Beate Semmler

The topology of large H-surfaces bounded by a convex curve

Annales scientifiques de l’É.N.S. 4e série, tome 33, n° 3 (2000), p. 345-359

<http://www.numdam.org/item?id=ASENS_2000_4_33_3_345_0>
THE TOPOLOGY OF LARGE H-SURFACES BOUNDED BY A CONVEX CURVE

BY BEATE SEMMLER

ABSTRACT. – We shall consider embedded compact surfaces M of constant non-zero mean curvature H (H-surfaces) in hyperbolic space \mathbb{H}^3. Let L denote a horosphere of \mathbb{H}^3. Assume that M is contained in the horoball bounded by L and that the boundary of M is a strictly convex Jordan curve Γ in L. We establish the following:

(i) case $H > 1$. There is an $\delta(H)$, depending only on the geometry of Γ, such that whenever M is a H-surface bounded by Γ, with $1 < H < \delta(H)$, then M is topologically a disk.

(ii) case $H \leq 1$. Then M is a graph over the domain $\Omega \subset L$ bounded by Γ with respect to the geodesics orthogonal to Ω; in particular, M is topologically a disk.

© 2000 Éditions scientifiques et médicales Elsevier SAS

1. Introduction

Let P be a plane in Euclidean space \mathbb{R}^3 and let \mathbb{R}^3_+ be one of the two halfspaces determined by P. Consider embedded compact surfaces M of constant non-zero mean curvature H (H-surfaces) in \mathbb{R}^3_+ with boundary $\partial M = \Gamma$ a convex curve in P. It is known that, if H is sufficiently small in terms of the geometry of Γ, then a H-surface M has genus zero. This result is established in [3] where they use a rescaling and a version of a compactness theorem to show this. Our proof of the same result will use another technique and will also work in the hyperbolic case. Indeed, in Hyperbolic space \mathbb{H}^3, homotheties do not exist, hence we can not apply the compactness theorem for H-surfaces in \mathbb{H}^3 proved in [2] to give a similar proof as in [3].

In this paper we shall mainly investigate the hyperbolic case to obtain a result in the same spirit as in \mathbb{R}^3.

Let L be a horosphere in \mathbb{H}^3 and let \mathcal{L} be the horoball of \mathbb{H}^3 bounded by L; the mean curvature of L is one and the mean curvature vector of L points into \mathcal{L}. We consider embedded compact H-surfaces M, H greater than one, in \mathcal{L} with boundary $\partial M = \Gamma$ a convex curve in L. We will
show that, if H is sufficiently close to one in terms of the geometry of Γ, then M has genus zero (Theorem 2). If M is an embedded compact H-surface in \mathcal{O}, bounded by Γ and $H \leq 1$, then M is a geodesic graph (Theorem 4). The case for H less than one and Γ in a hyperbolic plane is treated in [2].

2. The Euclidean case

THEOREM 1 ([3, Theorem 2]). Let $P \subset P = \{x_3 = 0\}$ be a strictly convex curve. There is an $f(p)$, depending only on the geometry of P, such that whenever $M \subset \mathbb{R}_+^3$ is a compact embedded H-surface bounded by Γ, with $0 < H < f(p)$, then M is topologically a disk and either M is a graph over the domain $\Omega \subset P$ bounded by Γ or $M \cap (\Omega \times [0, \infty))$ is a graph over Ω and $M \setminus (\Omega \times [0, \infty))$ is a graph over $\partial \Omega \times [0, \infty) = \Gamma \times \mathbb{R}_+$, with respect to the lines normal to $\Gamma \times \mathbb{R}_+$.

We need the following lemma which is proved in [3]:

LEMMA 2.1 ([3]). Let $r \subset P$ be a strictly convex curve. There is a $\tau > 0$, depending only upon the extreme values of the curvature of Γ, such that whenever $M \subset \mathbb{R}_+^3$ is an H-surface with boundary Γ, there is a $p \in \Omega$ (a depends on M) such that $M \cap (D(p, r) \times [0, \infty))$ is a graph over $D(p, \tau)$. (Here $D(p, \tau)$ denotes the Euclidean disk in P centered at p, of radius τ.)

Proof of Theorem 1. - Let M be an H-surface. Let $r > 0$ and $p \in \Omega$ be given by the lemma. Let G be the unique vertical catenoid meeting P in the circle $C_0 = \partial D(p, r)$ where $\rho < r$ and ρ is smaller than the smallest radius of curvature of Γ (the latter condition allows us to translate C_0 horizontally in Ω so as to touch every point of Γ), and the angle between G and P along C_0 is $\pi/2$. Let $\Sigma = G \cap (P \times [0, 1])$ and let C_1 be the circle of Σ at height one. Let $V = \{v \in P \mid C_0 + v \subset \Omega\}$ and let $D(R)$ be a sufficiently large disk in P such that $C_1 + v \subset D(R) \times [1]$ for all $v \in V$.

We know that a highest point q of M is in $\Omega \times [0, \infty)$, and the height d of q is at most $2/H$. The part of M over $P(d/2) = \{x_3 = d/2\}$ is a vertical graph. Also $M \setminus (\Omega \times [0, \infty))$ is a graph over $\Gamma \times \mathbb{R}_+$, with respect to the lines normal to $\Gamma \times \mathbb{R}_+$, of height at most $1/H$.

Let τ be the smallest value of the curvature of Γ and 2ω the circumscribed diameter of Ω. Note by c the point in Ω such that $\Gamma \subset D(c, \omega)$. As of now, we will work with H sufficiently small such that $H < \tau$ and $H < 1/2\omega$.

First of all, we will prove that, if $d < 1/H$, then M is a graph over Ω. Let $\beta(t), 0 \leq t < \infty$, be a line segment in $P(1/2H) = \{x_3 = 1/(2H)\}$ starting at $\beta(0) = c \times \{1/(2H)\}$. We consider a straight cylinder $Z(\tau)$ of radius $1/(2H)$ and axis α in the horizontal plane $P(1/(2H))$ where α meets $\beta(t)$ orthogonally at some $t = \tau$. Let $\tilde{Z}(\tau)$ be the half-cylinder of $Z(\tau)$ by cutting $Z(\tau)$ with a vertical plane intersecting $P(1/(2H))$ along α. We take $\tilde{Z}(\tau)$ so that $\beta(t) \cap \tilde{Z}(\tau) = \emptyset$ for $t < \tau$. For τ large, $\tilde{Z}(\tau)$ is disjoint from M. Now one can move $\tilde{Z}(\tau)$ towards M along β. By the maximum principle, as $\partial Z \cap P$ approaches Γ by horizontal translation, the first contact with M can not be at an interior point of M. Therefore no accident will occur before reaching Γ. This implies that the diameter of a smallest disk centered at $c \times \{t\}$ that contains $M \cap \{x_3 = h\}$ is smaller than $2\omega + (1/H)$ for $0 \leq h \leq 1/H$. Let S^+ be the upper hemisphere of the sphere of mean curvature H centered at $c \times \{1/H\}$. Translate S^+ downward, so the moving S^+ does not touch M before it arrives at P, i.e., M is below S^+ when ∂S^+ is on P. Then by the maximum principle and because $H < \tau$, one can translate S^+ horizontally to touch every point of Γ and that is why $M \subset \Omega \times [0, \infty)$. Hence M is a graph over Ω.

Henceforth we assume that $d \geq 1/H$. The part of M over $P(d/2)$ is a vertical graph.
(i) If an H-graph M' over a domain Ω in the plane $P(t)$ where $\partial M' \subset P(t)$ has height h, then the radius of the smallest disk in $P(t)$ containing strictly Ω is at least $\lambda(h; H) = \sqrt{2h/H} - h^2$. To see this, suppose, on the contrary, that the domain Ω is contained in a disk $D(c, \tilde{r}) \subset P(t)$ where $\tilde{r} < \lambda(h; H)$. Let S be the H-sphere centered at $c \times \{t\}$ and denoted by $S(h)$ the part of S over the plane $P(t + (1/H) - h)$. M' is contained in the vertical cylinder over Ω and the radius of $\partial S(h)$ is strictly greater than \tilde{r}, so by moving $S(h)$ towards M' the first contact with M' must occur at an interior point of $S(h)$ with a boundary point of M'. This means that the height of M' is less than h which gives a contradiction.

(ii) Let $\Omega(t)$ be the domain in $P(t)$ bounded by $M \cap P(t)$ for $t \in [d/2, d]$, and let $D_t(r)$ be the disk in $P(t)$ centered at $c_t = c \times \{t\}$, of radius r.

Let $r_{\max} = \inf \{ \Omega(t) \subseteq D_t(r) \}$ and $r_{\min} = \sup \{ \Omega(t) \supset D_t(r) \}$.

We want to prove: If $r_{\max} > 2\omega$ then $r_{\min} > r_{\max} - 2\omega$.

We know that $M \setminus (D(c, \omega) \times [0, \infty))$ is a graph over $\partial D(c, \omega) \times [0, \infty)$, with respect to the lines normal to $\partial D(c, \omega) \times \mathbb{R}_+$. So, for some point μ in $\partial D_t(r_{\max}) \cap M$, we consider all reflection by vertical planes and looking at the set of images of μ in $P(t)$. This set is contained in the interior of the domain in \mathbb{R}^3 bounded by $M \cup \Omega$; in particular in $\Omega(t)$ since each vertical plane is orthogonal to $P(t)$ and so the symmetry with respect to vertical planes leaves $P(t)$ invariant.

Doing elementary calculations, we see that the set of images of μ contains the disk $D_t(r_{\max} - 2\omega)$. In more detail, denoted by β_0 the half geodesic in $P(t)$ starting at c_t and passing through μ, and by β_ϕ the half geodesic in $P(t)$ where the angle between β_0 and β_ϕ at μ is ϕ, $[\phi] \in [0, \arccos(\omega/r_{\max})]$. Consider the family of vertical planes $V_\phi(s)$ orthogonal to β_ϕ at $\beta_\phi(s + \omega)$ (Fig. 1). Apply the Alexandrov reflection technique to M with the planes $V_\phi(s)$; by decreasing s from ∞, no accident will occur up till $\partial D_t(\omega)$; i.e. $s = 0$. When μ' denotes the reflected image of μ with respect to the plane $V_\phi(0)$, the line segment l joining μ to μ' is contained in $\Omega(t)$.

Now we have $\cos \phi = \frac{\omega + \text{dist}(\mu, V_\phi(0))}{r_{\max}}$ and $\sin \phi = \text{dist}(c_t, l)/r_{\max}$. The distance from μ' to c_t is equal to

$$x(\phi) = \text{dist}(\mu', c_t) = \sqrt{\left(\text{dist}(\mu, V_\phi(0)) - \omega\right)^2 + \text{dist}^2(c_t, l)},$$

\begin{figure}
\centering
\includegraphics{fig1.png}
\caption{Fig. 1.}
\end{figure}
therefore \(x(\phi) = \sqrt{r_{\text{max}}^2 + 4\omega^2 - 4\omega r_{\text{max}} \cos \phi}, \) thus \(x(\phi) \geq r_{\text{max}} - 2\omega \) and this implies \(r_{\text{min}} > r_{\text{max}} - 2\omega \).

(iii) Now we are able to show that, if \(H \) is sufficiently small, then \(M \cap \{D(R) \times [1, d - 1]\} = \emptyset \) and \(M \cap \{P \times [d - 1, d]\} \) is a graph over \(P(d - 1) \). For \(h = 1 \), we get from (i) that \(r_{\text{max}} \) is at least \(\sqrt{(2/H) - 1} \) on \(P(d - 1) \); to apply (i) we need \(d/2 > 1 \) so we work with \(H \) such that \(1/(2H) > 1 \). From (ii), by assuming \(1/H > (1/2) + 2\omega^2 \), it follows that \(r_{\text{min}} > \sqrt{(2/H) - 1} \). Therefore, if \(1/H > (1/2)((R + 4\omega)^2 + 1) \) then \(r_{\text{min}} > R + 2\omega \).

Set
\[
\eta = \min \left(1/2, \left(\frac{1}{2} \{(R + 4\omega)^2 + 1\} \right)^{-1} \right).
\]

The end of the proof is the same as in [3].

3. The hyperbolic case

We work in the upper half-space model of hyperbolic space, that is,
\[
\mathbb{H}^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_3 > 0\}
\]
with the hyperbolic metric, i.e. the Euclidean metric divided by \(x_3 \). In the following, we will represent by dist the hyperbolic geodesic distance in \(\mathbb{H}^3 \); \(\tau \) will be the hyperbolic parameter of arc length (in general used for geodesics and planes) and \(t \) the Euclidean parameter associated with the model (used for horospheres).

Let \(L(t) \) denote the horizontal horosphere \(\{x_3 = t\} \) and let \(\mathcal{L} \) be the non compact component of \(\mathbb{H}^3 \) bounded by \(L(1) \) such that the mean curvature vector of \(L(1) \) points towards \(\mathcal{L} \).

Theorem 2. Let \(\Gamma \subset L(1) \) be a strictly convex curve. There is an \(\mathcal{S}(\Gamma) \), depending only on the geometry of \(\Gamma \), such that whenever \(M \subset \mathcal{L} \) is a compact embedded \(H \)-surface bounded by \(\Gamma \), with \(1 < H < \mathcal{S}(\Gamma) \), then \(M \) is topologically a disk and either \(M \) is a graph over the domain \(\Omega \subset L(1) \) bounded by \(\Gamma \) with respect to the geodesics orthogonal to \(\Omega \) or \(M \setminus (\Omega \times [1, \infty)) \) is a geodesic graph over \(\Omega \) and \(M \setminus (\Omega \times [1, \infty)) \) is a graph over \(\partial \Omega \times [1, \infty) = \Gamma \times [1, \infty) \), with respect to the geodesics orthogonal to \(\Gamma \times [1, \infty) \).

3.1. Properties of compact surfaces in a horoball

Before proving Theorem 2, we give a representative example of hyperbolic calculations, we establish some basic properties of an \(H \)-surface as in Theorem 2 and we state a lemma whose proof we will give later.

Notation and Example. Let \(q \in L(1) \) be the point \((0,0,1)\) and let \(\gamma(\tau) \subset \mathcal{L} \) denote the vertical geodesic through \(q \) orthogonal to \(L(1) \) parametrized such that \(\tau = \text{dist}(\gamma(\tau), L(1)) \). Consider the family \(P_{\gamma}(\tau) \subset \mathbb{H}^3 \) of planes orthogonal to \(\gamma \) at \(\gamma(\tau) \). Let \(p \notin \gamma(\tau) \) be a point in some \(L(t), t > 1 \), denoted by \(R \) the geodesic distance from \(p \) to \(\gamma(\tau) \) and by \(\alpha \) the angle between the \(x_3 \)-axis and the Euclidean line joining \((0,0,0)\) to \(p \); (Fig. 2).

\(L(t) \) intersects \(\gamma(\tau) \) at \(\tau = \ln t \). \(R \) is related to \(\alpha \) by \(\tan \alpha = \sinh R \); since the hyperbolic metric on \(L(t) \) is the Euclidean metric divided by \(t \), the hyperbolic length from \(p \) to \(\gamma(\ln t) \) in \(L(t) \) is equal to \(\sinh R \) (notice that the geodesic distance from \(p \) to \(\gamma(\ln t) \) which is \(2\text{arcsinh}(\sinh R/2) \), is naturally smaller than the former). The geodesic passing through \(p \) and realizing the distance \(R \) from \(p \) to \(\gamma(\tau) \) is lying on \(P_{\gamma}(\ln(t \cosh R)) \) and this implies that the length of the segment of \(\gamma \) joining \(L(t) \) to this plane is equal to \(\ln \cosh R \). The intersection between \(L(t) \) and \(P_{\gamma}(\ln(t \cosh R)) \)
is a hyperbolic circle C with hyperbolic center at $\gamma(\ln(t \cosh R))$, of hyperbolic radius R. By hyperbolic reflection with respect to $P_{\gamma}(\ln(t \cosh R))$, the image of $L(t)$ is a horosphere, denoted by $O(t \cosh^2 R)$, containing also C and intersecting $\gamma(\tau)$ at $\tau = \ln(t \cosh^2 R)$; so the distance between both horospheres on $\gamma(\tau)$ is $2 \ln \cosh R$.

Basic properties. Let M be defined as in Theorem 2. Let B be the compact component of Σ bounded by M and the domain $\Omega \subset L(1)$ such that $\partial \Omega = \partial M$. Let H be the mean curvature vector of M; we orient M by H. Then:

(i) H points towards $\Omega = M \cup (\Omega \times (0,1))$.

(ii) Each point $q \in M$ at maximal distance from $L(1)$ is contained in the solid vertical geodesic cylinder over Ω denoted by C.

(iii) Let γ be any geodesic orthogonal to $L(1)$ passing through a point of $\partial \Omega$; if M is contained in the solid Killing cylinder over Ω with respect to γ (i.e. the integral curves of the Killing vector field associated to the hyperbolic translation along γ) then M is a Killing graph over Ω with respect to γ.

(iv) $M \setminus (\Omega \times [1, \infty))$ is a graph over $\Gamma \times [1, \infty)$, with respect to the geodesics orthogonal to $\Gamma \times [1, \infty)$; this part of M outside C is also a graph over $\Gamma \times [1, \infty)$ with respect to the horocycles in $L(t), t \in [1, \infty)$, normal to $\Gamma \times [1, \infty)$.

(v) Let $q \in M$ be a point at maximal distance d from $L(1)$ and let $\gamma(\tau) \subset \Sigma$ be the geodesic through q orthogonal to $L(1)$ parametrized such that $\tau = \text{dist}(\gamma(\tau), L(1))$. Consider the family $P_{\gamma}(\tau) \subset \mathbb{H}^3$ of planes orthogonal to γ at $\gamma(\tau)$. Let $R = \max_{p \in \Gamma} \text{dist}(p, \gamma)$. Then the part of M lying above $P_{\gamma}((d/2) + \ln \cosh R)$ is a Killing graph with respect to γ.

Proof. (i) Consider the family of horospheres $L(t) = \{x_3 = t\}$; if t is large enough, then $L(t) \cap M = \emptyset$; decrease t and consider the first horosphere that touches M. At this point of contact, the mean curvature vector of $L(t)$ points upward and since the mean curvature of $L(t)$
(which is equal to one) is smaller than the mean curvature of M, the maximum principle implies that H points towards Ω, hence the same is true at each point of M.

(ii) Let $d = \text{dist}(q, L(1))$ and let γ be the geodesic through q orthogonal to $L(1)$. Suppose, on the contrary, that $q \notin \mathcal{C}$ so $q_0 = \gamma \cap L(1)$ is not in \mathcal{C}. Let \mathfrak{h} be a half horocycle in $L(1)$ starting at a point p_0 of Γ passing through q_0 and such that $\text{dist}(p_0, q_0) = \inf_{p \in \Gamma} \text{dist}(p, q_0)$. Now consider the unique geodesic plane $E \subset \mathbb{H}^3 \setminus \mathcal{C}$ tangent to $L(1)$ at p_0; note by β the half geodesic in E, starting at p_0, which is contained in the vertical half plane determined by \mathfrak{h} and q. Let $P(\tau)$ be the family of planes in \mathbb{H}^3, $0 \leq \tau < \infty$, such that for each point b of β, there exists one $P(\tau)$ intersecting β orthogonally at b. Parametrize so that $P(0)$ contains the initial point p_0 of β (Fig. 3).

Apply the Alexandrov reflection technique to M with the planes $P(\tau)$ (cf. [5]). For τ large, $P(\tau)$ is disjoint from M. Now, if we approach M by $P(\tau)$, there will be a first contact point of some $P(\tau)$ with M. One continues to decrease τ and considers the symmetry of the part of M swept out by $P(\tau)$ with respect to $P(\tau)$. These symmetries of M are in \mathcal{B}. Notice that the symmetry through $P(\tau)$ of the relevant part of $L(1)$ is contained in \mathcal{C}. (Here relevant part means the part of $L(1)$ lying on the same side of $P(\tau)$ as the part of M swept out by $P(\tau)$.) So, by the maximum principle, no accident can occur until $P(0)$ and the part of M in question is a Killing graph over $P(0)$ with respect to the geodesic β (the integral curves of the Killing vector field associated to the hyperbolic translation along β are invariant by reflection with respect to $P(\tau)$). But the Killing segment joining q to $P(0)$ and its symmetry through $P(0)$ are lying above $L(e^{\Delta})$ whereas \mathcal{B} is below this horosphere which gives a contradiction and therefore q must be in \mathcal{C}.

(iii) In this case we can do Alexandrov reflection with the family of planes orthogonal to γ until a plane below $L(1)$ without any accident, so M is a Killing graph over $L(1)$.

(iv) Let γ_p be a geodesic through a point p of Γ orthogonal to $L(1)$ at p and let T_p be the vertical plane tangent to Γ at p. Consider any half geodesic β_g orthogonal to T_p at some point g of γ_p where Γ and β_g are on opposite sides of T_p. As in (ii), we apply the Alexandrov reflection technique to M with the family $P(\tau)$ of planes orthogonal to β_g. Therefore the relevant part of M is a Killing graph over $P(0) = T_p$ with respect to the geodesic β_g.

We can do this for each point g of γ_p and each such half geodesic β_g; and also for γ_p associated to each point p of Γ; this means that on each geodesic orthogonal to $\Gamma \times [1, \infty)$ there is only one point of M, hence $M \setminus (\Omega \times [1, \infty))$ is a geodesic graph and the first assertion of (iv) follows.

Let p be a point of Γ and let T_p be as above. Note by $\mathfrak{h}(s)$ the half horocycle in $L(1)$ starting at $p = \mathfrak{h}(0)$ and orthogonal to $T_p \cup L(1)$ at p where Γ and $\mathfrak{h}(s)$ are on opposite sides of T_p. Let $T(s)$ be a family of vertical planes such that $T(s)$ intersects \mathfrak{h} orthogonally at $\mathfrak{h}(s)$ and
THE TOPOLOGY OF LARGE H-SURFACES BOUNDED BY A CONVEX CURVE

Apply the Alexandrov reflection process to M and the planes $T(s)$. Notice that hyperbolic symmetry through each $T(s)$ leaves $L(1)$ and all horocycles orthogonal to $T(s)$ in all $L(t)$ invariant. One can translate $T(s)$ along h until $\partial \Omega = \Gamma$ and the part of M swept out by $T(0) = T_p$ is a graph over T_p with respect to the horocycle orthogonal to T_p.

(v) From (ii) we know that q lies in the solid geodesic cylinder \mathcal{C} over Ω. We apply the Alexandrov reflection technique to M with the planes $P_q(\tau)$; the first accident occurs when the image of an interior point p_i of M touches Γ. This point p_i is situated on an integral curve of the Killing vector field with respect to $\gamma(\tau)$ over Γ; the Killing coordinate of such point p_i is at most $d + \ln \cosh R$ where $R = \max_{p \in \Gamma} \text{dist}(p, \gamma)$ (see Notation and Example). Therefore the result follows. \square

We will prove the following Lemma 3 after the proof of Theorem 4.

Lemma 3. – Let $\Gamma \subset L(1)$ be a strictly convex curve. There is a $r > 0$, depending only upon the extreme values of the curvature of Γ, such that whenever $M \subset L$ is an H-surface, $H > 1$, with boundary Γ, there is a $p \in \Omega$ (p depends on M) such that the part of M in the solid Killing cylinder over $D(p, \sinh r) \subset L(1)$ with respect to the vertical geodesic γ_p passing through p is a Killing graph over $D(p, \sinh r)$ with respect to γ_p.

(Here $D(p, \sinh r)$ denotes the disk in $L(1)$ centered at p such that $\partial D(p, \sinh r)$ is the hyperbolic circle centered at $\gamma_p(\tau = \ln \cosh r)$ of hyperbolic radius r.)

3.2. Proof of the main result

Proof of Theorem 2. – Let M be an H-surface as in Theorem 2. Let ω be the hyperbolic radius of a smallest hyperbolic circle such that the domain in $L(1)$ bounded by this circle contains Ω. Note by c the point in Ω such that $\Gamma \subset D(c, \sinh \omega)$, and by $\gamma_c(\tau)$ the vertical geodesic passing through c; parametrized such that $\tau = \text{dist}(\gamma_c(\tau), L(1))$.

By property (ii) we know that the points at maximal distance d from $L(1)$ are contained in the solid vertical geodesic cylinder \mathcal{C} over Ω. In the proof of property (iv), we saw that, if T_p is a vertical plane tangent to Γ at a point $p \in \Gamma$, then the part of M in the half space determined by T_p which does not contain Γ is a Killing graph over T_p with respect to any geodesic orthogonal to T_p at some point of $T_p \cap \mathcal{C}$.

The same is still true if we choose some point p' in $\partial D(c, \sinh \omega) \subset L(1)$, $T_{p'}$ the vertical plane tangent to $\partial D(c, \sinh \omega)$ at p' and $\beta_{p'}$ the geodesic orthogonal to $T_{p'}$ at p'. Now consider the point g in $L(1)$ where the Killing segment k (with respect to $\beta_{p'}$) that joins the point $T_{p'} \cap \{D(c, \sinh \omega) \times [1, \infty)\} \cap L(e^d) = p' \times \{e^d\}$, intersects $L(1)$ (Fig. 4).

We want to evaluate the hyperbolic distance κ between g and the geodesic $\gamma_{p'} = T_{p'} \cap \{D(c, \sinh \omega) \times [1, \infty)\}$. Recall that sinh of κ is the hyperbolic length in $L(1)$ from g to $\gamma_{p'} \cap L(1) = p'$ and this value is also equal to the euclidean distance between g and p' in $L(1)$. Let a be the euclidean center of the Killing segment k (this makes sense since k looks like a part of a circle) and let b be the euclidean radius of k. We have $b^2 = 1 + (e^d - b)^2$ and sinh$^2 \kappa = b^2 - (e^d - b - 1)^2$. Therefore sinh κ is equal to $\sqrt{2} \sinh d$.

Since the part of M outside the vertical geodesic cylinder over $D(c, \sinh \omega) \subset L(1)$ is a Killing graph with respect to $\beta_{p'}$ and $T_{p'}$ for each point $p' \in \partial D(c, \sinh \omega)$, no point of M in the vertical half plane containing $\beta_{p'}$ with boundary $\gamma_{p'}$ can be a distance greater than κ from $\gamma_{p'}$, for each p'. This implies that M is contained in the solid Killing cylinder over $D(c, \sqrt{2} \sinh d + \sinh \omega) \subset L(1)$ with respect to γ_c.

Now we will distinguish two cases.
(1) **Small case**

Suppose that \(\sqrt{2 \sinh d + \sinh \omega} \) is strictly smaller than \(\sinh r_H \) where \(r_H \) is the radius of the sphere of mean curvature \(H \).

We will first see that \(M \) stays inside in the Killing cylinder with respect to \(\gamma_c(\tau) \) over the domain in \(L(1) \) bounded by \(D(c, \sinh \omega) \). Let \(S^+ \) be the upper hemisphere of the \(H \)-sphere centered at \(\gamma_c(\theta + \ln \cosh(r_H)) \). Translate \(S^+ \) downward, so the moving \(S^+ \) does not touch \(M \) before it arrives at \(L(1) \), i.e., \(M \) is below \(S^+ \) when \(\partial S^+ \) is on \(L(1) \) (Fig. 5).

Next consider the family \(S^+(\tau) \) of upper half spheres with center at \(\gamma_c(\tau) \) for \(\tau \in [\tau_0, \tau_1] = [\ln \cosh \omega, \ln \cosh r_H] \) and \(\partial S^+(\tau) \) on \(L(1) \). This continuous family consists of surfaces in \(\mathcal{S} \) where the mean curvature starts from \(\coth \omega \), decreases to \(\coth r_H = H \) and where \(\partial S^+(\tau) \) is a foliation of the compact region in \(L(1) \) bounded by \(\partial D(c, \sinh r_H) \cup \partial D(c, \sinh \omega) \). So, for each \(\tau \), \(\Gamma \) is contained in the domain of \(L(1) \) bounded by \(\partial S^+(\tau) \). Since \(M \) is below \(S^+ = S^+(\tau_1) \) and when we decrease \(\tau \) from \(\tau_1 \) to \(\tau_0 \), the maximum principle implies that \(M \) is still below...
THE TOPOLOGY OF LARGE H-SURFACES BOUNDED BY A CONVEX CURVE

Our aim is now to show that, if H is sufficiently small in terms of ω then M is even contained in the Killing cylinder over Ω with respect to γ_c and so we can conclude by property (iii) that M is a Killing graph over Ω.

Let $\delta = \sup \{ \Omega \supset D(\epsilon, \sinh \tau) \}$. To establish the result we consider the family $Z(\tau)$ of Killing cylinders over $\partial D(\epsilon, \sinh \tau) \subset L(1)$ with respect to γ_c for $\tau \in [\delta, \omega)$. The mean curvature vector of $Z(\tau)$ points into the component of \mathbb{H}^3 bounded by $Z(\tau)$ which contains γ_c and the mean curvature varies continuously in τ from $\coth(2\delta)$ decreasing to $\coth(2\omega)$ (Fig. 6).

Now, suppose on the contrary, that M is not in the solid Killing cylinder over Ω. Since M is lying in $Z(\omega)$ and by decreasing τ from ω to δ there will be some τ_0 where $Z(\tau_0)$ touches M for the first time at an interior point of M such that $Z(\tau_0)$ is tangent to M and the mean curvature vector of both surfaces points in the same direction. However, if $H < \coth 2\tau_0$, this is impossible by the maximum principle. Therefore M is contained in the Killing cylinder over Ω with respect to γ_c for H smaller than $\coth(2\omega)$.

Thus M is a Killing graph over Ω with respect to γ_c.

To finish our investigation for small H-surfaces, we will show that M is even a geodesic graph over Ω with respect to the geodesics orthogonal to Ω. Let p be a point in Ω and let γ_p be the vertical geodesic passing through p. Since M is below the upper half sphere of radius ω centered on γ_c with boundary $D(\epsilon, \sinh \omega) \subset L(1)$, M is also below the upper half sphere of radius 2ω centered on γ_p with boundary in $L(1)$. We consider Killing cylinders with axes γ_p and conclude by the same argument as before that M is a Killing graph over Ω with respect to γ_p. We can repeat this for each point p in Ω; this means that on each vertical geodesic there is only one point of M, hence M is a geodesic graph over Ω; in particular M is topologically a disk.

(2) Large case

Henceforth we assume that d is bounded from below in terms of H, i.e.

$$\sqrt{2 \sinh d + \sinh \omega} \geq \sinh r_H = \frac{1}{\sqrt{H^2 - 1}}.$$

Let $r > 0$ and $p \in \Omega$ be given by Lemma 3. Let G be the unique vertical catenoid cousin meeting $L(1)$ in the circle $C_0 = \partial D(p, \sinh \rho)$ where $\rho < r$ and $\sinh \rho$ is smaller than the smallest
radius of curvature of \(\Gamma \) in \(L(1) \) (the latter condition allows us to translate \(C_0 \) horizontally in \(\Omega \) so as to touch every point of \(\Gamma \)), and \(G \) has its waist at \(L(1) \) (see [4] for catenoid cousins).

Let \(\Sigma = G \cap (L(1) \times [1, x_3 = e \cdot \cosh^3 \omega]) \) and let \(C_1 \) be the circle of \(\Sigma \) at euclidean height \([x_3 = e \cdot \cosh^3 \omega] \). (The hyperbolic height of \(\Sigma \) is equal to \(1 + 3 \ln \cosh \omega \)). \(\Sigma \) is a Killing graph with respect to \(\gamma_p \) over the non compact component of \(L(1) \cap C_0 \). Let \(V = \{ v \in L(1) \mid C_0 + v \subset \Omega \} \) and let \(D(c, \sinh R) \) be a sufficiently large disk in \(L(1) \) centered at \(c \) such that \(C_0 + v \subset D(c, \sinh R) \times [x_3 = e \cdot \cosh^3 \omega] \) for all \(v \in V \) (here, we translate the hyperbolic objects \(v \), respectively \(D(c, \sinh R) \), from \(L(1) \) to \(L(e \cdot \cosh^3 \omega) \) with respect to the vertical geodesic \(\gamma_p \), respectively \(\gamma_c \), and note them by \(\tilde{v} \), respectively \(\tilde{D}(c, \sinh R) \)).

As of now, we choose \(H \) such that \(d/2 > 1 + 3 \ln \cosh \omega \).

Let \(O(t) \) be the family of horospheres in \(\mathbb{H}^3 \) such that \(O(t) \) is tangent to the horosphere \(L(t) \) at \(L(t) \cap \gamma_c \); \(O(t) \neq L(t) \).

First we will show that, if \(H \) is sufficiently small, then \(M \cap \{ \text{the region in the solid Killing cylinder over } D(c, \sinh R) \text{ with respect to } \gamma_c \} \) bounded below by \(L(e \cdot \cosh^3 \omega) \) and from above by \(O(e^{d-1}/\cosh \omega) \) is empty. To establish this result we adapt our strategy from the proof in the euclidean case; we work this out in three steps in the same spirit as in (i)-(iii) Theorem 1.

By property (v), the part of \(M \) lying above \(P_{\gamma_c}((d/2) + \ln \cosh \omega) \) is a Killing graph with respect to \(\gamma_c \). \(M \) is below \(L(e^d) \). Note by \(E \) the domain in \(L(e^d) \) bounded by \(P_{\gamma_c}((d/2) + \ln \cosh \omega) \) and \(L(e^d) \). The hyperbolic distance between this plane and this horosphere is realized on \(\gamma_c \) and equal to \((d/2) - \ln \cosh \omega \).

(i) Let \(O(t) \) be the domain in \(O(t) \) bounded by \(M \cap O(t) \) for \(t \in [e^{d/2} \cosh \omega, e^d] \). The part of \(M \) above \(O(t) \) is also a Killing graph with respect to \(\gamma_c \). Our aim is now to show that the radius of the smallest disk in \(O(t) \) containing \(O(t) \) and centered on \(\gamma_c \) can not be too small in terms of \(h = d - \ln t \) and \(H \). Let \(M' \) be a \(H \)-Killing graph over \(O(e^{d-h}) \) with respect to \(\gamma_c \), \(\partial M' \subset O(e^{d-h}) \) and with a highest point on \(L(e^d) \) (here highest means the \(x_3 \) coordinate). Then the hyperbolic radius of the smallest disk in \(O(e^{d-h}) \) centered on \(\gamma_c \) containing strictly \(O(e^{d-h}) \) is at least

\[
\lambda(h; H) = \arccosh \left(\sqrt{\frac{H + 1}{H - 1} \left(e^{-h} - e^{-2h} \right) + e^{-h}} \right).
\]

To see this, suppose, on the contrary, that \(\partial M' \) is contained in a disk of \(O(e^{d-h}) \) of radius smaller than \(\lambda(h; H) \). Therefore \(M' \) must lie in the Killing cylinder over the disk of radius \(\lambda(h; H) \) with respect to \(\gamma_c \). Next consider the \(H \)-sphere \(S \) with center at \(\gamma_c(d - \arcoth H) \), tangent to \(L(e^d) \) at \(\gamma_c(d) = \gamma_c \cap L(e^d) \) and denoted by \(S(h) \) the part of \(S \) over \(O(e^{d-h}) \) (Fig. 7).

We will show that the hyperbolic radius of the hyperbolic circle \(\partial S(h) = S(h) \cap O(e^{d-h}) \) is exactly \(\lambda(h; H) \). Let \(a \in \gamma_c \) be the hyperbolic center of \(S \) and \(b \in \gamma_c \) the hyperbolic center of \(\partial S(h) \). When \(q \) is some point in \(\partial S(h) \), consider the geodesic triangle \(\Delta a, b, q \). The angle at \(b \) is \(\pi/2 \); by using hyperbolic trigonometry formulas [1] we obtain that

\[
cosh r_H = \cosh \text{dist}(a, b) \cdot \cosh \text{dist}(b, q)
\]

(here \(r_H \) is the radius of the \(H \)-sphere). On the other hand, the distance from \(b \) to \(O(e^{d-h}) \) is \(\ln \cosh \text{dist}(b, q) \) (see in Notation and Example above) and so \(\text{dist}(a, b) = d - h - \ln \cosh \text{dist}(b, q) \).

It is straightforward to check that

\[
\cosh^2 \text{dist}(b, q) = (2 \cosh r_H - \cosh(r_H - h) - \sinh(r_H - h))(\cosh(r_H - h) - \sinh(r_H - h))
\]

\[= e^{2r_H} \left(e^{-h} - e^{-2h} \right) + e^{-h};\]
so, by taking $H = \coth r_H$ into account, we find out that

$$\text{dist}(b, q) = \lambda(h; H).$$

(Notice that by construction $\partial S(h)$ is also the intersection $O(e^{d-h}) \cap P(d - h - \ln \cosh \lambda)$ or $O(e^{d-h}) \cap L(e^{d-h} / \cosh^2 \lambda)$.)

We continue the proof of (i). Translate $S(h)$ along γ_c upward to be disjoint from M'. Now come back down; the moving $S(h)$ does not touch M' before it arrives at $O(e^{d-h})$ again; one continues displacement of $S(h)$ along γ_c and the first contact with M' must occur at an interior point of $S(h)$ with a boundary point of M'. This means that no point of M' is on $L(e^d)$ which gives a contradiction.

In the following, when we desire to use this result, there is some obstacle (quite different from the euclidean case): how one can ensure that, for fixed h, the part of M over $O(e^{d-h})$ in E has its boundary on $O(e^{d-h})$? However what we need in (iii) below, is only to find a disk in $O(e^{d-h})$ of hyperbolic radius at least $\arcsinh(\sinh R + 2 \sinh \omega)$. Since, for h fixed, the largest radius on $O(e^{d-h})$ in E is equal to $r(h) = \arcsinh(e^{(d/2) - h / \cosh^2 r});$ we assume up to now that d is big enough (or H is small enough) such that $\sqrt{\sinh r(h)} > (\sinh R + 2 \sinh \omega)$. (To evaluate $r(h)$ we apply again Notation and Example: the distance on γ_c between $O(e^{d-h})$ and $P_c((d/2) + \ln \cosh \omega)$ which is $(d/2) - h - \ln \cosh \omega$, must be equal to $\ln \cosh r(h)$.)

The assumption above implies that if each point of M in $O(e^{d-h})$ is at most a distance

$$\arcsinh((\sinh R + 2 \sinh \omega)^2)$$

from γ_c then M is a Killing graph over $O(e^{d-h})$ with boundary on $O(e^{d-h})$.

(ii) Let $\tilde{\Omega}(t)$ be the domain in $L(t)$ bounded by $M \cap L(t)$ for $t \in [e^{d/2} \cosh \omega, e^d]$ and let $D_t(\sinh r)$ be the disk in $L(t)$ centered on γ_c of hyperbolic radius r. Let $r_{\max} = \inf_t \{\tilde{\Omega}(t) \subseteq D_t(\sinh r)\}$ and $r_{\min} = \sup_t \{\tilde{\Omega}(t) \supset D_t(\sinh r)\}$. We want to prove: If $\sinh r_{\max} > (2/t) \sinh \omega$ then $\sinh r_{\min} > \sinh r_{\max} - (2/t) \sinh \omega$.

By property (iv) we know that $M \setminus \{D(c, \sinh \omega) \times [1, \infty)\}$ is a graph over $\partial}\{D(c, \sinh \omega) \times [1, \infty)\}$ with respect to the horocycles in $L(t)$, $t \in [1, \infty)$, normal to $\partial \{D(c, \sinh \omega) \times [1, \infty)\}$.

As the hyperbolic metric on $L(t)$ is the Euclidean metric divided by t, and the hyperbolic symmetries in vertical planes induce euclidean symmetries in $L(t)$, the euclidean calculation in (ii), Proof of Theorem 1, yields (ii) here.
(iii) Now we apply (i) for \(h = \ln \cosh \omega \); so we need that
\[
\sinh r(h) = \sqrt{\frac{e^d}{\cosh^4 \omega} - 1} > (\sinh R + 2 \sinh \omega)^2
\]
and because \(\sqrt{2 \sinh d} + \sinh \omega \geq 1/\sqrt{H^2 - 1} \) we work with \(H \) such that
\[
\frac{1}{\sqrt{H^2 - 1}} > \sinh \omega + \cosh^2 \omega \sqrt{1 + (\sinh R + 2 \sinh \omega)^4}.
\]

Let \(q \) be a point in \(O(e^{d-h}) \cap M \) at maximal distance from \(\gamma_c \); (i) implies that this hyperbolic distance from \(q \) to \(\gamma_c \) is greater than
\[
r_0 = \min(\arcsinh((\sinh R + 2 \sinh \omega)^2), \lambda(\ln \cosh \omega; H)).
\]

The point \(q \) is also lying on some horizontal horosphere \(L(t_0) \) for \(t_0 \) smaller than \(e^{d-h}/\cosh^2 r_0 \) and the hyperbolic length, denoted by \(\sinh r_1 \), from \(q \) to \(\gamma_c \) in \(L(t_0) \) is greater than \(\sinh r_0 \). Now (ii) implies that there is a disk in \(L(t_0) \) centered at \(\gamma_c \cap L(t_0) \) of radius (the hyperbolic length in \(L(t_0) \)) greater than \(\sinh r_1 - (2/t_0) \sinh \omega \) and this disk is contained in the interior of the domain in \(\mathbb{H}^3 \) bounded by \(M \cup \Omega \) (Fig. 8).

Next consider the horosphere \(O(t') \) which intersects \(L(t_0) \) in the hyperbolic circle centered on \(\gamma_c \) of radius \(r_2 = \arcsinh(\sinh r_1 - (2/t_0) \sinh \omega) \) and denoted by \(O^+ \) the part of \(O(t') \) above \(L(t_0) \). When \(\mathcal{B}' \) is the domain in \(\mathbb{H}^3 \) bounded by \(L(t_0) \) and the part of \(M \) above \(L(t_0) \); we observe that \(O^+ \) is contained in \(\mathcal{B}' \). To see this we move \(O^+ \) downward to be disjoint from \(\mathcal{B}' \); then come back upward; by the maximum principle the moving \(O^+ \) can not touch \(M \) before it arrives again at its starting position.

Remark that the distance between \(O(t') \) and \(O(e^{d-h}) \) on \(\gamma_c \) is equal to \(2 \ln(\cosh r_1/\cosh r_2) \). Since \(\sinh r_2 = \sinh r_1 - (2/t_0) \sinh \omega; t_0 = e^d/(\cosh \omega \cosh^2 r_1) \) and if we assume furthermore that \(r_1 \) is sufficiently large in terms of \(H \) and \(\omega \) then \(t' = e^d \cosh^2 r_2/(\cosh \omega \cosh^2 r_1) > e^{d-h-1} \).
Therefore the part of M lying in the Killing cylinder with respect to γ_c over the hyperbolic disk in $P_{\gamma_c}((d/2)+\ln \cosh \omega)$ of radius r_2 is contained in the slice between $L(e^d)$ and $O(e^{d-h-1})$.

(Since the highest points of M are in the vertical geodesic cylinder over Ω, M has points in this domain for r large enough.)

Let $P_{\gamma_c}(\tau) \subset \mathbb{H}^3$ be the family of planes orthogonal to γ_c at $\gamma_c(\tau)$; we can apply the Alexandrov reflection technique to M with $P_{\gamma_c}(\tau)$; by decreasing r from ∞ until $\tau_0 = (d/2) + \ln \cosh \omega$ no accident will occur. The symmetry of $O(e^{d-h-1})$ through $P_{\gamma_c}(\tau_0)$ is exactly $L(e \cdot \cosh^3 \omega)$ and this implies that the intersection between M and the part of the solid Killing cylinder over $D(r, \sinh r_2) \subset L(1)$ bounded below by $L(e \cdot \cosh \omega)$ and from above by $O(e^{d-1}/\cosh \omega)$ is empty.

To finish our investigation, we will choose H such that $\sinh r_2 > \sinh R$. We know that

$$\sinh r_2 = \sinh r_1 - \frac{2}{t_0} \sinh \omega > \sinh r_1 - 2 \sinh \omega > \sinh r_0 - 2 \sinh \omega$$

hence we take H such that $\lambda(\ln \cosh \omega; H) > \arcsinh(\sinh R + 2 \sinh \omega)$, i.e.,

$$\frac{H + 1}{H - 1} > \cosh \omega + \frac{\cosh^2 \omega}{\cosh \omega - 1} (\sinh R + 2 \sinh \omega)^2.$$

Now, in the second part of the proof, we will show that $\Omega \times [1, e \cdot \cosh^3 \omega] \subset \mathcal{B}$.

Recall that by Lemma 3 the family $C_0(t)$ of disks obtained by translating C_0 with respect to the vertical geodesic γ_P, (i.e. $C_0(t) = \partial D(p(t), \sinh \rho) \subset L(t)$, for $t \in [t_1, t_2] = [1, e \cdot \cosh^3 \omega]$), is contained in \mathcal{B}. Let $\Sigma(t)$ denote the family of the translated Σ where $\partial \Sigma(t) \cap L(t) = C_0(t)$. Our result above implies that the upper boundary of $\Sigma(t)$ for all $t \in [t_1, t_2]$ and $\Sigma(t_2)$ are contained in \mathcal{B} and therefore $\Sigma(t)$ must also lie in \mathcal{B}. Otherwise when one translates $\Sigma(t_2)$ down to $\Sigma(t_1)$, there would be a first point of contact of some $\Sigma(t)$ with M. This contact point occurs on the inner side of M; the mean curvature vector of both surfaces points in the same direction. This is impossible since the point of contact is an interior point of both M and $\Sigma(t)$ and the mean curvature of $\Sigma(t)$ (which is equal to one) is smaller than H.

We know that the upper boundary component of $\Sigma + v$, for $v \in V$, at height t_2 is contained in \mathcal{B}. Hence $\Sigma + v \subset \mathcal{B}$ for each $v \in V$ by similar reasoning as above: the family $\Sigma + sv$, $s \in [0, 1]$ can have no first point of interior contact with M as s goes from 0 to 1.

Our choice of C_0 guarantees that for each $q \in \Gamma$, there is a $v \in V$ such that $C_0 + v$ is tangent to Γ at q. The angle θ between Σ and non compact component of $L(1) \cap C_0$ along C_0 is equal to $\arcsin(\cosh^{-1} \rho)$. Therefore the outer angle that \mathcal{B} makes with $L(1)$ at q is smaller than θ; in particular M stays outside the solid vertical geodesic cylinder over Γ between $L(1)$ and $L(t_2)$.

Since the horizontal translations $\Sigma + sv$, $v \in V$, $0 \leq s < 1$ are all in \mathcal{B} and $D(p, \sinh r) \times [t_1, t_2] \subset \mathcal{B}$ by Lemma 3, we conclude that $\Omega \times [t_1, t_2] \subset \mathcal{B}$. Also M meets the solid Killing cylinder over $D(\gamma_c(\tau = \ln t_2), \sinh R) \subset L(t_2)$ with respect to γ_c in a Killing graph above $O(e^{d-1}/\cosh \omega)$.

The part of M in $(\Omega \times [1, \infty))$ is even a geodesic graph over Ω; we find this out by coming down with planes P_q orthogonal to the vertical geodesic γ_q passing through q, q any point in Ω; and we consider the symmetries of M with respect to P_q until P_q is below $O(e^{d-1}/\cosh \omega) \cap (\Omega \times [1, \infty))$. For H small, we are far from Γ, so no accident will occur and on any geodesic γ_0 is exactly one point of M.

The part of M outside $\Omega \times [1, \infty)$ is of genus zero, so M is topologically a disk and Theorem 2 is established. \square
Theorem 4. Let \(\Gamma \subset L(1) \) be a strictly convex curve. If \(M \subset L \) is a compact embedded \(H \)-surface bounded by \(\Gamma \), with \(H \leq 1 \) then \(M \) is a graph over the domain \(\Omega \subset L(1) \) bounded by \(\Gamma \) with respect to the geodesics orthogonal to \(\Omega \); in particular, \(M \) is topologically a disk.

Proof. \(M \) is compact hence there exists a compact half sphere \(S^+ \) with \(\partial S^+ \) on \(L(1) \) and \(M \) below \(S^+ \). The mean curvature of \(S^+ \) is greater than \(H \). We conclude by the same argument as in the proof of Theorem 2: we are in the situation of the Small case. \(\square \)

The following proof is quite similar to the proof in the euclidean case of Lemma 2.1 in [3].

Proof of Lemma 3. Let \(\omega \) be the hyperbolic radius of a smallest hyperbolic circle such that the domain in \(L(1) \) bounded by this circle contains \(\Omega \). Note by \(c \) the point in \(\Omega \) such that \(\Gamma \subset D(c, \sinh \omega) \), and by \(\gamma(\tau) \) the vertical geodesic passing through \(c \); parametrized such that \(\tau = \text{dist}(\gamma(\tau), L(1)) \). Consider the family \(\mathcal{P}_C(\tau) \subset \mathbb{H}^3 \) of planes orthogonal to \(\gamma \) at \(\gamma(\tau) \). For \(p \in \Omega \), let \(\eta_p(\tau) \) be the orbit through \(p \) of the hyperbolic translation along \(\gamma \), i.e. the integral curve of the Killing vector field associated to the hyperbolic translation.

Apply the Alexandrov reflection technique to \(M \) with the planes \(\mathcal{P}_C(\tau) \) by decreasing \(\tau \) from \(\infty \). If we can come down to \(\mathcal{P}_C(0) \), then \(M \) is a Killing graph above \(\Omega \) and the lemma is clear. Otherwise there is a \(\tau_0 \) where the reflected surfaces with respect to \(\mathcal{P}_C(\tau_0) \) touches \(\Gamma \) for the first time at a point \(q \in \Gamma \). So \(\eta_q \) intersects \(M \) exactly once; and the segment of \(\eta_q(\tau) \) for \(\tau \in [\ln \cosh \rho_q, 2 \cdot \tau_0 - \ln \cosh \rho_q] \) is contained in \(\text{int } \mathcal{B} \) where \(\rho_q \) denote the hyperbolic distance from \(q \) to \(\gamma \) (to find the values of \(\tau \) see in Notation and Example). Also the part of \(M \) above \(\mathcal{P}_C(\tau_0) \) is a Killing graph with respect to \(\gamma \).

Next consider Alexandrov reflection with vertical planes \(\mathcal{Q} \); let \(v \) be the normal to \(\mathcal{Q} \) in \(L(1) \), \(|v| = 1 \). Suppose one can do Alexandrov reflection of \(M \), moving the plane \(\mathcal{Q} \) slightly beyond \(q \), and denote by \(J(v) \) the segment in \(\Omega \) joining \(q \) to its reflected image by this plane \(\mathcal{Q}' \). Since the part of \(M \) swept out by \(\mathcal{Q} \) is a geodesic graph over \(Q \) with respect to the geodesics orthogonal to \(\mathcal{Q} \) (property (iv)), the vertical domain \(G(v) \) bounded by \(J(v) \), the segment \(\eta_q(\tau) \) and its reflected image through \(\mathcal{Q}' \), \(\tau \in [\ln \cosh \rho_q, 2 \cdot \tau_0 - \ln \cosh \rho_q] \), and by the segment of the geodesic orthogonal to \(Q' \) joining the point \(\eta_q(2 \cdot \tau_0 - \ln \cosh \rho_q) \) to its reflected image is contained in \(\text{int } \mathcal{B} \).
Suppose we could repeat this reasoning for a family of directions $v \in \mathcal{L}(1)$, $|v| = 1$, such that, for some $p \in \mathcal{O}$ and $r > 0$, we have $D(p, \sinh r) \subseteq \bigcup_{v} J(v)$. Note by γ_p the vertical geodesic passing through p and by $P_{\gamma_p}(\tau)$ the family of planes orthogonal to γ_p; then we would have that the domain in the solid Killing cylinder over $D(p, \sinh r)$ with respect to γ_p between $\mathcal{L}(1)$ and $P_{\gamma_p}(\tau_1)$ is also contained in int \mathcal{B} where $P_{\gamma_p}(\tau_1)$ is the plane orthogonal to γ_p that intersects $\eta_p(\tau)$ at $\tau = 2\tau_0 - \ln \cosh \rho_q$ (i.e., the point of M that touches Γ' for the first time by applying Alexandrov technique with respect to the planes $P_{\gamma}(\tau)$ above). Hence the points of M in this Killing cylinder are only above $P_{\gamma_p}(\tau_1)$. Now we can apply the Alexandrov reflection technique to M with the planes $P_{\gamma_p}(\tau)$; by decreasing τ from ∞ until τ_1 no accident will occur (the plane $P_{\gamma}(\tau_0)$ is always below $P_{\gamma_p}(\tau_1)$), so the part of M in the solid Killing cylinder over $D(p, \sinh r) \subseteq \mathcal{L}(1)$ is a Killing graph with respect to γ_p as desired (see Fig. 9). So we have to understand the horizontal directions v for which Alexandrov reflection goes beyond a point $q \in \Gamma'$.

First recall, that for horizontal directions v, one can always do Alexandrov reflection up till Γ. Let k be the minimum curvature of Γ and let $C \subseteq \mathcal{L}(1)$ be a circle of curvature k. So if C is tangent to Γ at q, then Γ is inside C. Let ρ be chosen so that the tubular neighborhood of Γ of radius ρ is an embedded annulus.

Then for each horizontal v, we can do Alexandrov reflection with vertical planes at least a distance $\rho/2$ beyond each point of Γ and so at least a distance $\rho/2$ beyond the first time the horizontal plane meets the circle C. Now consider those planes which left behind q. This will hold for those directions in some neighborhood $V = \{v \in \mathcal{L}(1); \ |v| = 1\}$ of the inward pointing normal to C at q. It is clear from the geometry of the circle, that $\bigcup_{v \in V} J(v)$ contains a disk $D(p, \sinh r), r > 0$ which depends on ρ and C but not on q. This completes the proof of Lemma 3. \square

REFERENCES

(Manuscript received September 4, 1997, accepted, after revision, October 14, 1999.)

Beate SEMMLER

Technische Universität Berlin,
Department of Mathematics, Fb 3,
MA 8-3, Strasse des 17. Juni 136,
10623 Berlin, Germany
E-mail: semmler@sfb288.math.tu-berlin.de

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE