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NASH FUNCTIONS ON NONCOMPACT NASH
MANIFOLDS

BY MICHEL COSTE AND MASAHIRO SHIOTA

ABSTRACT. - Several conjectures concerning Nash functions (including the conjecture that globally
irreducible Nash sets are globally analytically irreducible) were proved in Coste et al. (1995) for compact
affine Nash manifolds. We prove these conjectures for all affine Nash manifolds. © 2000 Editions
scientifiques et medicales Elsevier SAS

RESUME. - Plusieurs conjectures portant sur les fonctions de Nash (dont la conjecture qu'un ensemble
de Nash globalement irreductible est globalement analytiquement irreductible) ont ete demontrees, pour les
varietes de Nash affines compactes, dans Coste et al. (1995). Nous prouvons ces conjectures pour toutes les
varietes de Nash affines. © 2000 Editions scientifiques et medicales Elsevier SAS

1. Introduction

An affine Nash manifold is a semialgebraic analytic submanifold of a Euclidean space. A Nash
function on an affine Nash manifold is an analytic function with semialgebraic graph. Let M be
an affine Nash manifold. Let At denote the sheaf of Nash functions on M (we write A/M if
we need to emphasize M). We call a sheaf of ideals Z of At finite if there exists a finite open
semialgebraic covering {Ui} of M such that, for each z, T\u^ is generated by Nash functions on
Ui. (See [5] and [3] for elementary properties of sheaves ofA/"-ideals.) Let J\f(M) (respectively
0(M)) denote the ring of Nash (respectively analytic) functions on M.

[3] showed that the following three conjectures are equivalent, and [2] gave a positive answer
to the conjectures in the case where the manifold M is compact.

SEPARATION CONJECTURE. - Let M be an affine Nash manifold. Let p be a prime ideal of
M(M). Then p0(M) is a prime ideal ofO(M).

GLOBAL EQUATION CONJECTURE. - For the same M as above, every finite sheaf 1 ofMu-
ideals is generated by global Nash functions on M.

EXTENSION CONJECTURE. - For the same M and T as above, the following natural
homomorphism is surjective:

H°(M,Af) —> HQ(MM/T).

If these conjectures hold true, then the following conjecture also holds [3].

1 Partially supported by European contract CHRX-CT94-0506 RAAG.
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140 M. COSTE, M. SHIOTA

and^n°^T CONJECTURE- Given a Nash ̂ on f on an affine Nash manifold M
and an analytic factorisation f = j^, there exist Nash functions g, and g, on M and positive
analytic functions ̂  and ̂  such that ̂ =l,f,= ̂  and fz= ̂ g92 and P051^

The separation conjecture means that Nash functions suffice to separate global analytic
components. Note that the local version of the separation conjecture is an easy consequence

l̂ sToTr̂ 60""̂  global equation and extension comecturescan be s^ asubstitutes for Cartan s theorems A and B, respectively, in the Nash setting. For a history of theconjectures, we refer the reader to [2,3]. s "i d msiory or me
In the present paper, we prove the following theorem.

THEOREM 1. - Let M c E" be a noncompact affine Nash manifold. Let U and V be open
^Sebraic subsets of M such that M = U U V. Let I be a sheaf of ̂ -ideals such that I\ ̂

ly^a^^^^^^^ respectwely- ̂ i-elf is generated

.fr™^01"61" o^lously implies that the global equation ̂ J^e holds true for noncompact

Sma^d y [3]' we obtain a positive answer to a11 conjectures for ̂  ̂ ne

hoid^f^ 2' ~^h\s^ration' 8lobal equation' extension ^factorisation conjectureshold true for every affine Nash manifold.

The proof of the conjectures for the compact case in [2] is based on the so-called general Neron
desmgulanzation, applied to the homomorphism A/-(M) -. 0(M). This tool cannot be used in
the noncompact case, because 0(M) is no longer noetherian. The present proof of Theorem 1

^to h'oTh ? ̂ K ln the ̂ mpact case-The main idea for the reduction to the com^ ̂ seis to show that I can be extended to another Nash manifold in which M is relatively compact
The key for this extension is Theorem 5 on "compactification" of Nash functions '

pom?s S^oor1611'1 Jesus M' Ruiz for his comments and ^ggestions which clarified several

2. Approximation by Nash functions

rec^ ̂  "r severaltlmes in the P1-0^ results on approximation by Nash functions. We
ecallherea few useful facts proved in [5]. Let M be an affine semialgebraic C1 manifold

Let A,, z - l,..., n, be continuous semialgebraic vector fields on M which generate the tangent
vector space T (M) at every point. e M. The semialgebraic C' topology on the ring 56 ̂  o
semialgebraic C' functions M -. R is defined by the basis of neighborhoods of 0 consisting of

UH = {/ e S\M); Vx e M \f(x)\ < h(x) and \X,(f)(x)\ < h(x), i = 1 , . . . ,n},

where h i s a continuous positive semialgebraic function on M. If TV c R" is another
semialgebraic C manifold, we define the semialgebraic C' topology on the set S\M ^ o

^M^ mappings M " N as the topology induced by the ̂ bedding S\M',N)^

FACT 1 (Diffeomorphisms form an open subset). - I f ^ - . M ^ N i s a semialgebraic C1

Ts^r ^een affiw semialgebraic cl manifolds' there is a -eighborhood U of^in S (M, N) such that every ^ <= U is a diffeomorphism from M onto N [5, II. 1.7].
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NASH FUNCTIONS ON NONCOMPACT NASH MANIFOLDS 141

FACT 2 (Approximation by Nash functions). -If M and N are affine Nash manifolds, the
subset J\T(M, N) of Nash mappings is dense in S1 (M, N) [5,11.4.1].

FACT 3 (Relative approximation). - Moreover, ifp: M -^ R is a Nash function and f'.M—>
N C M72 is a semialgebraic C1 mapping which is Nash in a neighborhood ofp~\0\ then, for
any neighborhood U ofO e S^M^W), there is a Nash mapping f'.M-^NcW such that
f — f =pg, where g:M —^R7'1 belongs to U and is Nash in a neighborhood'ofp'^O) [5,11.5.1
and 2]. By Fact 1, iff is a dijfeomorphism and U is small enough, f is also a dijfeomorphism.

3. Global sections of restrictions of finite sheaves

We denote by clos(M; N) the closure of the subset M in the space N. Recall that M is said
to be relatively compact in TV if clos(M; N) is compact.

LEMMA 3. - Let M' be an affine Nash manifold and M a relatively compact semialgebraic
open subset of M'. Let 1 be a finite sheaf of MM-ideals. Assume that there is a finite sheaf T of
A/M' -ideals such that T = T M. Then I is generated by its global sections.

Proof. - Let (^: M' —^ (0, +00) be a positive proper Nash function. By assumption K =
c\os(M'\M) is a compact semialgebraic subset of M'. Let r > 0 be such that ^p(K) < r and
r is not a critical value of (p. Let

D={(x,t)eMf xR: t2=r-^(x)},

and define p ' . D —> Mf by p(x,t) = x. Then D is a compact Nash manifold and p is a Nash
mapping which induces a diffeomorphism from

Mi = {(x,t) G M x R: t = v^-^Or)}

onto M. Let a: M -^ M\ be the inverse Nash diffeomorphism. Since the global equation
conjecture holds for the compact affine Nash manifold D, the finite sheaf J = p*(T) of A/D-
ideals is generated by its global sections. It follows that I = a " ( J ) is also generated by its global
sections. D

The next lemma seems near to our final goal, i.e., the proof of the global equation conjecture
for noncompact Nash manifolds. However, the proof of Theorem 1 will use this lemma only for
a small but seemingly indispensable point.

If Z is a sheaf of A/M -ideals, we denote by Z(I) the set ofx^M such that Ix i=- A/M,^.

LEMMA 4. - Let M be an affine Nash manifold and T a finite sheaf of A/M -ideals. For
every compact subset K of Z(I\ there is a semialgebraic open subset U of M containing
K U (M \ Z(I)) such that T\u is generated by its global sections.

Proof. - Set Z = Z(I). We choose a finite Nash stratification of M compatible with Z,
satisfying Whitney's regularity conditions and whose strata of maximal dimension are the
connected components of M \ Z [1, Theorem 9.7.11]. Let ^p:M -^ R be a positive proper
Nash function. Since the set of critical values of a Nash function is finite, for r > 0 large
enough, we have ^p(K) < r and, for every stratum S of M, either ^p(S) ̂  r or (p restricted to
S H (^"^(r, +00)) is a submersion onto (r, +00). Then, by the semialgebraic version of Thorn's
first isotopy lemma [4, Theorem I], there is a semialgebraic homeomorphism

ANNALES SCIENTIFIQUES DE L'^COLE NORMALE SUPERIEURE



142 M. COSTE, M. SHIOTA

r: ̂ p~\(r, +00)) -^ (p~~\r + 1) x (r, +00)

a:^ (Ti(^),(^0r)),

such that, for every stratum S, r induces a Nash diffeomorphism from S D (p~~^((r, +00)) onto
(S n ̂ ~^(r + 1)) x (r, +00), and r\(x) = rr for every x in (^"^r + 1).

By Lemma 3, the sheaf T restricted to V = ^p~l((0, r + 1)) is generated by its global sections
on V. Set U = (M \ Z) U V. We shall construct a Nash diffeomorphism 0: V -^ U such that
^*(Z|^) = T\v. This will prove that I\u = (^''^(Zly) is generated by its global sections on [7.

Let S'.^p^^r + 1) —> R be a nonnegative Nash function such that 6 < 1 and S~{(S)) =
^^(^ - l ( r+l ) (note that <? exists since the global equation conjecture holds for the compact
affine Nash manifold (p'1^ + 1)). We extend 6 to (/^((r.+oo)) by setting 6(x) = 6(r\(x)).
Observe that 6~1(0)= Z H y~^((r, +00)) since, for every x € ^~l((r, +00)), x G Z if and only
if r\(x) 6 Z. Choose a semialgebraic C1 diffeomorphism

a: (r, r + 1) x [0,1) -^ ((r, +00) x (0,1)) U ((r, r + 1) x {0})

(u,v)^ (a\(u,v\v),

such that a is the identity on the union of (r, r + ^) x [0,1) and a neighborhood of (r, r +1) x {0) .
We define a semialgebraic mapping 0: V —> U by setting:

^^ if^^r,

[ r~\r^x),a^(x),8(x))) if (p(x) > r.

The properties of T, <5 and a imply that 0 is bijective. Observe that 0 is the identity on a
neighborhood of Z D £/ = Z D V in V. It follows easily that 0 is a C1 diffeomorphism from
V onto [7. Let p e .A/'(Y) be the sum of squares of a finite system of global sections of T\y
generating T\ y . We have p~1 (0) = Z D V. Applying the relative approximation theorem (Fact 3)
to 0, we obtain a Nash diffeomorphism 0:V —> U such that, for every a G Z D V and every
fa ^ A/M,a. the difference between the germs (/ o 0)a and (/ o ^)^ = f^ lies in pA/a. Since
pA/a C 2a, this proves that 0* (Z| u) = ^"| y. n

4. Compactification of Nash functions

The meaning of "compactification of Nash functions" is made clear by the next theorem.

THEOREM 5. - Let M be an affine Nash manifold, F a closed semialgebraic subset of M,
and f a Nash mapping from an open semialgebraic neighborhood UofF into W, such that f\p
is bounded. There exists an open Nash embedding L : M —> N into an affine Nash manifold N,
such that i(F) is relatively compact in TV, and a Nash mapping f from an open semialgebraic
neighborhood V <9/clos(^(F); N) into W, such that V D i(M) = i(U) and J o i = /.

Note that we can assume N = V U b(M \ F) in the theorem. Note also that, if / is the restriction
to U of a Nash mapping (still denoted by /) defined on an open subset W of M containing (7,
then / can be extended to V U i(W), by setting / o L\^ = /.

The first step in the proof of the theorem is the case F = M.

LEMMA 6. - Let M be an affine Nash manifold and f : M —^ M^ a bounded Nash mapping.
(i) There exist an open Nash embedding i: M —> N into an affine Nash manifold N, such that

i(M) is relatively compact in N, and a Nash mapping f : N —>• W, such that f o i = f.

46 SERIE - TOME 33 - 2000 - N° 1



NASH FUNCTIONS ON NONCOMPACT NASH MANIFOLDS 143

(ii) Moreover, we can assume that there is a Nash function 6: N —>• R 5'MC/; ^a? 5(i(M)) > 0
and clos(^M); TV) \ i(M) C (^(O).

Pwo/ - (i) We can assume that M is bounded in W1. The graph of / is bounded in R714'^.
Let X be the normalization of the Zariski closure of the graph of /. We have an open Nash
embedding ^: M —> Reg(X) into the set of nonsingular points of X, and if^(M) is relatively
compact in X. Moreover, there is a regular mapping g : X —>• R^ such that g o ̂  = j. (This is
nothing but the construction of Artin and Mazur, cf. [1, 8.4.4] or [5,1.5.1].) Now let TT : N —> X
be a desingularization of X, such that N is a nonsingular real affine algebraic variety, TT a
proper birational mapping which induces a Nash diffeomorphism 7r~^(Reg(X)) —^ Reg(X). Let
i: M —^ N be the Nash embedding such that TT o L = '0, and set / = g o 71-. Then i(M) is relatively
compact in N and / o i = /.

(ii) Let ( p : M —> (0, +00) be a positive proper Nash function. Define /3: M —> R by f3(x) =
\/^p(x). Applying part (i) of the lemma to (/,/3):M —» R^4'1, we obtain an open Nash
embedding L'.M —> N and a Nash mapping (f,6):N —^ R^ such that i(M) is relatively
compact in N and (J, 8) o L = (/, f3). It follows that <^(M)) > 0. Let y e clos(^(M); AQ \ i(M).
Let 7: [0,1] —^ N be a continuous semialgebraic path such that 7(0) = y and 7((0,1]) C i(M).
We have linit_^o+ /^(^""^^ft))) = 0. since otherwise ^""^(O) would have a limit a; in M as
t —^ 0+, from which ?/ = ^(a;) e ^(M) would follow. Hence, 6(y) =0. D

Now we prove the general case of Theorem 5.

Proof of Theorem 5. -
Step 1. Shrinking U, we can assume that / is bounded on U. By Mostowski's separation

theorem [1, 2.7.7], there is a Nash function h: M -^ R such that h(F) > 0 and h(M \ U) < 0.
Let ^: M -^ (0, +oo) be a positive Nash function such that ^ > l/\h\ on F U (M \ U) (cf. [1,
2.6.2]). Define a: M -^ R by a = ̂ h/^/(l + f^h2)/!. Then a is a bounded Nash function such
that cr(F) > 1 and a(M \ U) < -1.

We can assume that M is open and relatively compact in another affine Nash manifold
Mi C W (see Lemma 6).

Applying Lemma 6 to the bounded Nash mapping x i—^ (x, f(x), <J(x)) from U to M"^"^, we
obtain an open Nash embedding ip: U —> L into an affine Nash manifold L and Nash mappings
rj: L -^ M71, g : L —^ W and a: L -^ R such that ^(U) is relatively compact in L, T] o ̂  = Id[/,
g o ̂  = f and a o ̂  = a. Since rj(^(U)) =U is relatively compact in Mi, we can assume that 77
takes its values in M\. Moreover, we can assume that there is a Nash function 6 : L —>• R such that
6(^(U)) > 0 and clos(^(l/);L) \ ^([/) C (^(O). We can also assume that L is a closed Nash
submanifold of R^.

Let L' be the semialgebraic open subset of those y C L such that a(^/) > 0. If we glue M
and L' along ^, we obtain an abstract Nash manifold satisfying the properties of the theorem.
The difficulty is to obtain an affine Nash manifold. We shall first glue M and L' to obtain
a semialgebraic C2 submanifold N ' of P"^14^, such that the image of L' in N ' is a Nash
submanifold of R^-^.

Choose a semialgebraic C2 function A: R ̂  [0,1] such that A~1 (1) = (-oo, -1] and \~{(0) =
[0, +oo). Let a: M -^ R^^ be the semialgebraic C2 embedding defined by

_ f (a-,1,0) i fo ;eM\£/ ,

^ (\(a(x))x, \(a(x)\ (1 - \(a(x)W(x)) ifxeU.

We set M' = a(M). For convenience, we identify L' with {(0,0)} x L' C R^^ and L with
{(0,0)} x L. Set N ' = M' U L' C R71 x R x R^, and let A^() (respectively A^) be the open

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



144 M. COSTE, M. SHIOTA

subset of N ' consisting of those (x, t, y) such that t > 0 (respectively t < 1). If {x, t, y) e N^,
then (1 - t^y e L. The sets M' and L' are both open in N ' ' , since

M' = N'^ U {(^ t,,/) G JV^: (1 - O"^ e ̂ (t/)}

and

L' = {(.r,t,2/) € 7V^: a((l - t)-^) > 0}.

Since Mf is a C2 semialgebraic submanifold and L1 is a Nash submanifold of IR77'4"1"^, N/ is
a C2 semialgebraic submanifold of M^^. Note that M' H L' C a(U). We have g o a == f on
a"^!/), and a(.F') is relatively compact in L ' .

Since L is a closed Nash submanifold of IR^14^, there is a nonnegative Nash function
7: R^+k -^ R such that L = 7~1(0), and 5: L -> R extends to a Nash function on M^^
which we still denote by 6 [5, 11.5.4 and 11.5.5]. Let (^R^^ -^ R be the Nash function
defined by (p = 7 + 62. Observe that ^ is positive on M\ clos(M';7V7) \ M' C (^(O) and

~\0) H N ' = ̂ (O) H L' is open in ^(O). See Fig. 1.^
Step 2. The next step is to approximate Nf by an affine Nash manifold, keeping fixed

^"^(O) D N/ and the Nash structure of L ' ' . This is essentially [5, III.1.3]. However, we repeat
the proof because we need extra information.

Setd=n-H+A:— dim(AQ and let G be the grassmannian of ^-dimensional vector subspaces
of M7'4-^. Let E be the universal vector bundle of rank d on G. Let y ' . N ' -^ G be the
semialgebraic C1 mapping which sends z C N ' to the normal space v(z) to 7V7 at z. Observe
that v is Nash on L1'. Let (^,0 be a point of the induced bundle y^{E), that is, ^ € ^(^).
The mapping (z,£.) ̂  z + £, induces a semialgebraic C1 diffeomorphism 6 from an open
semialgebraic neighborhood Q of the zero section of i / * ( E ) onto a neighborhood IV of 7V7 in
j^n+i+fe ^ye can assume that (^(O) D TV = ̂ (O) H TV'. Let p : W —> N ' be the semialgebraic
C1 mapping defined by (p(z),z — p(z)) = 0~l(z) for z C W. The mapping p is a retraction of
W on N\ and (W, p) is a semialgebraic C1 tubular neighborhood of N\ Define ^: W —^ E by
^(2^) = (i^(p(^)), 2; — p(2;)). Observe that p and ̂  are Nash on p~l(L/), \ is transverse to the zero

-1 0 1 a

Fig. 1.
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section G x {0} of E and ̂ (G x {0}) = N ' ' .

QC^E

145

Approximate \ (in the semialgebraic C1 topology) by a Nash mapping \: W —> E such that
^ and \ are equal on ^"^(O) D TV (relative approximation, Fact 3). Then \ is transverse to
G x {0}, and TV7' = ̂ -^G x {0}) is a Nash manifold. We have 7V77 H ̂ (O) = 7V7 H ̂ (O). If
the approximation is strong enough, the retraction p induces a C1 diffeomorphism K '. N " —> N/

such that (^-1)|L/ is Nash and ^-1 is the identity on ^ '(O) H N ' . We set L" = i^~\L') and
M^^-^M7).

5^ J. We still have the problem that the diffeomorphism ^-1 o a: M —> M" is only C1.
The final step will be to approximate K~1 o a by a Nash diffeomorphism L\M —> M", such
that L o a~1 o ^ AfnL^ extends to a Nash diffeomorphism r on a neighborhood of B" =
cios(Mff•,N//)\Mf\

Let C:A^ -^ Mi C M" be the semialgebraic C1 mapping defined by C(^) = a-1^)) if
z e M" and C,(z) = rj(K,(z)) if z e L". The restriction (^|i// is Nash, and the restriction C,\M" is a
semialgebraic C1 diffeomorphism onto M. The construction of the Nash diffeomorphism r will
use Tougeron's implicit function theorem applied to an equation involving C,. For this, we need
to have a good control on the sheaf J ofjacobian ideals of ^. We can take finitely many Nash
charts on L11 and M\, such that the image by ^ of the domain of any chart of L" is contained in
the domain of some chart of M\. Let J C A/A/-" be the finite sheaf of ideals which is generated
by 1 on M" and by det(9^i/9zj) on every chart of L", where the Zj are the coordinates in this
chart and the ̂  are the coordinates of C, in the corresponding chart of M\. By Lemma 4, we can
assume that J is generated by its global sections on N " \ indeed, this becomes true if we remove
from N " some closed subset of ^(J^, disjoint from the compact subset clos^'^Q^-F));^).
Let J G UN" be the sum of squares of a finite system of global sections generating J . Note that
J-^CL".

We approximate C, (in the semialgebraic C1 topology) by a Nash mapping ^: N " —> M\ C M71,
such that C — C = ^ J s , where e: TV" —^ W1 is a semialgebraic C1 mapping close to zero, Nash
in a neighborhood of ^~\0) U N " (cf. Fact 3).

We claim that, if (- is large enough and e sufficiently close to 0, C,\M" is a close approximation
of ^IM" with respect to the semialgebraic C1 topology on the space of semialgebraic C1

mappings M" —^ M\ C W1. Indeed, let X be a continuous semialgebraic vector field on TV".
We have

X(C - 0 = ̂ -1 {iX^)J + ̂ X(J)}e + ̂ JX(e\

Let IJL : M" —^ R be a positive continuous semialgebraic function. Since M" is a union of
connected components of TV" \ (/^(O), there is a positive integer m such that ^m / ' IJL can be
continuously extended by 0 on N " \ M" [1, 2.6.4]. Hence, taking H = m 4-1 and e close enough
to 0, we obtain ||X(^ — Q|| < [L on M". This proves the claim. It follows from the claim that
we can assume that C,\M" is a Nash diffeomorphism from M" onto M. Let L : M —^ M" be the
inverse Nash diffeomorphism.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



146 M. COSTE, M. SHIOTA

We now claim that there are open semialgebraic neighborhoods C and D of B" in L" and a
Nash diffeomorphism r: C —^ D such that r\cnM" == ^ o C- By uniqueness of continuation of
Nash mappings, the problem is local on B " . Let ZQ e B". Using Nash charts in a neighborhood
of ZQ (respectively <(^o) 6 Mi), we can assume that N^ = Mi = R771 and 2:0 = 0. Consider
the equation ^(z, ̂ /) = (;(z ^ y ) - ((z) = 0, where z e ̂  and y e M77'. We know that <?(;z, 0)
is divisible by (pe(z)J(z), and J is in the square of the jacobian ideal J^ generated by
det(<9<^/(9^)(^,0). Hence, by Tougeron's implicit function theorem [6, Chapter 3, Theorem
3.2], there is a Nash germ y(z) e ^Jz^ such that <(z + y(z)) == ((z). The germ z + y(z)
is a germ of diffeomorphism (we assume £ ^ 2). Its inverse r^ is a germ of diffeomorphism
(TV77,2:0) -^ (TV77,2^0) such that r^ = i o ( on M77. Therefore the claim is proved.

Now we can conclude the proof. We set N = M" \J D C N " and V = i(U) U D. It is clear
that u(F) is relatively compact in N and V is an open semialgebraic neighborhood of i(F) in N .
Take 2: € M77 n .D and set x=i~l(z)e M. The relations

a(x) = K{C\X)) = ̂ (r"1^)) € ^(M77 n L77) = M' H L7 C a([7)

imply x € [7 and g^(r-\z))) = p(a(.r)) = /(a;). Hence, i(M)r\ V = M" n V = i((7) and the
Nash function /: V -> R given by f(i(x)) = f(x) ifx^U and f(z) = ^(^(T-^^))) if ^ € 2^ is
well defined. D

5. Proof of Theorem 1

Let /i,.... fj, € ^([/.Z]^) and ^ i , . . . ,^ e Jf°(y,Z|y) be systems of generators of I u
and Z|v, respectively. Replacing the generators /, and ^ with /z/(l + f^) and ^/(l + ^2),
respectively, we can assume that they are all bounded. Note that the restriction of each system of
generators to U H V generates T\unv' Hence, by 1.6.5 in [5], there exist Nash functions a.j and
(3ij on U n V, i,j = 1,.... k, such that, for each i,

k k
fi=Y^aijgj and ^=^Aj/j onUnV.

j=l j==l

The idea of the proof is to extend the sheaf Z to a bigger Nash manifold in which M is relatively
compact. For this, we extend the generators /, and gj and the functions a^j and f3j^. We have to
modify a little these functions to satisfy the boundedness condition in Theorem 5.

Let (p be a positive proper Nash function on M, and set 6 = 1/<^. Using Mostowski's
separation theorem as in the beginning of the proof of Theorem 5, we obtain a bounded Nash

M̂
U

V

a
-1 0 1

Fig. 2.
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Mi^ ^ ^1

Ilil^l
O"!

-1 0 1

Fie. 3.

Mi
^ \ ̂ 2

1 1 1 ^ 1

^

<^2
-1 0 1

Fig. 4.

function a on M such that a > 1 on M \ V (= U \ V) and a < -1 on M \ U (= V \ U). By
Lojasiewicz inequality (cf. [1, 2.6.4]), there is a positive integer £ such that all S^Ozj = a— and
^f3^ = f3^ are bounded on a-\[-^ +^]) (Fig. 2).

By Theorem 5, we can assume that:
• M is an open semialgebraic subset of an affine Nash manifold M\ and a"1^—^, ^]) c M

is relatively compact in M\.
• There are Nash functions <5i : M\ —^ IR and a\: M\ —^ R such that 8\\M = S, 8\ is

bounded, (J\\M = o- and o-i < 1 on M\ \ M. We set U\ = U U ̂ ((-l, 1)) and V\ =yua^a-i.nHFig.s).
• There are Nash functions f^: U\ -^ M, ^-j : Vi -> R and ^j,^,,: ̂ i H Vi

z,^' = 1,. . . , k, such that all f^\ and g^\ are bounded,

Ail^ =/^ 9j,i\v =9j, ^j\unv ^^j. /^j,Jc/ny = /^-

• Every connected component of [/i n Vi meets U C\V (otherwise, we can remove from M\
the closure of these components). Therefore,

(*)
K K,

<^Ai = I^jftu and ,̂1 = i^^lzAi on ^7i n Vi.
J=\ 1=1

Again by Theorem 5, we can assume that:
• Mi is an open semialgebraic subset of an affine Nash manifold M^ and a^~l ([ \ , +00)) C M\

is relatively compact in M^.
• There are Nash functions S^: M^^R and 02 : Mz -^ R such that 6^ Mi = <5i, 02! Mi = cr\

and 02 > 0 on M2 \ Mi. We set U^ = Ui U ̂ ((O, +00)) (Fig. 4).
• There are Nash functions f ^ : U^ -^ R such that /J^ = /^j.

By a last application of Theorem 5, we can assume that:
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Ms
=C/2

1 1 1 1 ^ 3
^

———I——i——|——i——)——-0-3
-1 0 1

Fig. 5.

• Mz is an open semialgebraic subset of an affine Nash manifold M, and a,-'((-oo --•1) c
MZ is relatively compact in My. 2

• There are Nash functions 6 : M, -. R and 03: M, -. R such that ~6\^ = 62, ̂  = a,
and(T3<OonM3\M2.Wesety3=^U(73-l((-oo,0))(Fig.5). ' 2

• There are Nash functions g,: ¥3 -^ R such that o. |v = o .
Observe that •" ' —

MC(7- l([-5^])u<T^ l([„+oo))u^- l((-oo.4])
is relatively compact in M).

We define the ideals

I=(7i,-..,Jk)CW2~),

^/ = {ft € .A/-(£/2): r/i e I for some ̂ } = (J (/: (^1^)) c A^),

•7=(ffl.•••,fffc)cA/'(y3),
^ = {h 6 W3): r/i G J for some ̂ } = (J (J: (^1^)) c A/-^).

^

We claim that the ideals // and J' generate the same sheaf of ideals over ̂  n V, = U, n V, Let
^ e ̂ inVi. Since A/-, is flat over Wz) and .A/-0/3), we have ^r'^.Let

^A4=(J(^:C)) and ^A4=(J(J^:(0).
I/ K

'̂anZh^10118 ̂  ̂  that '/A4 c (/A4 : ̂ )) and 7A/- c (JMX : <6^- Hence' W =^ Wa; and the claim is proved.

It follows that we can define a finite sheaf of ideals I over M, by setting Z, = FX if a; e U.
and Z - J ,̂ if , e V3. If .r e M, ?, = ̂  is invertible and, therefore, A = Z/ByLem^a3
^M is relatively compact in M, and Z = Z^. the sheaf Z is generated by its glo'bal s^ons
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