the Lagrange multiplier qi(t) describes the increase in the
total cost produced by shifting the initial point of the boundary arc γ∗i (t) in the direction of the unit vector
ei(τ1). On the other hand (5.37) implies that, if we shift the terminal point of the free arc γi in the direction
ei(τ1) = v1n − v2t without changing the total construction time (i.e. with ρ = 0), the cost related to the free
arc decreases at the rate

v2β(γi(bi)) + λv2ψ(γi(bi)) =
(
β(Pi) + η ψ(Pi)

)
cos θi.

Proof.

1. We begin by showing that, for every i = 1, . . . , ν, the arcs γi and γ∗i are tangent at the junction point Pi.
If not, we claim that there exists at least one index i such that at Pi the arcs γi, γ

∗
i produce an inward

corner (see Fig. 8).
Indeed, consider the portion of the arc γi which is reached by the fire during the interval [τ − ε, τ ].

This has length

m1

({
x ∈ γi; T (x) ∈ [τ1 − ε, τ1]

})
=

ε h(Pi)
cos θi

+ o(ε),

where h(Pi) is the speed at which the fire front is advancing, at the point Pi, as in (2.6). Similarly,

m1

({
x ∈ γ∗i ; T (x) ∈ [τ1, τ1 + ε]

})
=

ε h(Pi)
cos θ∗i

+ o(ε).

By assumption, the constraint (1.10) is satisfied as an equality for t ≥ τ1 and as a strict inequality for
t < τ1. For ε > 0 small, this yields

ε =
∫

Γ∩{T (x)∈[τ1, τ1+ε]}
ψ dm1 =

ν∑
i=1

ψ(Pi)
ε h(Pi)
cos θ∗i

+ o(ε),

ε <

∫
Γ∩{T (x)∈[τ1−ε, τ1]}

ψ dm1 =
ν∑

i=1

ψ(Pi)
ε h(Pi)
cos θi

+ o(ε).

If now 0 ≤ θi ≤ θ∗i ≤ π/2 for every i = 1, . . . , ν, and θj < θ∗j for at least one j, then the two above
conditions yield a contradiction.
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Figure 9. If a barrier Γ contains an inward corner, it can be replaced by a barrier Γ′ yielding
a smaller cost.

2. By the previous step, we can now assume that at least one pair of arcs, say γi and γ∗i , form an inward
corner. We claim that this blocking strategy Γ is not optimal.

Indeed, if the construction cost is strictly positive, i.e. β(Pi) > 0, then a strictly better strategy Γ′

is as follows (Fig. 9, left). Fix ε > 0 small. Let A be the point along γi at distance ε from Pi. Let B
be the point along γ∗i such that the segment AB is perpendicular to the bisectrix v of the angle at Pi.
Replace the portion of walls in γi ∪ γ∗i between A and B by this segment. The new barrier Γ′ thus
obtained is admissible. The length of Γ′ satisfies m1(Γ′) ≤ m1(Γ) − cε, for some c > 0 an all ε > 0
small enough. On the other hand, the additional area burned by the fire is of order O(ε2). Hence, if
β(Pi) > 0, for ε > 0 small the total cost associated with Γ′ is J(Γ′) < J(Γ).

On the other hand, if β(Pi) = 0 but α(Pi) > 0, then we can reduce both the total length of the wall
and the total area burned by the fire, as shown in Figure 9, right. Fix ε > 0 small. Let A be the point
along γi at distance ε from Pi. Construct a segment AB′ perpendicular to the bisectrix v. Prolong
this segment to a point B such that (with obvious meaning of notation) the length of the various arcs
satisfy

m1(AB) + 2m1(B′B) = m1(APi) +m1(PiB
′).

Then construct an arc B′C of length κε (with κ >> 1), having constant distance to γ∗i . Finally, connect
the point C with a point D on γ∗i .

The new barrier Γ′ obtained by replacing the arcs APi and PiD with AB∪BC∪CD is still admissible.
Its total length is smaller, and the total burned area has also decreased. Indeed, by choosing κ large
enough, the area of the region B′BCD is strictly smaller than the area of the triangle APiB

′. Hence,
for ε > 0, we again conclude that J(Γ′) < J(Γ), against the optimality of the strategy Γ. The above
arguments prove the last statement of the theorem: for every i = 1, . . . , ν, the arcs γi and γ∗i are tangent
at the point of junction.

3. Toward a proof of the matching conditions (5.40), we remark that the optimality conditions for boundary
arcs in Theorem 4.1 were obtained by considering an auxiliary optimal control problem with fixed
endpoints. However, the analysis in (5.28)–(5.37) shows that, for any choice of the numbers r1, . . . , rν ,
we can replace the free arcs γi by perturbed arcs γi,ε, terminating at the endpoints xi(τ1, εri). Here we
use the coordinates (t, s) �→ xi(t, s) as in Figure 3. More precisely, the following holds.
(i) The arc γi,ε starts at γi(ai) and terminates at the point

γi,ε(bi) = xi(τ1, εri) = Pi + εriei(τ1) + o(ε).
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(ii) The total amount of time needed to construct these arcs is the same:

ν∑
i=1

T (γi,ε)
.=

ν∑
i=1

∫ bi

ai

ψi(γi,ε(s)) ds =
ν∑

i=1

∫ bi

ai

ψi(γi(s)) ds .=
ν∑

i=1

T (γi). (5.42)

(iii) As in (5.37), the change in cost associated with these perturbed arcs is

d
dε
J(γi,ε)

∣∣∣∣
ε=0

= (β(Pi) + λψ(Pi))ri cos θi. (5.43)

At this point, the conditions (5.40) become clear. For an optimal control problem with free initial point,
the initial values of the adjoint variables q1, . . . , qν should equal the gradients of the cost associated with
these initial values.

To make this argument completely rigorous, however, we must clarify a technical point. Indeed, in
principle the perturbed strategies consisting of free arcs γi,ε, then of boundary arcs γ�

i,ε starting at the
points γi,ε(bi) = xi(τ1, εαi), may not be admissible. Indeed, since now we are perturbing the free arcs γi

also at points where the constraint (1.10) is saturated, the arguments used at (3.8) and (3.9) now break
down.

To take care of this difficulty, for any fixed δ > 0 we replace the arcs γi,ε with free arcs γ̃i,ε having
the same endpoints

γ̃i,ε(ai) = γi,ε(ai), γ̃i,ε(bi) = γi,ε(bi),

but requiring slightly shorter time to construct. Namely

ν∑
i=1

T (γ̃i,ε) =
ν∑

i=1

T (γi) − δ|ε|. (5.44)

According to (5.37), the cost associated with these new free arcs is

ν∑
i=1

J(γ̃i,ε) =
ν∑

i=1

J(γi) + ε
ν∑

i=1

ri(β(Pi) + λψ(Pi)) cos θi + λδ|ε|.

Because of (5.44), for any fixed δ > 0 these alternative strategies will be admissible, for ε in a neigh-
borhood of the origin (possibly shrinking to zero as δ → 0).

For (s1, . . . , sν) ≈ (0, . . . , 0), we now define

V (s1, . . . , sν) .= inf
ν∑

i=1

J(γ̃i)

where the infimum is taken over all admissible ν-tuples of free arcs γ̃1, . . . , γ̃ν , with

γ̃i(ai) = γi(ai), γ̃i(bi) = xi(τ1, si).

Since δ > 0 was arbitrary, the previous argument shows that

∂V

∂si

∣∣∣∣
(s1,...,sν)=(0,...,0)

= (β(Pi) + λψ(Pi)) cos θi.

Since this partial derivative must coincide with the initial value of the adjoint variable qi, the identities
in (5.40) hold.
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4. Finally, by (4.30) and (5.43) one finds

Wi(τ1) =
1

cos θi

qi
ψ

− β

ψ
=

1
cos θi

(β + λψ) cos θi

ψ
− β

ψ
= λ,

proving the matching condition (5.41).

6. Examples

This final section provides three examples, where the value of time and the matching conditions can be
directly computed.

Example 6.1. Assume that F (x) ≡ B(0, 1), so that the fire propagates with unit speed in all directions.

Assume that, without barriers, the minimal time function is T (x) = x2. We take here α(x) ≡ 1 and β(x) ≡ 0,
so that we simply seek to minimize the total burned area. Moreover, we assume that the construction speed
σ = 1/ψ is a constant. We consider two cases.

Case 1. At time t, the boundary of the burned region where fire is advancing is a single segment:

{(x1, x2); x1 ∈ [s1(t), s2(t)], x2 = t}.

In this case, assuming that σ > 2, the optimal strategy is to construct the two walls at same speed σ/2. If at
time t = 0 we have [s1(0), s2(0)] = [s̄1, s̄2], then the time needed to block the fire is

T =
s̄2 − s̄1

2
√

(σ/2)2 − 1
=

s̄2 − s̄1√
σ2 − 4

·

The total burned area is

V (s̄2 − s̄1) =
(s̄2 − s̄1)2

2
√
σ2 − 4

· (6.1)

The adjoint variables are

q2(t) =
∂V

∂s̄2
=

s2(t) − s1(t)√
σ2 − 4

= − ∂V

∂s̄1
= −q1(t).

The angle θ between each wall and the fire front is determined by

sin θ =
2
σ
, cos θ =

√
σ2 − 4
σ

·

The instantaneous value of time is computed as

W (t) =
q2(t)
ψ cos θ

=
σ2

σ2 − 4
· (s2(t) − s1(t)). (6.2)

Case 2. Assume that at a given time t, the boundary of the burned set consists of two segments:

∂R(t) =
{
(x1, x2); x1 ∈ [s1(t), s2(t)] ∪ [s3(t), s4(t)], x2 = t

}
.

We are thus constructing four walls, at the points Pi(t) = (si(t), t). Assume that σ > 4 and, to fix the ideas,
let s4 − s3 ≤ s2 − s1 (see Fig. 10). We shall reformulate the above problem as an optimal control problem with
free terminal time (the time where the walls at P3 and P4 join together).
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Figure 10. At time t = T the two walls γ3, γ4 join together. The angles θ1 = θ2 increase as
t → T−, while θ3 = θ4 decrease. For t > T , all resources are allocated to the construction of
the remaining barriers γ1, γ2. In this case, θ1(t) = θ2(t) = arcsin(2/σ).

We set y1 = s2 − s1, y2 = s4 − s3, while y0 will keep track of the burned area up to time t. It is clear that
an optimal strategy will satisfy ṡ2 = −ṡ1, ṡ4 = −ṡ3. Therefore, the above variables evolve in time according to⎧⎪⎨⎪⎩

ẏ0 = y1 + y2

ẏ1 = −
√
u2

1 − 4
ẏ2 = −

√
u2

2 − 4
ui ∈ [2, σ], u1 + u2 ≤ σ, (6.3)

with initial data
y1(0) = s̄2 − s̄1, y2(0) = s̄4 − s̄3, y0(0) = 0. (6.4)

The terminal set is
S =

{
(y0, y1, y2); φ1(y0, y1, y2)

.= y2 = 0
}

(6.5)

and the terminal payoff is

φ0(y0, y1, y2) = y0 +
y2
1

2
√
σ2 − 4

· (6.6)

Indeed, after the time where the first couple of walls join together, the problem is reduced to optimizing the
construction of the two remaining barriers. For this problem, discussed in Case 1, the corresponding optimal
value function was computed at (6.1).

Applying the Pontryagin maximum principle to the optimal control problem (6.3)–(6.6), we obtain an adjoint
vector p = (p0, p1, p2) such that ⎧⎨⎩

ṗ0 = 0
ṗ1 = −p0

ṗ2 = −p0

(6.7)

with terminal conditions

(p0, p1, p2)(T ) = ∇φ0 + λ1∇φ1 =
(

1,
y1√
σ2 − 4

, λ1

)
(6.8)

for some constant λ1 . Moreover, at every time t one has

min
u1,u2∈[2,σ], u1+u2≤σ

(
p0(y1 + y2) − p1

√
u2

1 − 4 − p2

√
u2

2 − 4
)

= 0. (6.9)
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Since p0(t) ≡ 1, at the terminal time T this yields

min
ω1,ω2∈[2,σ], ω1+ω2≤σ

(
y1 −

√
ω2

1 − 4√
σ2 − 4

y1 − λ1

√
ω2

2 − 4

)
= 0. (6.10)

The three variables ω1 = u1(T ), ω2 = u2(T ), and λ1 can be determined from the equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ω1√
ω2

1 − 4
√
σ2 − 4

y1 =
λ1 ω2√
ω2

2 − 4
,

ω1 + ω2 = σ,

y1 −
√
ω2

1 − 4√
σ2 − 4

y1 − λ1

√
ω2

2 − 4 = 0.

(6.11)

Observe that, if y1(τ) = y2(τ) at some time τ , then by symmetry the optimal control is u1(t) = u2(t) = σ/2 for
all times t. In this case y1(t) = y2(t) for all t. In particular, both couples of walls terminate at the same time:
y1(T ) = y2(T ). Throughout the following, we shall consider the case where y1(t) > y2(t) for all t.

We now study the existence and uniqueness of solutions to the system (6.11). Given p1, p2, if u1, u2 achieve
the minimum in (6.9) then

p1 ·
u1√
u2

1 − 4
= p2 ·

u2√
u2

2 − 4
· (6.12)

At the terminal time t = T , since ω2 = σ − ω1, from (6.12) it follows

ω1√
ω2

1 − 4
·
√

(σ − ω1)2 − 4
σ − ω1

=
p2

p1
· (6.13)

We observe that the left hand side of (6.13) is a monotonically decreasing function, for ω1 ∈ ]2, σ − 2[. It
approaches +∞ as ω1 → 2+ and it approaches −∞ as ω1 → (σ − 2)−. Therefore for a given ratio p2/p1 > 0,
the equation (6.13) has exactly one solution ω1 ∈ (2, σ − 2).

We now observe that p1(T ) is determined by y1(T ), but p2(T ) = λ1 still needs to be determined. At the
terminal time T , the minimum value

min
u1+u2≤σ

(
y1 −

y1√
σ2 − 4

√
u2

1 − 4 − λ1

√
u2

2 − 4
)

is a decreasing function of λ1. Hence there exists unique λ1 satisfying (6.9) at t = T . Together with the previous
analysis, this shows that the system (6.11) has a unique solution.

We now claim that p2(T ) > p1(T ), i.e. λ1 >
y1√
σ2−4

.
On the contrary, assume that λ1 ≤ y1√

σ2−4
. In view of (6.11),

y1√
σ2 − 4

·
{√

σ2 − 4 −
√
ω2

1 − 4 −
√

(σ − ω1)2 − 4
}

≤ 0. (6.14)

Since the right hand side of (6.14) is convex w.r.t. ω1 and attains the minimum

y1√
σ2 − 4

·
{√

σ2 − 4 − 2

√(σ
2

)2

− 4

}
≥ 0 (6.15)

at ω1 = σ/2, the above leads to a contradiction with (6.14). Hence p2(T ) > p1(T ).



GLOBAL OPTIMALITY CONDITIONS FOR A DYNAMIC BLOCKING PROBLEM 153

R
ap

id
e 

N
ot

eH
ighlight

In turn, this implies ω2 > σ/2 > ω1. Moreover, p1(t) = p1(T ) + T − t and p2(t) = p2(T ) + T − t. Therefore
the ratio satisfies p2(t)/p1(t) > 1 and is increasing in time, achieving a maximum at the terminal time t = T .
By (6.12), the optimal controls satisfy u2(t) > u1(t), with t �→ u2(t) increasing and t �→ u1(t) decreasing, up to
time T .

Finally, consider the value of time

W (t) =
σ qi(t)

cos θi(t)
,

where θi(t) is the angle formed by the wall γi and the fire front. Notice that, for i = 1, 2, this can be well
defined also for t > T . The adjoint variables q1(t), q2(t) remain continuous at the time t = T , while the angles
θ1, θ2 suddenly decrease at the time T where the walls γ3 and γ4 meet. Therefore, one expects that W (·) should
have a downward jump at t = T . This is confirmed by the following computations:

q1(T ) = q2(T ) =
y1(T )√
σ2 − 4

=
s2(T ) − s1(T )√

σ2 − 4
·

For t > T we have

θ1(t) = θ2(t) = arcsin
2
σ
,

hence the value of time is provided by (6.2). In particular

lim
t→T+

W (t) =
σ2

σ2 − 4
(s2(T ) − s1(T )). (6.16)

On the other hand, for t < T we have p2(t) ≥ p1(t), hence u2(t) ≥ u1(t) and

w1(t) = w2(t) =
u1(t)

2
≤ σ

4
·

Hence the angles θ1(t) = θ2(t) between the walls γ1, γ2 and the fire front satisfy

sin θi(t) ≥ 4
σ
,

1
cos θi(t)

≥ σ√
σ2 − 16

·

Therefore

lim
t→T−

W (t) =
y1(T )√
σ2 − 4

· σ

cos θ1(T−)
≥ σ2√

(σ2 − 4)(σ2 − 16)
(s2(T ) − s1(T )). (6.17)

Comparing (6.17) with (6.16), it is clear that the value of time has a downward jump at the time t = T when
the arcs γ3 and γ4 meet.

Example 6.2. We again consider the problem of minimizing the total area burned by the fire, assuming that
walls constructed at a constant speed σ > 2. Here we assume that at the initial time t = 0 the fire occupies
the unit disc R0 = B1. Moreover, we assume that F (x) = B1 for all x ∈ R

2, so that the fire propagates at unit
speed in all directions.

As described in [4], an optimal strategy is as follows. First construct an arc of circumference Γ1. Then
construct two arcs of logarithmic spirals Γ2,Γ3 along the boundary of the burned region (see Fig. 11). In this
case, Γ1 is a free arc, while Γ2,Γ3 are boundary arcs. Here the length of the arc Γ1 should satisfy

m1(Γ1) = σ · d(Q2, R0) = σ · d(Q3, R0),
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Figure 11. The burned region is enclosed by the arc of circumference Γ1 and by two arcs of
logarithmic spirals Γ2,Γ3.

so that the two end-points Q2, Q3 are reached by the boundary of the burned region Rγ(τ) exactly at the time τ
when the construction of the arc Γ1 is completed. According to Theorem 5.1, the junctions at Q2 and at Q3

must be C1, i.e. the arcs must join tangentially. For each time τ , the above conditions determine a unique
strategy Γ(τ). These conditions reduce the problem to an optimization problem over the scalar parameter τ .

We parameterize the boundary arcs Γ2,Γ3 by the time t, using polar coordinates. The radius is ρ(t) = 1 + t,
while the angle θ(t) is the angle between OΓi and the axis of symmetry. As shown in Figure 11, r denotes the
radius of the arc of circumstance Γ1, while θ1 denotes half of the corresponding angle. Moreover, θ0 = θ(τ) is
the angular coordinate of the point of junction Q2, while

θσ = arcsin
(

2
σ

)

denotes the constant angle between the arcs of spirals Γ2,Γ3 and the circumferences centered at the origin. At
the junction point Q2 we have the identities

⎧⎪⎪⎨⎪⎪⎩
θσ = θ0 + θ1

σ · τ = 2rθ1

r · sin θ1 = (1 + τ) · sin θ0.
(6.18)

In (6.18), θ0 and r can be written in terms of θ1 from the first two equations. Inserting these values in the last
equation, the system reduces to the single equation

Φ(θ1)
.=

στ

2θ1
· sin θ1 − (1 + τ) · sin(θσ − θ1) = 0. (6.19)
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We claim that under the assumption τ < τσ
.= 4

σ2−4 , the function Φ has unique root θ1 ∈ [0, θσ]. Indeed, the
assumption implies στ

2 < (1 + τ) sin θσ, hence Φ(0) < 0. A differentiation yields

d
dθ1

Φ(θ1) =
στ cos θ1

2θ21
· (θ1 − tan θ1) + (1 + τ) · cos(θσ − θ1)

=
στ cos θ1

2θ21
· (θ1 − tan θ1) + (1 + τ) · (cos θσ cos θ1 + sin θσ sin θ1)

≥ στ cos θ1
2θ21

· (θ1 − tan θ1) + (1 + τ) sin θσ sin θ1

≥ στ cos θ1
2θ21

· (θ1 − tan θ1) +
στ

2
sin θ1

≥ στ cos θ1
2θ21

· (sin θ1 − tan θ1) +
στ

2
sin θ1

=
στ sin θ1

2θ21
·
(
cos θ1 − 1 + θ21

)
> 0, for all θ1 ∈ (0, π/2),

showing that Φ strictly increases.
Moreover, Φ(θσ) = στ

2θσ
· sin θσ > 0, and Φ(0) < 0. Hence Φ has unique zero inside the interval ]0, θσ[.

If τ is given and sufficiently small, the parameters θ0, θ1 and r are thus uniquely determined by the system
(6.18). From now on, we consider them as functions of τ . The terminal time T can be determined implicitly
from the identity

π − θ0 =
∫ T

τ

√
(σ/2)2 − 1

1 + t
dt =

√
(σ/2)2 − 1 · ln

(
1 + T

1 + τ

)
· (6.20)

The total area burned by the fire is computed by

A(τ) .=
∫ T

τ

(1 + t)2 ·
√
σ2/4 − 1
1 + t

dt+ (1 + τ)2 · sin θ0 cos θ0 − r2 · (θ1 − sin θ1 cos θ1). (6.21)

Notice that this expression can be regarded as a function of the scalar variable τ . In order to find the optimal
strategy, one could simply minimize (6.21) w.r.t. the scalar variable τ .

Alternatively, one can determine the optimal value of τ from a matching condition. Indeed, as proved in
Theorem 5.1, the value of time must be a continuous function, constant for t ∈ [0, τ ], then decreasing to zero
for t ∈ [τ, T ]. Along the free arc Γ1, one has

W (t) = σr t ∈ [0, τ ]. (6.22)

To compute the value of time along the boundary arcs Γ2,Γ3, we need to determine by how much a small
perturbation of the data can increase the total cost. Namely, assume that at time t we shift the edge of the
wall γ2(t) along the boundary of the burned region. Working in polar coordinates, this means that at time t,
instead of being at (ρ, θ) = (1 + t, θ(t)), we move it to the point

(ρ, θ) = (1 + t, θε(t))
.=

(
1 + t, θ(t) − ε

1 + t

)
·

The rate of increase of the corresponding burned area is measured by

q2(t) = lim
ε→0

1
ε

∫ T

t

ρ(s) · (θ(s) − θε(s)) ds

=
∫ T

t

1 + s

1 + t
ds =

(1 + T )2 − (1 + t)2

2(1 + t)
·
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By (4.30), the value of time along the boundary arc Γ2 is

W (t) =
σq2(t)
cos θσ

=
σ2

√
σ2 − 4

·
{

(1 + T )2

2(1 + t)
− 1 + t

2

}
t ∈ [τ, T ]. (6.23)

Of course, the same value is valid along the boundary arc Γ3. It is easily checked that the above function is
monotonically decreasing and vanishes for t = T .

Imposing that the value of time along the free arc and the boundary arcs coincide at the junction time,
i.e. that the right hand sides in (6.22)–(6.23) coincide at time t = τ , we obtain an additional equation to
determine τ . The following table displays the various parameters of an optimal strategy, which have been
numerically computed for different values of the construction speed σ. Clearly, as the construction speed
increases, the time T needed to block the fire and the total burned area A decrease.

σ τσ τ θ0 r θ1 T A(τ)
2.2 4.76190 4.76037 1.14097 42 772.4 0.00012 452.370 47 126.4
2.4 2.27273 2.26594 0.98373 1973.44 0.00138 83.4908 2374.59
3.0 0.80000 0.77928 0.71676 90.1463 0.01297 14.5653 135.926
4.0 0.33333 0.30351 0.48427 15.4335 0.03933 5.04522 30.9903
6.0 0.12500 0.09588 0.26533 3.86080 0.07450 2.02972 11.5975
8.0 0.06667 0.04295 0.16528 1.96597 0.08740 1.24912 7.86743
10.0 0.04167 0.02286 0.11180 1.27599 0.08956 0.89847 6.38192
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