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THE COHOMOLOGY OF PERIOD DOMAINS FOR
REDUCTIVE GROUPS OVER FINITE FIELDS

BY SASCHA ORLIK ∗

ABSTRACT. – The goal of this paper is to give an explicit formula for the�-adic cohomology of period
domains over finite fields for arbitrary reductive groups. The result is a generalisation of the computation
in [6] which treats the case of the general linear groupGLn.  2001 Éditions scientifiques et médicales
Elsevier SAS

RÉSUMÉ. – Dans cet article, nous donnons une formule explicite pour la cohomologie des domaines de
périodes sur un corps fini dans le cas d’un groupe réductif quelconque. Le résultat est une généralisation
du calcul fait en [6], qui traite le cas du groupe linéaireGLn.  2001 Éditions scientifiques et médicales
Elsevier SAS

1. Introduction

Let k = Fq be a finite field, and letG be a reductive algebraic group defined overk of
semisimplek-rank d = k-rkss(G). Fix a pairS ⊂ B consisting of a maximalk-split torusS
and a Borel subgroupB defined overk. The centralizerZG(S) of S in G is a maximal torusT ,
sinceG is quasisplit. We denote byR the roots, byR+ the positive roots and by

∆ = {α1, . . . , αd}

the basis of simple roots ofG with respect toS ⊂B. Let k′ be a finite field extension ofk over
whichG splits, and letk be an algebraic closure ofk. We denote byΓ = Gal(k′/k), respectively
Γk = Gal(k/k) the associated Galois groups. Ifλ ∈X∗(T )Q is a rational cocharacter we will
denote by

P (λ) =
{
g ∈G; lim

t→0
λ(t)gλ(t)−1 exists inG

}
the associated parabolic subgroup, and by

U(λ) =
{
g ∈G; lim

t→0
λ(t)gλ(t)−1 = 1

}
its unipotent radical.

Fix a conjugacy class

{µ} ⊂X∗(G)
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64 S. ORLIK

of one-parameter subgroups (1-PS) ofG, whereµ denotes a representative lying inX∗(T ). Let

E =
{
x ∈ k; σ(x) = x, for all σ ∈ StabΓk

({µ})
}

be the Shimura field of{µ}, an intermediate field ofk′/k. According to a lemma of Kottwitz [3],
Lemma 1.1.3, we can suppose thatµ ∈ {µ} is defined overE. Hence the conjugacy class{µ}
defines a flag variety

FJ :=FJ (G,{µ}) :=G/P (µ)

overk that is defined overE. Notice that the geometric points ofFJ coincide with the set

{µ}/∼,

whereλ1, λ2 ∈ {µ} are equivalent, writtenλ1 ∼ λ2, if there exists a pointg ∈ U(λ1) with
Int(g) ◦ λ1 = λ2. Here

Int(g) :G−→G,

h �−→ ghg−1

is the inner automorphism ofG, which is induced byg. Finally, we setΓE := Gal(k′/E).
In the further text we identify a variety with the set of its closed points. Letx ∈ FJ be a point

which is represented by a 1-PSλ. It is well-known thatλ induces for everyG-moduleV over
k a descendingZ-filtration F•

λ(V ) onV . In fact, letV =
⊕

Vλ(i) be the associatedZ-grading.
ThenF•

λ(V ) is given by

F i
λ(V ) =

⊕
j�i

Vλ(j), i ∈ Z.

As this filtration depends only onx, we denote this filtration byF•
x(V ). Considering the adjoint

action ofG on its Lie algebraLieG, we get in particular a filtrationF•
x :=F•

x(LieG) onLieG.
We will say thatx is semistable if the filtered vector space(LieG,F•

x) is semistable. For the
latter definition of semistability see [8–10] or [6], Definition 1.13. Following [10], the semistable
points ofFJ form an open subvariety

FJ ss :=FJ (G,{µ})ss,

which is called the period domain with respect toG and{µ}. It is defined overE and is supplied
with an action ofG(k). In his paper [12], Totaro has shown that there exists a relationship to
the concept of semistability in Geometric Invariant Theory introduced by Mumford [5]. We shall
explain this relationship in Section 2.

Choose an invariant inner positive definite product onG; i.e. we have for all maximal toriT
in G a non-degenerate positive definite pairing( ) onX∗(T )Q, such that the natural maps

X∗(T )Q −→X∗(T
g)Q,

induced by conjugating withg ∈G(k) and

X∗(T )Q −→X∗(T
σ)Q

induced by conjugating withσ ∈ Γk are isometries for allg ∈G(k), σ ∈ Γk. HereT g = gTg−1

is the conjugate torus, respectivelyT σ = σ · T is the image ofT under the morphismσ :G→G
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THE COHOMOLOGY OF PERIOD DOMAINS FOR REDUCTIVE GROUPS OVER FINITE FIELDS 65

induced byσ. The inner product, together with the natural pairing

〈 〉 :X∗(T )Q ×X∗(T )Q −→ Q,

induces identifications

X∗(T )Q −→X∗(T )Q,

λ �−→ λ∗,

respectively

X∗(T )Q −→X∗(T )Q,

χ �−→ χ∗,

for all maximal toriT in G. We callλ∗ the dual character ofλ andχ∗ the dual cocharacter ofχ.
Before we can state the main result of this paper, we have to introduce a few more notations.

Let W = N(T )/T be the Weyl group ofG, and letWµ be the stabilizer ofµ with respect to
the action ofW onX∗(T ). We denote byWµ the set of Kostant-representatives with respect to
W/Wµ. Consider the action ofΓE onW . Sinceµ is defined overE, this action preservesWµ.
Denote the corresponding set of orbits byWµ/ΓE and its elements by[w], wherew is in Wµ.
Clearly the length of an element inW only depends on its orbit. So the symboll([w]) makes
sense. For any orbit[w] we set

ind[w] := IndΓE

StabΓE
(w)Q�.

This induced representation is clearly independent of the specified representative. Let

{ωα1 , . . . , ωαd
} ⊂X∗(S)Q

be the dual basis of∆, i.e. we have

〈ωαi , αj〉= δij , ∀ i, j, 1 � i, j � d.

For every subsetI ⊂∆ we define

ΩI :=
{
[w] ∈Wµ/ΓE; 〈wµ,ω∗

α〉> 0, for all α /∈ I
}
.

We get the following inclusion relation

I ⊂ J ⇒ΩI ⊂ΩJ .

In the further text we denote for[w] ∈Wµ/ΓE by I[w] the smallest subset of∆ such that[w] is
contained inΩI[w]

. Obviously, we have

I[w] ⊂ I ⇔ [w] ∈ΩI .(1)

For a parabolic subgroupP ⊂ G defined overk we consider the trivial representation ofP (k)
onQ�. We denote by

iGP = Ind
G(k)
P (k)(Q�)
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66 S. ORLIK

the resulting induced representation ofG(k). Further we set

vGP = iGP
/ ∑
P�Q

iGQ.

In the caseP =B, we get the Steinberg representation [11]. Finally, for any subsetI ⊂∆ we set

PI :=
⋂

I⊂∆−{α}
P (ωα).

This parabolic subgroup is defined overk since theωα are. Thus we can state the following
theorem, which calculates the&-adic cohomology with compact support of the period domain
FJ ss as representation of the productG(k)×ΓE .

THEOREM 1.1. –We have

H∗
c(FJ ss,Q�) =

⊕
[w]∈Wµ/ΓE

vGPI[w]
⊗ ind[w]

(
−l([w])

)[
−2l([w])−#(∆− I[w])

]
.

Here the symbol(n), n ∈ N, means thenth Tate twist and[−n], n ∈ N, symbolizes that the
corresponding module is shifted into degreen of the graded cohomology ring.

As in the case of theGLd+1 (cf. [6], Korollar 4.5) we can state the following result about the
vanishing of some cohomology groups of these period domains. The proof of this corollary is
similar to theGLd+1-case.

COROLLARY 1.2. –We have

Hi
c

(
FJ ss,Q�

)
= 0, 0 � i� d− 1,

and

Hd
c

(
FJ ss,Q�

)
= vGB .

Theorem 1.1 has been conjectured by Kottwitz and Rapoport, who had calculated previously
the Euler–Poincaré characteristic with compact support of these period domains in the
Grothendieck group ofG(k)×ΓE representations (cf. [10]). The formula for the Euler–Poincaré
characteristic is accordingly

χc(FJ ss
g ,Q�) =

∑
[w]∈Wµ/ΓE

(−1)d−#I[w]vGPIw
⊗ ind[w]

(
−l([w])

)
.

In the split case the formula of the theorem becomes

H∗
c(FJ ss,Q�) =

⊕
w∈Wµ

vGPIw

(
−l(w)

)[
−2l(w)−#(∆− Iw)

]
,

which has been already calculated forG= GLd+1 in a slightly different way in [6].

2. The relationship of period domains to GIT

In this section we want to explain the relationship between period domains and Geometric
Invariant Theory. For details we refer to the papers [12], respectively [10]. We mention, that
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Totaro has described in his article [12] the theory of period domains in the case of local fields.
But as the reader verifies easily, all the proofs and ideas work also in the case of finite fields.

Let

M := P (µ)/U(µ)

be the Levi-quotient ofP (µ) with centerZM . Thenµ defines an element ofX∗(ZM ). Let TM
be a maximal torus inM . Then we haveZM ⊂ TM and TM is the isomorphic image of a
maximal torus inG. So we get an invariant inner product onM . Consider the dual character
µ∗ ∈X∗(TM )Q. Asµ belongs toX∗(ZM ), the dual characterµ∗ is contained in

X∗(Mab)Q ∼= Hom
(
P (µ),Gm

)
⊗Z Q.

The inverse character−µ∗ induces a homogeneous line bundle

L := L−µ∗

onFJ . The reason for the sign is that this line bundle is ample.
Let λ :Gm →G be a 1-PS ofG. For any pointx ∈FJ we can consider the slopeµL(x,λ) of λ

in x relative to the line bundleL (cf. [5], Definition 2.2). Now we are able to state the following
theorem of Totaro (cf. [12], Theorem 3).

THEOREM 2.1 (Totaro). –Let x be a point ofFJ . Then x is semistable if and only if
µL(x,λ) � 0 for all 1-PSλ of Gder which are defined overk. HereGder is the derived group
ofG.

In order to investigate the GIT-semistability of points on varieties, it is useful to consider the
spherical building of the given group. LetB(G)k be thek-rational spherical building of our fixed
groupG. Recall the definition ofB(G)k (cf. [2]). For a maximalk-split torusS ofG we consider
first of all the space of rays

(
X∗(S)R − {0}

)
/R>0 :=

{
R>0λ; λ ∈X∗(S)R − {0}

}
in X∗(S)R starting in the origin. This space is homeomorphic to the(r− 1)-sphereSr−1, where
r is thek-rank ofG. We can associate to every rayR>0λ ∈ (X∗(S)R −{0})/R>0 a well-defined
parabolic subgroupP (R>0λ) (cf. [2]), which is compatible with the old definition ofP (λ) with
respect to a rational 1-PSλ ∈X∗(S)Q. We also have a natural action of thek-rational points of
G(k) on the disjoint union

∐
S k-split(X∗(S)R − {0})/R>0. We will say that two raysR>0λ1,

R>0λ2 are equivalent,R>0λ1 ∼ R>0λ2, if there exists an elementg ∈ P (R>0λ1)(k) which
transforms the one ray into the other. Finally, we set

B(G)k :=

( ∐
S k-split

(
X∗(S)R − {0}

)
/R>0

)/
∼

and supply this set with the induced topology. Again we can associate to every pointx ∈B(G)k
a well-definedk-rational parabolic subgroupP (x) of G. If S is any maximalk-split torus ofG
then we have a closed embedding

B(S)k ↪→ B(G)k.

The spaceB(S)k is called the apartment belonging toS.
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68 S. ORLIK

Assume for the remainder of this section that our groupG is semisimple. In this case the space
B(G)k is homeomorphic to the geometric realization of the combinatorial building (cf. [2], 6.1).
Thus we have a simplicial structure onB(G)k which is defined as follows. For ak-rational
parabolic subgroupP ⊂G we let

D(P ) :=
{
x ∈B(G)k; P (x)⊃ P

}
be the facette corresponding toP . If P is a minimal parabolic subgroup, i.e. a Borel subgroup as
G is quasi-split, then we callD(P ) a chamber ofB(G)k . If in contrastP is a proper maximal
subgroup, thenD(P ) is called a vertex.

Consider thek-rational cocharactersωα, α ∈ ∆, introduced in the previous section. These
cocharacters correspond to the vertices of the chamberD0 :=D(B), since theP (ωα),α ∈∆, are
the maximalk-rational parabolic subgroups that containB. For any other chamberD =D(P )
in B(G)k, there exists ag ∈ G(k), such that the conjugated elementsInt(g) ◦ ωα, α ∈ ∆,
correspond to the vertices ofD. The elementg is of course unique up to multiplication by an
element ofB(k) from the right. Therefore we choose for the rest of this paper for every chamber
D an elementgD with the above property. The elementgD0 should be of course the obvious one.
With this choice, we define for every chamberD in B(G)k the simplex

D̃ :=

{ ∑
α∈∆

rαλα; 0 � rα � 1,
∑
α∈∆

rα = 1

}
⊂X∗

(
gDSg

−1
D

)
R,

which is the convex hull of the fixed set of representativesλα := gDωαg
−1
D ∈X∗(gDSg

−1
D )R,

α ∈∆. The topological spacesD andD̃ are obviously homeomorphic. For the standard chamber
D0 we have in particular the description

D̃0 :=

{ ∑
α∈∆

rαωα; 0 � rα � 1,
∑
α∈∆

rα = 1

}
.

We can extendµL(x, ·) in a well-known way to a function onX∗(T )R for every maximal torus
T in G. Notice that the slope functionµL(x, ·) is not defined onD but onD̃. In spite of this fact
we will say thatµL(x, ·) is affine onD if it is affine onD̃, i.e. if following equality holds:

µL
(
x,

∑
α∈∆

rαλα

)
=

∑
α∈∆

rαµ
L(x,λα) for all

∑
α∈∆

raλα ∈ D̃.

It follows from [5], Proposition 2.7, that the definition of being affine does not depend on the
chosen representativesgD ∈G(k).

In the case of the special linear group we can calculate the slope of a point explicitly. IfF and
F ′ are two filtrations on a finite-dimensional vector spaceV we set

(F ,F ′) =
∑
α,β∈Z

αβ dimgrαF
(
grβF ′(V )

)
.

LEMMA 2.2. –LetG= SL(V ).
(i) Letx ∈ FJ andλ ∈X∗(G) with corresponding filtrationFλ onVk = V ⊗k k. Then

µL(x,λ) =−
(
Fx(Vk),Fλ

)
.
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(ii) LetT ⊂G be a maximal torus andλ, λ′ ∈X∗(T ). Then

(λ,λ′) = (Fλ,Fλ′).

Proof. –(i) If the point x is fixed byλ, then our statement is just a result of Totaro (cf. [12],
Lemma 6 and part (ii) of this lemma). In general, letx0 := limt→0 λ(t)x ∈ FJ . Then we know
thatµL(x,λ) = µL(x0, λ) (cf. [5], Definition 2.2, Property (iv)). On the other hand letF•

x(V ),
respectivelyF•

x0
(V ) be the corresponding filtrations onV . Then we claim that

grαFλ

(
Fβ
x (V )

)∼= grαFλ

(
Fβ
x0

(V )
)

for all α, β ∈ Z,

proving our assertion. Indeed, letW ⊂ V be any subspace. For everyα ∈ Z we set

Wα := im
(
grαFλ

(W ) ↪→ Vλ(α)
)
,

whereV =
⊕

α Vλ(α) is the grading ofV , which is induced byλ. Then we get

lim
t→0

λ(t) ·W =
∑
α

Wα,

considered as points of the corresponding Grassmanian variety. But then

grαFλ
(W )∼=Wα = grαFλ

(
lim
t→0

λ(t) ·W
)

for all α ∈ Z,

and the claim follows.
(ii) Choose a basis ofV such thatT is the diagonal torus ofSLd+1. Then we may identifyλ,

respectivelyλ′, with d+1-tuplesλ= (λ1, . . . , λd+1), respectivelyλ′ = (λ′1, . . . , λ
′
d+1) ∈ Zd+1.

Obviously, we havegrαFλ
(V ) = Vλ(α), respectivelygrαFλ′ (V ) = Vλ′ (α), and

grαFλ

(
grβFλ′ (V )

)
= Vλ(α) ∩ Vλ′(β) for all α,β ∈ Z.

But then

(Fλ,Fλ′) =
∑
α,β

αβ dim
(
Vλ(α) ∩ Vλ′ (β)

)
=
∑
α,β

αβ#{i ; λi = α, λ′i = β}

=

d+1∑
i=1

λiλ
′
i = (λ,λ′). ✷

The idea of the next proposition is due to Burt Totaro which is a decisive point in proving the
acyclicity of the fundamental complex in Theorem 3.2.

PROPOSITION 2.3. –Let x ∈ FJ be any point. The slope functionµL(x, ·) is affine on each
chamber ofB(G)k.

Proof. –We may assume that our group isk-simple. Choose a faithful representation

i :G ↪→ SLn =:G′

which is defined overk. Setµ′ := i ◦ µ ∈X∗(G
′). We get a closed immersion

i :FJ (G,{µ}) ↪→FJ (G′,{µ′}) =:FJ ′
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70 S. ORLIK

of the corresponding flag varieties, under whichµ is mapped toµ′. We assume that we have
an invariant inner product onSLn which restricts to our fixed one onG. This is not really a
restriction since two such inner products on ak-simple group differ only by a positive scalar
(cf. [12], Lemma 7). The line bundleL′ := L−µ′ onFJ ′, defined in a similar way asL, restricts
then via the pullback toL. Because of the equalityµL(x,λ) = µL′

(i(x), i◦λ) ([5], property (iii)
following Definition 2.2) we can restrict ourselves to the caseG= SL(V ). Letλ ∈ {µ} be a 1-PS
representingx. Let S ⊂ G be a maximalk-split torus, such that the corresponding apartment
contains bothD, a given chamber with representativesλα ∈X∗(S)Q, α ∈∆, of its vertices and
λ. Using the previous lemma we get

µL
(
x,

∑
α∈∆

rαλα

)
=−

(
Fx(Vk),F∑

α∈∆
rαλα

)
=−

(
λ,

∑
α∈∆

rαλα

)
=−

∑
α∈∆

rα(λ,λα)

=−
∑
α∈∆

rα
(
Fx(V ),Fλ

)
=

∑
α∈∆

rαµ
L(x,λα). ✷

I want to stress that the previous corollary fails for arbitrary varieties. In general, the slope
function is only convex (cf. [5], Corollary 2.13).

COROLLARY 2.4. –Letx be a point inFJ . Thenx is not semistable⇔ there exist an element
g ∈G(k) and anα ∈∆ such thatµL(x, Int(g) ◦ ωα)< 0.

Proof. –The direction “⇐” is clear. So letλ be ak-rational 1-PS withµL(x,λ) < 0. Let
g ∈G(k) such thatInt(g−1) ◦ λ lies in the simplexD̃0 spanned by the rational 1-PSω∗

α, α ∈∆.
Thus we can writeλ in the shapeλ=

∑
α rαInt(g)◦ωα, with 0 � rα � 1. The statement follows

now immediately from Proposition 2.3.✷

3. The fundamental complex

Let G be again an arbitrary reductive group. In this section we will construct an acyclic
complex of étale sheaves on the closed complement

Y :=FJ �FJ ss

of the period domainFJ ss, which is defined overE as well. This complex yields a method to
calculate the cohomology ofFJ ss.

For any subsetI ⊂∆ we set

YI :=
{
x ∈FJ ; µL(x,ωα)< 0 for all α /∈ I

}
.

It is a consequence of Corollary 2.4 that we can writeY as the union

Y =
⋃
α∈∆

⋃
g∈G(k)

gY∆−{α}.

LEMMA 3.1. – (a)The setYI induces a closed subvariety ofY , which is defined overE.
(b) The natural action ofG onFJ restricts to an action ofPI onYI for everyI ⊂∆.

Proof. –It is enough to show the statement in the extreme caseI = ∆ − {α}. Choosing
an G-linearized embeddingY ↪→ P(V ) into some projective space defined overE (cf. [5],
Proposition 1.7), we may restrict ourselves to show that the set{x∈ P(V ); µ(x,λ) � 0} is closed
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for everyλ ∈X(G)k. Let V =
⊕

i∈Z Vλ(i) be the grading induced byλ. Then the above set is
just the closed subspaceP(

⊕
i�0 Vλ(i)), and the first assertion follows. The second statement

results immediately from the fact that (cf. [5, Proposition 2.7])

µL(px,ωα) = µL(x,ωα) for all p ∈ P (ωα). ✷
Let g be an element ofG(k) andI ⊂∆. We denote by

φg,I : gYI ↪→ Y

the corresponding closed embedding. LetF be an étale sheaf onY and letI ⊂ J be two subsets
of ∆ with #(J � I) = 1. Let furtherg ∈ (G/PI)(k), h ∈ (G/PJ)(k) two elements, such thatg
is mapped toh under the canonical projection(G/PI)(k)→ (G/PJ )(k). In this case we define

pg,hI,J : (φh,J )∗(φh,J )
∗F −→ (φg,I)∗(φg,I)

∗F

to be the natural morphism of étale sheaves onY which is induced by the closed embedding
gYI ↪→ hYJ . If g is not mapped toh then we setpg,hI,J = 0. Finally, we define

pI,J =
⊕

(g,h)∈(G/PI)(k)×(G/PJ )(k)

pg,hI,J :

⊕
h∈(G/PJ )(k)

(φh,J )∗(φh,J)
∗F −→

⊕
g∈(G/PI)(k)

(φg,I)∗(φg,I)
∗F.

For two arbitrary subsetsI, J ⊂∆ with #J −# I = 1 we set

dI,J =

{
(−1)ipI,J : J = I ∪ {αi},
0: I �⊂ J.

We get a complex of étale sheaves onY :

0→ F →
⊕
I⊂∆

#(∆−I)=1

⊕
g∈(G/PI)(k)

(φg,I)∗(φg,I)
∗F →

⊕
I⊂∆

#(∆−I)=2

⊕
g∈(G/PI)(k)

(φg,I)∗(φg,I)
∗F

· · · →
⊕
I⊂∆

#(∆−I)=d−1

⊕
g∈(G/PI )(k)

(φg,I )∗(φg,I)
∗F →

⊕
g∈(G/B)(k)

(φg,∅)∗(φg,∅)∗F → 0.(*)

One essential step in order to calculate the cohomology of our period domain is the following
result.

THEOREM 3.2. –The above complex is acyclic.

Proof. –Let x ∈ Y (ksep) be a geometric point. Localizing inx yields a chain complex
which is precisely the chain complex that computes the homology with coefficient groupFx
of a subcomplex of the combinatorial Tits complex toG(k). Strictly speaking this subcomplex
corresponds to the following subset of the set of vertices of the Tits building:{

gP (ωα)g
−1; g ∈G(k), α ∈∆ such thatµL(x, Int(g) ◦ωα)< 0

}
.

We will show that this combinatorial subcomplex is contractible. LetTx be its canonical
geometric realization in the spherical buildingB(G)k . Then Tx is already contained in
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B(Gder)k ⊂ B(G)k . The next two lemmas will show that the topological spaceTx is
contractible. ✷

LEMMA 3.3. –Let

Cx :=

{
λ ∈B(Gder)k;

µL(x,λ)√
(λ,λ)

< 0

}
.

This set is convex. The intersection ofCx with each chamber inB(Gder)k is convex.(For the
definition of convex we refer to[5].)

Proof. –In the case that the groupGder is split this is just [5], Corollary 2.16. But the proof
for the general case goes through in the same way.✷

Notice that we get an inclusionTx ↪→ Cx because the slope-function is affine on every chamber
of B(Gder)k.

LEMMA 3.4. –The inclusionTx ↪→Cx is a deformation retract.

Proof. –Let D = gDD0, g ∈ G(k) be a chamber in the spherical buildingB(G)k with
D ∩ Cx �= ∅. Following Lemma 3.3 this intersection is a convex set, whereD ∩ Tx lies in the
boundary of this space. Thus we can construct a deformation retract betweenD∩Cx andD∩Tx
as follows. Denote byD̃ ∩Cx the preimage ofD ∩ Cx under the canonical homeomorphism
D̃→D. Put

Λ :=
{
α ∈∆: Int(gD) ◦ ωα ∈ D̃ ∩ Tx

}
.

Let

φD : (D ∩Cx)× [0,1]−→ Cx

be the map which is induced by the map

φ
D̃

: (D̃ ∩Cx)× [0,1]−→ D̃ ∩Cx,

defined by

φ
D̃

(∑
α∈Λ

rα Int(gD) ◦ ωα +
∑
α/∈Λ

rα Int(gD) ◦ωα, t
)

:=
∑
α∈Λ

rα Int(gD) ◦ ωα +
∑
α/∈Λ

t rα Int(g) ◦ ωα.

This is a continuous map and one checks easily that the collection of these maps paste together
to a continuous map

φ :Cx × [0,1]−→Cx

which induces a deformation retraction fromTx toCx. ✷

4. The proof of Theorem 1.1

This last part of the paper deals with the evaluation of the complex (*) in the case of the&-adic
sheafF = Q�.
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PROPOSITION 4.1. –We have the following description of the closed varietiesYI in terms of
the Bruhat cells ofG with respect toP (µ).

YI =
⋃

w∈Wµ

[w]∈ΩI

P (ωα)wP (µ)/P (µ) =
⋃

w∈Wµ

[w]∈ΩI

BwP (µ)/P (µ).

Proof. –It is enough to show the assertion in the caseI = ∆ − {α} for an elementα ∈ ∆,
since the setsΩI andYI are compatible with forming intersections relative to the setsI ⊂∆, i.e.

ΩI∩J = ΩI ∩ΩJ ,

respectively

YI∩J = YI ∩ YJ for all I, J ⊂∆.

Let p be an element ofP (ωα). We have the equality

µL(px,ωα) = µL(x,ωα) for all x ∈FJ

(cf. [5], Proposition 2.7). The proposition follows now immediately from the equalities

µL(pwµ̄,ωα) = µL(wµ̄,ωα) =−(wµ,ω∗
α),

whereµ̄ denotes the point ofFJ , which is induced by the 1-PSµ. ✷
The above cell decomposition for the varietiesYI allows us to calculate the cohomology of

them. The proof is the same as in the case ofGLd+1 (cf. [6], Proposition 7.1) and will be omitted.

PROPOSITION 4.2. –We have

H∗
ét(YI ,Q�) =

⊕
[w]∈ΩI

ind[w](−l[w])
[
−2l([w])

]
.(2)

In the following we denote for an orbit[w] ∈Wµ/ΓE and a subsetI ⊂∆ the contribution of
[w] with respect to the direct sum (2) byH(YI , [w]), i.e.

H(YI , [w]) =

{
ind[w](−l([w]))

[
−2l([w])

]
: [w] ∈ΩI ,

0: [w] /∈ΩI .
(3)

Thus we have

H∗
ét(YI ,Q�) =

⊕
[w]∈Wµ/ΓE

H(YI , [w]).(4)

Let I ⊂ J be two subsets of∆. We consider the homomorphism

φI,J :H∗
ét(YJ )−→H∗

ét(YI),

given by the closed embeddingYI ↪→ YJ . The construction of Proposition 4.2 induces a grading
of φI,J ,

φI,J =
⊕

([w],[w′])∈(Wµ/ΓE)2

φ[w],[w′] :
⊕

[w]∈Wµ/ΓE

H(YJ , [w])−→
⊕

[w′]∈Wµ/ΓE

H(YI , [w
′])
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with

φ[w],[w′] =

{
id: [w] = [w′],
0: [w] �= [w′].

(5)

We need a generalization of a result of Lehrer, respectively Björner. We will construct a
complex in analogy to the sequence (*). LetI ⊂ J ⊂ ∆ be two subsets with#(J � I) = 1.
We get a homomorphism

pI,J : iGPJ
−→ iGPI

,

which comes from the projection(G/PI)(k) −→ (G/PJ )(k). For two arbitrary subsets
I, J ⊂∆ with #J −# I = 1, we define

dI,J =

{
(−1)ipI,J , J = I ∪ {αi},
0, I �⊂ J .

Thus we get for everyI0 ⊂∆ a Z-indexed complex

K•
I0 : 0−→ iGG −→

⊕
I0⊂I⊂∆

#(∆−I)=1

iGPI
−→

⊕
I0⊂I⊂∆

#(∆−I)=2

iGPI

−→ · · · −→
⊕

I0⊂I⊂∆
#(∆−I)=#(∆−I0)−1

iGPI
−→ iGPI0

,

where the differentials are induced by the abovedI,J . The componentiGG is in degree−1.

PROPOSITION 4.3. –The complexK•
I0

is acyclic.

Proof. –In the split case this is precisely the result of Lehrer [4], respectively Björner [1].
Since the groupΓ is finite taking the fix-vectors in the category ofQ�-representations yields an
exact functor. But the above complex is just the resulting fix-complex of the analogous complex
relative toG considered as a split group defined overk′. ✷

We mention the following well-known lemma (cf. [6], Lemma 7.4).

LEMMA 4.4. –Every extension of theΓE-moduleQ�(m) byQ�(n) withm �= n splits.

The acyclic complex (*) yields the following theorem.

THEOREM 4.5. –The spectral sequence

Ep,q
1 = Hq

ét

(
Y,

⊕
I⊂∆

#(∆−I)=p+1

⊕
g∈(G/PI )(k)

(φg,I)∗(φg,I)
∗Q�

)
=⇒Hp+q

ét (Y,Q�)

resulting from(*) , degenerates in theE2-term and we get for the&-adic cohomology ofY :

H∗
ét(Y,Q�) =

⊕
w∈Wµ/ΓE

#(∆−I[w])=1

(
iGPI[w]

⊗ ind[w]

(
−l(w)

)[
−2l([w])

])
⊕

⊕
w∈Wµ/ΓE

#(∆−I[w])>1

((
iGG⊗ ind[w]

(
−l([w])

)[
−2l([w])

])
⊕

(
vGPI[w]

⊗ ind[w]

(
−l([w])

)[
−2l([w])−#(∆− I[w]) + 1

]))
.
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Proof. –We have

Ep,q
1 = Hq

ét

(
Y,

⊕
I⊂∆

#(∆−I)=p+1

⊕
g∈(G/PI )(k)

(φg,I)∗(φg,I)
∗Q�

)

=
⊕
I⊂∆

#(∆−I)=p+1

⊕
g∈(G/PI)(k)

Hq
ét(YI , (φg,I)

∗Q�) =
⊕
I⊂∆

#(∆−I)=p+1

⊕
(G/PI )(k)

Hq
ét(YI ,Q�).

The application of (4) and (5) yields a decomposition

E1 =
⊕

[w]∈Wµ/ΓE

E1,[w]

into subcomplexes with

Ep,q
1,[w] =




⊕
I⊂∆

#(∆−I)=p+1

⊕
(G/PI)(k)

H(YI , [w]), q = 2l([w]),

0, q �= 2l([w]).

ThusE1,[w] is the subcomplex

E1,[w] :
⊕
I⊂∆

#(∆−I)=1

⊕
(G/PI)(k)

H(YI , [w])−→
⊕
I⊂∆

#(∆−I)=2

⊕
(G/PI)(k)

H(YI , [w])

−→ · · · −→
⊕

(G/B)(k)

H(Y∅, [w]).

In view of (1) and (3) we have

H(YI , [w]) =

{
ind[w](−l([w]))[−2l([w])]: I[w] ⊂ I,
0: I[w] �⊂ I.

SoE1,[w] simplifies to( ⊕
I[w]⊂I

#(∆−I)=1

iGPI
⊗ ind[w]

(
−l([w])

)
−→

⊕
I[w]⊂I

#(∆−I)=2

iGPI
⊗ ind[w]

(
−l([w])

)

−→ · · · −→ iGPI[w]
⊗ ind[w]

(
−l([w])

))[
−2l([w])

]
,

and we get an exact sequence of complexes:

0−→ iGG ⊗ ind[w]

(
−l([w])

)[
−2l([w]) + 1

]
−→K•

I[w]
⊗ ind[w]

(
−l([w])

)[
−2l([w])

]
−→E1,[w] −→ 0.

This yields the following three cases forE2,[w]:

I[w] = ∆: Ep,q
2,[w] = 0, p� 0, q � 0,

#(∆− I[w]) = 1: E
0,2l([w])
2,[w] = iGPI[w]

⊗ ind[w]

(
−l([w])

)
,

Ep,q
2,[w] = 0, (p, q) �=

(
0,2l([w])

)
,
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#(∆− I[w])> 1: E
0,2l([w])
2,[w] = iGG ⊗ ind[w]

(
−l([w])

)
,

E
j,2l([w])
2,[w] = 0, j = 1, . . . ,#(∆− I[w])− 2,

E
j,2l([w]))
2,[w] = vGPI[w]

⊗ ind[w]

(
−l([w])

)
, j = #(∆− I[w])− 1,

Ep,q
2,[w] = 0, q �= 2l([w]) or p >#(∆− I[w])− 1.

The Galois modulesEp,q
2 �= (0) possess the Tate twist−q/2. As every homomorphism of Galois

modules of different Tate twists is trivial, theE2-term coincides with theE∞-term. Thus, for all
n� 0,

grp
(
Hn

ét(Y )
)
= Ep,n−p

∞ = Ep,n−p
2 =

⊕
[w]∈Wµ/ΓE

Ep,n−p
2,[w]

=




⊕
[w]∈Wµ/ΓE

#(∆−I[w])=1

2l([w])=n

iGPI[w]
⊗ ind[w]

(
−l([w])

)
⊕

⊕
[w]∈Wµ/ΓE

#(∆−I[w])>1

2l([w])=n

iGG⊗ ind[w]

(
−l([w])

)
: p= 0,

⊕
[w]∈Wµ/ΓE

2l([w])+#(∆−I[w])−1=n

vGPI[w]
⊗ ind[w]

(
−l([w])

)
: p > 0.

Following Lemma 4.4 extensions ofQ�(m) by Q�(n) with m �= n are trivial. This yields an
isomorphism

Hn
ét(Y,Q�)∼=

⊕
p∈N

grp
(
Hn

ét(Y,Q�)
)

=
⊕

[w]∈Wµ/ΓE

#(∆/Γ−I[w])=1

2l([w])=n

iGPI[w]
⊗ ind[w]

(
−l([w])

)
⊕

⊕
[w]∈Wµ/ΓE

#(∆/Γ−I[w])>1

2l([w])=n

iGG ⊗ ind[w]

(
−l([w])

)
⊕

⊕
[w]∈Wµ/ΓE

2l([w])+#(∆/Γ−I[w])−1=n

vGPI[w]
⊗ ind[w]

(
−l([w])

)
.

The claim follows. ✷
Proof of Theorem 1.1. – The proof is the same as in the case ofG= GLd+1 (cf. [6]). ✷
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