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TOPOLOGICAL PRESSURE FOR GEODESIC FLOWS

BY GABRIEL P. PATERNAIN

Dedicated to Detlef Gromoll for his sixtieth birthday

ABSTRACT. - We give a Riemannian formula for the topological pressure of the geodesic flow of a
closed Riemannian manifold. As a consequence, we derive an asymptotic formula for the stable norm in
cohomology in terms of geodesic arcs for manifolds with topological entropy /iiop = 0. We introduce a
Poincare series also in terms of geodesic arcs and we show that it defines a holomorphic function on the
half plane given by those complex numbers with real part > /iiop. © 2000 Editions scientifiques et medicales
Elsevier SAS

RESUME. - On donne une formule riemannienne pour la pression topologique du flot geodesique sur une
variete riemannienne compacte. On en deduit, pour les varietes a entropie topologique nulle, une formule
asymptotique pour la norme stable en cohomologie en termes des courbes geodesiques. On introduit
une series de Poincare, dependant egalement des courbes geodesiques, dont on montre qu'elle definit
une fonction holomorphe sur Ie demi-plan constitue des nombres complexes de partie reelle superieure
a F entropie topologique. © 2000 Editions scientifiques et medicales Elsevier SAS

1. Introduction

Let Mn be a closed connected C°° manifold and let g be a Riemannian metric of class C7^ with
r ^ 3. Let ̂  : SM —> SM be the geodesic flow of g acting on the unit sphere bundle SM. Given
a continuous function /: SM —>• R, let P(/) be the topological pressure of the function / with
respect to the geodesic flow (j). We recall its definition. Given T > 0 and a point (x, v) C SM, set

T

MX^):= { fUt(x,v))dt.{ f((f)t(x,v))i
0

We say that a set E c SM is (T, e)- separated if, given (x\,v\) -^ (^2.^2) ^ E, there exists
t G [0, T] for which the distance between (f)t(x\, v\) and (/)t(x-z, ̂ 2) is at least e. We set

r(T, £, /) :== sup^ ^ e^^: E is (T, ̂ -separated ^
[(x,v)eE )

r(e, f) := lim sup — log r(T, e, f).
T^oo 1

The topological pressure is defined to be:

P(/)=limr(£j).
£—^0
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122 G.P. PATERNAIN

The topological entropy htop of (/) is P(0). The variational principle extends to the case of
topological pressure as:

(1) P(f)= sup f^+ [ /dA
I^CMW \ J }

SM

where M((j)) is the set of all (^-invariant Borel probability measures and h^, is the entropy of the
measure ̂  [8]. The study of the map / i-̂  P(f) is important since it determines the members of
M((f>), and when the entropy map ^ i—>- h^ is upper semicontinuous on M((j)), the knowledge of
P(f) for all / is equivalent to the knowledge of M.((f)) and h^ for all fi 6 M((/)) [8]. Also, the
variational principle gives a natural way of selecting interesting members of M((j)).

Our aim is to give a formula for P(/) in terms of geodesic arcs between two points in M
similar to Mane's formula for h^op in [4]. For this we shall use the formula for the topological
pressure of a C°° dynamical system recently obtained by 0. Kozlovski in [3].

Given x and y in M, let ^ / x , y : [0, i(^(x,y)\ —> M be a unit speed geodesic arc joining x to y
with length £(^x,y)' Given T > 0 the set of all ^x,y with t('jx,y) ̂  T is finite and its cardinality is
locally constant for an open full measure subset of M x M.

THEOREM A. - Ifg is of class C3 for any 6 > 0 we have

PaKliminfLog ( ( ^ eX^'^^^-^^ld.dy,' / ( s
MxM \^.«--T-S<t(-

T—>oo J. I \ I
MxM \{^y:T-6<^,y)^T} /

and ifg is C°°,

P(/)=^-log / ( ^ eF'̂ ^^-^^L.d./.
1 r I r^,.),

^^ —log / > 6^0
T-.ooT J \ z-^

MxM V{7^^-<^(7^)^T}~"00 A / f ' A / f \{^,y--T-6<^,y)^T} )

Ifg is C00 and P(f) ̂ Owe also have

P(/)=lim^log / f ^ .r'̂ ^ -̂̂ ^^d.d,.
T—^oo ^ / \ -—"• /

MXM V {7^:^(7^)^} /

When / = 0, we recover Mane's formula in [4]. Combining Theorem A with Lemma 4.3 in [4]
(which is an application of the Borel-Cantelli Lemma) we obtain

COROLLARY 1. - Ifg is C°°, for almost every (x, y) G M x M we have,

lim sup _ log /lî P-log / f E er'̂ ^^-^^^pa).
T-"00 A^A^f \{^:T-6<^^T} )T-^oo ^ J

MxM

Theorem A is particularly appealing when / is the restriction to SM of a 1-form uj. We think
of uj as a function uj: TM —> M. In this case we have for a C°° metric g,

/ ( ^fi^ \{^.v.T-6<^

P(UJ)= lim _log j ( ^ e^-^ j d.rd^/.
-'00 MxM M7^: r-^<^(7^)^T} 7
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TOPOLOGICAL PRESSURE FOR GEODESIC FLOWS 123

The function H\M, R) 3 uj ̂  P(uj) C M is closely related to Mother's function a: H\M, R) -^
R [5]. Recall that a is given by

a(uj)=-mm^ \ (H2/^ -cj) d/^: /^ e MTMW ?,(2) a(a;) = - min ^ / (\v\2/2 - ̂ } dp.: fi ̂ .
I J
"TM 7

where M.TMW is the set of (^-invariant Borel probability measures of TM with compact
support. Let SMa be the set given by those points (x,v) C TM such that \v = a. The support
of a minimizing measure, that is, a measure for which the minimum in (2) is achieved, must be
contained in the energy level SM^^ [1]. Hence if ^ is minimizing,

2a(uj) = / (jjdp,.

TM

Multiplication by the positive real a defines a natural bijection between the set of </)-Borel
probability measures of TM which are supported on SMa and .M(^). Hence

^/la(uj) = sup / cjdp,.
p,eM((f>) J

SM

The function uj \—^ ^/la(uj) is a norm, dual to the stable norm [6]. From the variational principle
(1) we obtain

V^aCcj) ̂  P{UJ) ̂  /itop + \/2a(uj).

Combining this inequality with Theorem A yields,

COROLLARY 2. - Ifg is C°° and h^ = 0,

r ( f ^\
\ ( V^ e^^y ) dxdy.

ft^ \{^x,y:^x,y)^T] )

/2a(a;)=^lin^_log / I ^ e3^
^00 MxM \{^y--^y^T] /

The corollary applies, for example, to a C°° torus of revolution.
If (M, g) does not have conjugate points, we can prove the equality in Theorem A assuming

that g is only of class C3. More precisely we shall prove,

THEOREM B. - Suppose that g is of class C3 and (M, g) does not have conjugate points. Then
for any 6 > 0 we have

P(/)=,lim-log / f E er-^^^^d.d,.
^°° MxM \^y--T-6<^,y^T] I

I f i j j i s a closed 1-form, then for any x and y in M we have:

1 ( v- f AP(^)= l̂im l̂og ^ e^^v \.
~^00 \hx,y:^x,y)^T] )

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



124 G.P. PATERNAIN

Finally, ifs^R, then for any x and y in M we have:

k^-s=^^( ^ e-^V
00 \{-fx,y:T-6<£^,y)^T] )

Consider those s G C for which the following limit exists and is finite,

rjg(s):= \im [ \ Y^ e-^^dxdy.
T^OO^J^ \{^,y:^y)^T} I^^MxM \{^^y^T] I

We can regard %(s) as the "Poincare series" of the Riemannian metric g. Suppose that (x, y) is
a pair of non-conjugate points and let

P1 < P2 < ... < /?n < • • •x,y ^ x,y ^ ^ x,y ^ '

be the lengths of all the geodesic arcs 7^. Given s C C we set

00

^(s.x^'^^e'^y,
n=l

whenever the series converges. If x = y and x is any point in the universal covering M that
projects to x, then rjg(s, x, x) is exactly the Poincare series of the action of 7Ti(M) on M at the
point x, provided that M has no conjugate points.

Using Theorems A and B we shall prove,

COROLLARY 3. -Suppose that g is C°°. Then rjg(s) is a holomorphic function on the half
plane Re(s) > h^op- Ifg is of class C3 and (M, g) does not have conjugate points, then for any x
and y in M, s i—> r]g(s, x, y) is a holomorphic function on the half plane Re(s) > h^op.

2. KozlovskTs formula

Let X be a closed Riemannian manifold and let ̂  : X —^ X be a flow without singularities of
class C7' with r ^ 2. Given a continuous function /: X —> R, let P(/) be the topological pressure
of / with respect to the flow (f). Set

T

MX)= [ f((t>tX)dt.
0

Given a linear map L'.E —^ F between finite-dimensional vector spaces with inner products,
we define its expansion ex(L) by

ex(L)=max|det(L|5)|,
0

where the maximum is taken over all subspaces S C E.

4° SERIE - TOME 33 - 2000 - N° 1



TOPOLOGICAL PRESSURE FOR GEODESIC FLOWS 125

THEOREM 2.1 ([3]).-

P(/) ̂  lim inf 1 log / e^ex^r) dx,
T—^oo 1 J

X

and if(j) is C00 we have

P(f) ̂  lim ^ log ( e^ex^r) dx.
T->oo 1 J

X

The first inequality, when / = 0 is Przytycki's inequality for the topological entropy [7].
Kozlovski's proof in [3] for the equality case is based on Yomdin's work [9].

3. Area formula

Let ip: X —^ Y be a smooth map between Riemannian manifolds of the same dimension.
Suppose that X is compact and possibly with boundary. Let u: X —)• C be a continuous function.

The following formula is a particular case of the area formula that holds for Lipschitz maps,
manifolds with different dimensions and Hausdorff measures [2, Theorem 3.2.3].

THEOREM 3.1 (Area formula).-

/ /* / _ \
u(x)\detdx^\dx= ^ ( V^ u(x) j dy.

^ ^ v.z^-l(2/) /

Now, let us apply this formula to our context. Let /: SM —> C be a continuous function and
set for brevity

FT(x,y):= ^ J^^WO.W^
[ix.y: <(f«,»)^T}

FT^V):= ^ J '̂̂ ^ .̂̂ d^

{7^: T-6<e^y)^T]

Let TT : SM —> M be the canonical projection and for 0 = (x, y) e SM, let V(0) be the vertical
subspace at 0 which is given by the kernel of C^TT. We endow SM with the Sasaki metric on SM
and we let d0 be its Riemannian measure. Let us consider the function A: SM x R —^ I^ given
by

A(0,t)=\detde(7ro(t)t)\v(e^
PROPOSITION 3.2. - For all T > 0 we have:

T
[ /^^(^.Od^d^ ( Fr(x,y)dxdy.

0 SM MxM

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



126 G.P. PATERNAIN

Similarly, for T > 6,

T

( [ eft(e)A(0,t)d0dt= ( FT,6(x,y)dxdy.
T-6 SM MxM

Proof. - Let us consider the function

^:SMx[0,T]->MxM,

given by

^((9, t) = (x, exp^tv)) = (7r(6>), TT o ̂ ((9)). n

LEMMA 3.3.-

|detd(^)^|=A((9,Q.
Pwo/: - Fix (<9, t)eSMx [0, T] and identify T^e,t)(SM x [0, T]) with T^M x R. Let 7^ be

the unique geodesic denned by 0, i.e., ̂ (t) = TT o <^(0). From the definition of ^ we have

(3) d(^(0,l)=(0,^).

Let {e i = z;i, 62 , . . . , en} be an orthonormal basis of T^M. For 1 ̂  i ̂  n, let e^) be the parallel
transport of ei along 76>. Then [e\(t) = 76>(0,62(1),..., Cn(f)} is an orthonormal basis ofT/y^M.
Let { < ^ i , . . . , ̂ n^i. • • • , ̂ n-i} be an orthonormal basis of TeSM such that for all 1 ̂  i < n, the
vector ̂  is a horizontal vector with horizontal component e^ and for all 1 ̂  i ̂  n — 1, the vector
r]i belongs to V(0). From the definition of ^ we get

(4) d(e,t)^i) = (e^(7r o ̂ )(^)),

(5) d^W = (0, d(7r o (ptW).
Also for all 1 ̂  % ^ 72 — 1,

(6) (W,^o^)(^))=0.

The lemma follows easily by looking at the matrix of d^,t^ with respect to the basis we selected
and Eqs. (3), (4), (5) and (6). D

Let u: SM x [0, T] —> C be the continuous function given by

u(0,t)=eft(e).

The proposition follows right away from Lemma 3.3 and Theorem 3.1 applied to ^ and u as
above.

Remark 3.4. - The same proof as above also shows that for all x 6 M we have

r

( [eft(e)A(0,t)d0dt= (FT(x,y)dy,
0 Sx M

where Sx is the set of unit vectors in r^M.

4'̂  SERIE - TOME 33 - 2000 - N° 1
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4. Time shifts

In this section we prove two lemmas which are consequences of the fact that the lift of the
geodesic flow to the Grassmannian bundle of Lagrangian subspaces is transverse to the Maslov
cycle defined by the vertical subspace. These two lemmas are clearly inspired by the arguments
in [4].

Given 0 € SM, let S(0) be the orthogonal complement of the vector field of the geodesic flow
at 0. Let A(SM) be the Grassmannian bundle of Lagrangian subspaces, i.e., (0, E) G A(SM) if
0 e SM and E C S(0) is a Lagrangian subspace. Given Lagrangian subspaces E\,E^ of S(0)
we define the angle between E\ and E^ as

a(E,,E^= det(P|^)|,

where P: S(0) -^ E^- is the orthogonal projection. Clearly a depends continuously on the
subspaces and a(E^ E^) = 0 if and only if Ei H Ez ̂  {0}.

LEMMA 4.1. - Given a positive real number q, there exist a constant 7 > 0, an integer m ̂  1
and an upper semicontinuous function

r: A(SM) x R -^ {0, q/m, 2q/m,..., q]

such that after abbreviating r(0, E, T) to r, we have that for all (0, E) € A(SM) and all T:

a{de^r{E\V((j)T^rO)) > 7.

Proof. - We shall show first that there exist a constant 7 > 0 and an integer m ̂  1 such that
for all (0, E, T) e A(SM) x R the set given by

Q((9,£;,r):={zCZ: O^z^m, a{de(t)T^iq/m(E\V((t)T^iq/mO)) >7}.

is not empty. Suppose that this is not the case. Then given any m ̂  1 there exists a sequence
(0m, Em. Tm) e A(SM) G R such that

(7) a{de^T^s(Em),V^T^sOm)) <i 1/2^

for all s € Am where
A^-^/^jez.o^^^}.

Note that Am C A^+i. Since A(SM) is compact the sequence

{{^T^Om\de^T^Em))}

has a convergent subsequence

{^(Om^de^T^Em,))}

that converges to a point (0, J^) e A(SM). It follows from (7) and the continuity of a that given
any k and any s G Ay^ we have

a(de^s(E\V^s0))=^

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



128 G.P. PATERNAIN

Hence for all s in [0, q] we have

de(t>s(E)nv(^e)^w.

This contradicts the transversality of the lift of the geodesic flow to the Maslov cycle denned by
the vertical.

Now define

r(0,E,T)=mm{iq/m: i e Q(0,E,T)}.
Clearly r is upper semicontinuous and given (0, E, T) e A(SM) x R we have

a(de^T+r(E\ V^T+r0)} > 7. D

Remark 4.2. - Observe that by the definition of angle saying that

a{de^r(E\V(^r0)) > 7,

is equivalent to saying that

\det(d^^7r\s)\ > 7,

where 5' := de^T+r^E).

LEMMA 4.3. - Given a positive real number q, there exist a constant K > 0, an integer n ̂  1
and an upper semicontinuous function

p: A(SM) -^ {0, q/n, 2q/n,..., q}

such that after abbreviating p(0,E) to p and setting 0- = (j)-p6 -we have that for all (0,E) 6
A(SM):

a{E,de.^(y(0,)))>^.
Proof. - The proof is very similar to the last lemma. We shall show first that there exist a

constant K > 0 and an integer n ̂  1 such that for all (0, E) e A(SM) the set given by

Q(^):={zeZ: O^z^n , a(E,d^_^^/n(V^-iq/n0)))>^},

is not empty. Suppose that this is not the case. Then given any n ̂  1 there exists (On. En) £
A(SM) such that

(8) a(En.d^e^s(V^s0n))) ̂  1/2",

for all s G An. Since A(SM) is compact the sequence {(On. En)] has a convergent subsequence
that converges to a point (0, E) e A(SM). From (8) and the continuity of a we get that for all s
in [0, q] we have

a(E,d^^s(V(^0)))=0.
Hence for all s in [0, q] we have

de^(E)nV(^0)^W.

This contradicts the transversality of the lift of the geodesic flow to the Maslov cycle defined by
the vertical.

4s1 SERIE - TOME 33 - 2000 - N° 1



TOPOLOGICAL PRESSURE FOR GEODESIC FLOWS 129

Now define

p(0,E)=mm{iq/n: i<EQ(0,E)}.
Clearly p is an upper semicontinuous function with the desired properties. D

5. Proof of Theorem A

We shall follow closely Mane's ideas in [4]. We need the following lemma [4, Lemma 2.2].

LEMMA 5.1. - For each 6 e SM and t G R, there is a Lagrangian subspace Rt(0) C S(0\
which depends measurably on t and 0, and satisfies:

(1) |det(d^|j^(0))| =ex(d^t);
(2) ifE is a Lagrangian subspace of S(0), then

\det(de^t\E)\ ̂  a(E,J^))ex(d^).

We now show,

LEMMA 5.2. - Given a positive real number q there exist f3 > 0, an integer m ^ 1
and measurable functions Ti: SM x R—> {0,q/m,2q/m,.. .,q], i = 1,2, such that, after
abbreviating Ti(0, t). to Ti for i = 1,2, and setting

0i=0-^), 0^=^(0), and V,=V(0,) for i= 1,2,

we have for all 0 and t:

(1) a(de^(V,\R^0))>^ (2) a^^+^Vi),^) > f3.

Proof. - It suffices to prove that we can find /3i, ̂ 2 > 0, integers mi, m^ ^ 1 and measurable
functions T-, : SM x R -^ {0, q/rrii, 2q/mi,..., q] such that properties (1) and (2) of Lemma 5.2
hold with f3 changed to /?i in (1) and to /?2 in (2). Then we can easily obtain Lemma 5.2 with
m = m\mz and f3 = min(/3i, f3'z).

Let /^, n and p be given by Lemma 4.3, and let us set

A :=/^, mi :=n, Ti(0,t):=p{0,R^(0)).

Since R^~(0) is measurable and p is upper semicontinuous, the function r\ is measurable. Lemma
4.3 applied to E = R^(0) implies that

a((de^r,)V^R^(0))>f3^

so property (1) is proved.
Now let 7, m and r be given by Lemma 4.1, and let us set

A :=7. ^2 ̂ m, T2((9,t) :=r((9,^^(yi),t).

Since T2 is a composition of measurable functions, it is measurable. Lemma 4.1 applied to
E = de^ (^n (Vi) implies that

a(de^r^(V^V2) > A,
so property (2) is proved. D

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



130 G.P. PATERNAIN

C p^po^w 5'3' \c?w" a positive real number q'there exi5t an ̂ ^r n0 1 a constant0 > U and two measurable functions ^rwam

Ti,T2:SMxTS.^{0,q/m,2q/m,...,q],

such that after abbreviating T,{Q, t) to nfor i = 1,2 we have

e/t+Tl+^-T•e)A(<^,(^+Tl +T2) >Ce^exWJ,

/or a// 6' 6 5M and all t <= R.

Pr^^^2^^^^^^^^^ by Lemma 5-2- set s = ̂ ^- BY Lemma 5.1 and

(9) |detWt|5)| ̂  a(S,R^(e))ex(de4>t) > /?ex(d^,).

Take a > 0 such that

(10) \^W^)\^a,

f^ry (C, L) e ̂ (^) and . e [0,,]. Set . = ̂ (,) and 5 = .̂ .̂ Then Eqs. (9) and (10)

|det(d^+ |̂v,)| = |det(d,^|^)|. |det(d^^)(. det(d,,̂ ,|̂ ,)|
(11) ^ a^e^dfxpt).

resS^ely52 = ?•^+T•+T2)yl• ̂  P1-0?6^ (2) of Lemma 5.2 and the definition of a we have

a(S2, Vz) ̂  /3, | det(^7r|s,)| ̂  /3,

which together with inequality (11) implies that

A{4>-^6\t+r, +rz) = \det(de^o^+r,)\v,)\

= |det(c^7r|s,)( • \det(de^t+r,+r,\v,)\
(12) ^ ̂ Idet^.^+^+^l^ | ^ /?2fl2ex(d,^).
Now observe that,

'̂''î 7'2 t+T2

ft+^+r^-r,(0)) = f f{^(0))ds= [ f{^(0))ds

0 -T,

f- 0 t+r,

= j f(^(0))ds+ j f(^(0))ds+ f f(^(0))ds.

Since / is bounded from below and 0<^r,,r^q, there exists a constant k such that

0 t+T2

j f(^(0))ds+ f f(^(0))ds^k.
t

4' SERIE - TOME 33 - 2000 - N° 1



TOPOLOGICAL PRESSURE FOR GEODESIC FLOWS 131

Hence

(13) ft+r^r, ̂ -r,(0))^ft(0)+k.

The proposition follows from (12) and (13) by taking C := ek(32a2. D

Given 6 > 0 take q so that 6 - 2q > 0. For this 9, let m, C, r\ and r^ be given by
Proposition 5.3.

Given a closed interval [a, &] C 1R define

F : S M x [a,b]^SMx [a,&+2g]

by

F(0, t) = {^e,t)(0\ t + n (0, t) + T2(0,0).
Set d^ = d0dt. The next lemma is taken from [4]. We include its proof for the sake of
completeness.

LEMMA 5.4. - Let(?: 5'M x [a, b + 2q] —^ R4" be an integrable function -with respect to the
measure ^. Then

I (^oF)d^^(m+l)2 / ^dfi.
SM x [a,b] SM X [a,6+2g]

Proof. - Given integers 0 ̂  i ̂  m, 0 ̂  j ̂  m, define

A(z,j) = {(6>,t) C 5M x [a,&]: n((9,t) = zg/m, Tz(6,t) =jq/m}.

On each A(z,j), F is injective and /^(F(5')) = ^(5) for every Borel set S C A(z,j). Hence for
any integrable function <?: SM x [a, & + 2^] —> R we have

/^ ^d/^= ( (^oF)d^.
F(A(zj)) A(i,j)

Suppose now that ̂  ̂  0. Then

/^ (<PoF)d^= ( (<PoF)d^i=^ I (^oF)d^
5Mx[a,b] J Adj) ^ A(^)

=^ f <P^^ f <P^

i j F(A(i,j)) i'3 SMx[a,b-^-2q]

=(m+l) 2 / ^d/z. D
SMx[a,b+2q]

PROPOSITION 5.5. - There exists a constant D > 0 such that for all T,

T-\-2q T

( ( eft^A(0, t)d0dt^D ( ( e^^de^) d0 dt.
T+2q-6 SM T-^-2q-6 SM
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Proof. - Let ̂ : SM x [T + 2q - 6, T + 2q] -^ R be given by

^O^e^^.^O.

By Proposition 5.3 we have,

<? o F(0,t) = e^+^^-^A^-r^t + TI + Tz) ^ Ge^exCd^).

Lemma 5.4 and the last inequality give:

T+2g T

( ( eft(e)A(0, t) d0 dt ̂  —c—— t I e^exW,) d0 dt.
J j (m+1)2 J J

T+2q-6 SM T+2q-6 SM

Now take D := C/(m + I)2. D
Let us prove Theorem A. Note that if /: [0, oo) —> (0, oo) is any continuous function, then

T

Im înf ̂  log f(T) ̂  Im n̂f ̂  log / f(t) dt.
T-6

By Theorem 2.1 we have

P(f) ̂  lim inf1 log / e^^Wr) d0
T-^oo 1 J

SM

T

^ lim inf 1 log / / e^^de^t) d0 dt.
T-^oo T J J

T+2q-8 SM

Combining this with Proposition 5.5 yields

T

P(f) ̂  lim inf 1 log / / eft(e)A(0, t) d0 dt,
T-^oo T J J

T-6 SM

and from Proposition 3.2 we obtain

PO'Kliminf^log { FT,s(x,y)dxdy,
T-^oo 1 J

MxM

which proves the first inequality in Theorem A.
Now observe that by the definition of the expansion we have

A(0,t)= |det^(7r o 0t)|y(0)| < \detde(f)t\v(6)\ ̂  ex(^^),

T T

(14) ( FT,6(x,y)dxdy= f f eftwA(0,t)d0dt^ [ ( eft(e^x(de(|)t)d0dt,
MxM 0 SM 0 SM
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and
T T

(15) ( FT,6(x,y)dxdy= ( ( eft(e)A(e,t)d0dt^ ( { e^^de^dOdt.
MxM T-6SM T-6SM

LEMMA 5.6. - Given 6 > 0, there exist constants ci,C2 > 0 such that for all T e M, t G
[T - ̂ , T] ̂  6^SMwe have

cic^^exCd^r) ̂  e^exQ^t) <£ ̂ e^^ex^r)

Proof. - Observe that for any t and 5 in M,

ex(d^) ̂  ex(^^^(,z(>_s)ex(d0^t+5).

Given ^ C [T — S, T] write T = t + 5 where 5 C [0, ̂ ]. Since M is compact, there exists a constant
C > 0 such that for all 0 e SM and all s e [-6,0] we have

ex(d ,̂) ̂  G,

hence,

ex(de(f)t) ̂  Cex(de(/)T)'
Also, since / is bounded there exists a constant D such that

/tW^/T(0)+^

therefore

e^exWf) ̂  CeDefT(e)ex(de(t)T)-
Take C2 := C'e1^. Similarly one finds a positive constant ci. D

Using Lemma 5.6 and (15) we have

[ FT,6(x, y) dx dy ^ c^S { e/T(0)ex(d^T) d(9,
MxM 5M

and thus

1 /* 1 /*
lim sup — log / FT,S(X, y) dx dy ^ lim sup — log / eJT(6')ex(d6»^T) d0.
T-^oo T J ' T^oo T J

MxM SM

If g is C00, the equality in Theorem 2.1 ensures that

lim sup - log / FT,6(x, y) dx dy ^ P(/),
r^oo 1 J

MxM

which combined with the inequality in Theorem A yields

lim -log / FT,s(x,y)dxdy ==?(/).
T-^oo 1 J

MxM
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To obtain the second equality in Theorem A, observe that if P(f) ̂  0, then

T

lim^sup^logy f e^W^Cdt^ sup-log / e^ex^^

si
which combined with (14) gives

1 r
^^T1^ J ^(^y^^dy^P^f),

MxM

as desired. D

A useful consequence of the previous arguments is summarized in the next proposition
PROPOSITION 5.7. -For any 6 >0 we have

Imu l̂og y FT,e(x,y)dxdy=lminfllog/'ef^x(d^T)d0
MXM 5M

and

"^^S / F^^y)d•Edy=limsupllog/e^)ex?^)^
si

Proof. - It follows right away from Proposition 5.5, inequality (15) and Lemma 5.6. D

6. Proof of Theorem B

cotlTo^M w^ Riemannian manifold without conjugate points- Let M be the «sal
1 " x and^T "T' projectlon p' Given '-and y in M'let" and ̂  be P01"15 i" ̂  with
t̂h^^eZn r̂r;̂ ^^^^^^^^

{7a:,y: ̂ .y) < T},

AT(X, y) := {a e TI-I (M): rf(.r, ay) ̂  r}.
Similarly for any 6 > 0 we have a one to one correspondence between the sets

bx.y:T-6<^)^T},

^T.s(x,y) := {a € 7ri(M): T-6< d(x, ay) < T}.

G^en a function / :SM -. R and̂a point . e M we can define a new function /, • M -> R as
follows. Given y F M let ?? <= 7^ A/T i>a ̂  • • " '
(.,.) connects I lf^ set umque umt vector such that the geodesic defined ̂

fx(y) := fd(x,y) (x, dxp(v)).

Clearly

(16)
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LEMMA 6.1. - For all 6 > 0 we have,

lim sup — log / FT,<$(^ y) da; dy ^ P(/).
T-^oo ^ J

MxM

Proof. - Choose a compact fundamental domain D and take x,y ^ D with p(.r) == x and
j)(^) == ^. Take a constant c > 0 such that for all a G 7Ti(M) different from the identity and
all y C D we have d(^, a^/) > c. Fix <5 > 0 such that c — 2<5 > 0. We shall prove the statement of
the lemma for this fixed S. By Proposition 5.7 this implies that the lemma holds for all 6 > 0.
Let E C SM be the set given by those points of the form (x, Va\ where Va € T^M is the unique
unit vector such that the geodesic ^{x,va) defined by (x.Va) connects x to a e AT,6(x,y). Take
a ^=- f3 and set

A:=7(^)(r), B:=7(^)(r).
By the triangle inequality we have

c < d(ay, f3y)^T- d(x, ay) + d(A, B) + T - d(x, f3y) < 2S + d(A, B).

Hence the set E = dp(E) is (T, ̂ -separated for e := ^min{c — 2S,r(M)}, where r(M) is
the injective radius of M. Since / is continuous, there exists a constant k such that fx(ay) ̂
/r(^. dxp(Va)) + A; and hence

FT^y)=FT(x,y)-FT-6^y)^ek ^ e^^ ^ e^T^J).
(a;,v)e^

If we integrate with respect to x and y we obtain

( FT,6(x, y) dx dy ̂  Vol(M x M)ekr(T, e, /),
MxM

which yields

lim sup - log / FT,6(x, y) dx dy ^ r(e, f) ̂  P(/). D
T^oo ^ J

MxM

LEMMA 6.2. -Let D C M be a compact fundamental domain with diameter c. Given any
x\, y\ ,x^,y'z € D and T > 0 we have

Ar(^i^i) <= Ar+4c(^2^2).

Similarly for any 6 > 0.

Ar,<5(^l^l) c AT+4c,<$+4c(«^2^2).

Pwo/ - The triangle inequality implies right away that

AT(x,y)CAT-^-c(x,x),
AT(X,X) C AT-}-c(x,y),

Ar,6(x,y) C Ar+c^+cC^),

l̂r,<5(^,^) c Ar+c,<?+c(^^).
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Apply these inclusions twice to obtain the lemma. D

Suppose now that /: SM -. R is the restriction to SM of a closed smooth 1-form ̂  • TM -.
^ Since Mis simply connected and c. is closed there exists a smooth function g : M -. R such
that p uj = dg. In this case fs is simply given by y ^ ̂ n

fx(y)=g(y)-g(x).

nJ^̂  6'3' - There exists a constant c > ° such thatfor any xl - y^^ ^MandT>Q

FT(X^) ̂  CFr+4c(.T2^2).

Proof. -Take.points x^x^ ^ D such that they project under p to x^x, y. Using
(16), since g is bounded on A there exists a constant Ci >0 such that

FT(x^)=e-gw ^ e^^^Ci V e^0.
Q'CAT(.ri^i) Q€^T(^I,^I)

Now observe that for any a e 7Ti(M),

P(^l) - ̂ (Q-^2) = ̂ (^l) - ̂ (^2).

Since g is bounded on .D there exists a constant G^ such that g(ay,) - g(ay,) ̂  C^ hence

FT^y^^C^e02 ^ e^2)
0:€^lT(5l,^l)

By Lemma 6.2

^ e^("^) ̂  y^ gp(a^)

aeArGri^i) ^€^+40(^2^2)
which yields

FT(X^) ̂  C^e^FT^x^y^

Once again, since g is bounded on A there exists a constant 00 such that

C^e^^C,

therefore

^r(^i,2/i) ̂  GFT+4cfe,^2),
as desired. D

Suppose now that / = -s for s e M. In this case

fx(y)=-sd(x,y).

^MMA 6'4' ~ There exists a constant c > ° such thatfor ̂  xl - ̂  y^MandT>Q

FT,6{x^y^) ̂  GFr+4c,<$+4cfe, ̂ 2).
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Proof. -Take points x\,y\,x^y^ G D such that they project under? to x\, ̂ 1,^2,^2. By the
triangle inequality,

d(xi, ay\) ̂  d(x^ ay^) + 2c.

Suppose that 5^0; hence

FT,<$(^I^I) = ^ g-^i,c^i) ̂  ^-2cs ^ ^-.d(^,a^

a€Ar,<!)(.ri,i/i) ae-4T,6(^i^i)

By Lemma 6.2

^ ^-sd^^ ̂  ^ ^-^(..a^) ̂  FT+4c,,+4cfe, 2/2),

Q:e^T,6(^l^l) 0:eAT+4c,6+4c(^2^2)

thus

FT,6(x^yi) ̂  e-2CSFT+4c^+4c(^2^2),

as desired. If s ^ 0 we proceed in a similar manner. D

Theorem B is now a consequence of the first inequality in Theorem A and Lemmas 6.1, 6.3
and 6.4.

7. Proof of Corollary 3

Take s e C. Let us apply Proposition 3.2 to the case / = —s. We obtain,

/ \ T

[ ( ^ e-̂ 7.,,) ̂ xdy= f [ e~stA(e, t) d0 dt.

MxM \{^y--^y^T] ) { J^

Hence r]g(s) is the Laplace transform of the continuous function

t^ ( A((9,t)d(9,
SM

and therefore it defines a holomorphic function on the half plane Re(^) > A, where A is the
infimum of Re(s) where s runs over those complex numbers for which the integral

CO

/ / e'^^d^
0 SM

converges. Let us prove that A = hiop. Suppose that s G M. Observe that P(f = —s) = h^op — s.
If hfop — s > 0, Theorem A implies that

/ ( ^- f v A ^ \hx,-u'-^x.y

\ ^ e-8^^ \dxdy,

MxM M7^:^,^T} )
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has a positive exponential growth rate, and therefore fatop ^ A. If h^op — s < 0, Theorem A implies
that

/ ( E
f^M \hx,y'- ^x,y

/ ^ e-^'y^dxdy,
MxM \{^y:^y^T] )

is bounded above and since it is increasing the limit when T —)• oo exists and is finite. Hence
htop ^ A- Similarly, using Theorem B one shows the claim for rfg(s, x, y).

If (M, g) is a manifold all of whose geodesies are closed with common period T, then

..^fsM6'8^0^0^
%w ~ ————1 - e - 8 - •

If (M71, g) is a flat manifold,

^^^

where c is a constant. If (M, ̂ ) is a surface with constant curvature — 1, then

c
^^52——T5

where c is a constant.
Note that in these three cases r]g admits a meromorphic extension to the complex plane.
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