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In this paper, we give necessary and sufficient conditions on the compatibility of a kth-
order homogeneous linear elliptic differential operator A and differential constraint C for 
solutions to

Au = f subject to C f = 0 in Rn

to satisfy the estimates

‖Dk− ju‖
L

n
n− j (Rn)

� c‖ f ‖L1(Rn)

for j ∈ {1, . . . , min{k, n − 1}} and

‖Dk−nu‖L∞(Rn) � c‖ f ‖L1(Rn)

when k ≥ n.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cet article, nous donnons des conditions nécessaires et suffisantes sur la compatibilité 
d’un opérateur différentiel elliptique linéaire homogène A d’ordre k et d’une contrainte 
différentielle C pour que les solutions de

Au = f sujet à C f = 0 dans Rn

vérifient les inégalités

‖Dk− ju‖
L

n
n− j (Rn)

� c‖ f ‖L1(Rn)

pour j ∈ {1, . . . , min{k, n − 1}} et
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‖Dk−nu‖L∞(Rn) � c‖ f ‖L1(Rn)

si k ≥ n.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let f ∈ L1(Rn, Rn) and consider the problem of finding estimates for u :Rn →Rn that satisfy:

−�u = f in Rn. (1)

While it is well known that, without further assumptions, no inequalities of the form

‖∇u‖
L

n
n−1 (Rn)

� c‖ f ‖L1(Rn) and (2)

‖u‖
L

n
n−2 (Rn)

� c‖ f ‖L1(Rn) (3)

are possible,1 in the pioneering papers [1,2] J. Bourgain and H. Brezis have shown that under the additional constraint 
div f = 0, (2) and (3) are indeed valid. Precisely, their Theorem 2 in [2] establishes the validity of (2) and (3) in three or 
more dimensions, while their Theorem 3 shows that in two dimensions one has (2) and

‖u‖L∞(Rn) � c‖ f ‖L1(Rn). (4)

A simple proof of these estimates was subsequently given by J. Van Schaftingen in [10], who went on in [12] to show that 
the estimates (2) and (3) actually hold under very general assumptions on f that we discuss in more detail in the sequel.

The purpose of this paper is to address the question of necessary and sufficient conditions to obtain estimates in this 
spirit for solutions to the elliptic system

Au = f subject to C f = 0 in Rn (5)

for A : C∞
c (Rn, V ) → C∞

c (Rn, E) a kth-order homogeneous linear elliptic differential operator, C : C∞
c (Rn, E) → C∞

c (Rn, F )

an lth order homogeneous linear differential operator, and V , E , F finite dimensional inner product spaces. In particular, our 
work builds upon the foundational results of J. Van Schaftingen [12] to give a complete characterization of the conditions 
on A and C such that the estimates

‖Dk− ju‖
L

n
n− j (Rn)

� c‖ f ‖L1(Rn) (6)

hold for j ∈ {1, . . . , min{k, n − 1}} or

‖Dk−nu‖L∞(Rn) � c‖ f ‖L1(Rn) (7)

if k ≥ n.
To this end, let us recall what can already be said in light of the literature [1,2,4,8,12]. We first consider the case of the 

estimates (6). Moving beyond the preceding inequalities of J. Bourgain and H. Brezis [1,2], J. Van Schaftingen’s work (see 
Proposition 8.7 in [12]) shows that, for

A= (−�)k/2,

one has (6) if and only if C is cocanceling:⋂
ξ∈Rn\{0}

kerC(ξ) = {0}. (8)

This notion of cocanceling utilizes the convention that the homogeneous linear differential operator C , which has a 
representation as

C f =
∑
|α|=l

Cα∂α f , for f : Rn → E,

1 Take f to be a Dirac delta in any of its components.
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for some l ∈ N0 and coefficients Cα ∈ Lin(E, F ), can be viewed via its image under the Fourier transform, which is a 
matrix-valued polynomial defined by

C(ξ) =
∑
|α|=l

Cαξα ∈ Lin(E, F ), for ξ ∈Rn.

The essence of the condition (8) is found in the proof of Proposition 2.1 in [12], which shows⋂
ξ∈Rn

kerC(ξ) = {e ∈ E : C(δ0e) = 0} . (9)

In particular, the heuristic principle concerning the failure of the inequalities (2), (3), and (4) precisely when f contains a 
Dirac mass in one of its components is captured by the necessity and sufficiency of (8) via the equivalence (9).

While cocancellation gives the complete picture in characterizing the estimates (6) for A = (−�)k/2, it ceases to be 
necessary when one has assumed an additional structure on A. In particular, with no differential constraint C , J. Van 
Schaftingen has shown that the inequality (6) holds whenever A is canceling:⋂

ξ∈Rn\{0}
imA(ξ) = {0}. (10)

Here again, we view A via its image under the Fourier transform, while this set also has an equivalent representation in 
terms of fundamental solutions to operator A, which follows from the proof of Lemma 2.5 in [8]:⋂

ξ∈Rn\{0}
imA(ξ) = {

e ∈ E : Au = δ0e for some u ∈ L1
loc(R

n, V )
}
. (11)

The connection of the conditions (9) and (11) here emerges, that for a canceling operator one can find a cocanceling 
annihilator and therefore apply the preceding analysis.

However, while C f = 0 for some cocanceling operator C or A is canceling is sufficient to imply the validity of (6) for 
j ∈ {1, . . . , min{k, n − 1}}, it is not necessary. Indeed, the first result of this paper is

Theorem 1.1. Let A, C be homogeneous linear differential operators on Rn from V to E and from E to F , respectively. Suppose that A
is elliptic and has order k ∈N . Consider the system

Au = f subject to C f = 0 in Rn. (12)

Let j = 1, . . . , min{k, n − 1}. Then the estimate for u ∈ C∞
c (Rn, V ), f ∈ C∞

c (Rn, E) satisfying (12)

‖Dk− ju‖
L

n
n− j (Rn)

� c‖ f ‖L1(Rn) (13)

holds if and only if⋂
ξ∈Rn\{0}

imA(ξ) ∩
⋂

ξ∈Rn\{0}
kerC(ξ) = {0}. (CC)

This result is in the spirit of Theorem 7.1 in [12], where the author introduces a notion of partially canceling operators. 
The idea there, which we build upon here, is that, while neither (8) nor (10) is empty, the two are disjoint. While in [12]
J. Van Schaftingen treats the case where C = T ∈ Lin(E, F ) is a linear map from E to F , our result handles the case where 
C is an homogeneous differential operator. Our method is ultimately to reduce the problem to his work, which is to say 
that we must construct a homogeneous cocanceling operator from the pair of differential operators (A, C). One is tempted 
to try and apply Van Schaftingen’s result to the operator L := (L(D), C), which is indeed cocanceling by (CC), however it is 
not homogeneous. Therefore, we give a construction for how such an operator, which is homogeneous in each entry, can be 
lifted to a homogeneous operator where one can apply the results of [12], which is our Lemma 2.2 below.

Theorem 1.1, for example, shows that with V =R3, E =R4, F =R and

A := (div, curl),

C f := ∂1 f1 + ∂2 f2 + ∂3 f3,

solutions to (5) admit the estimate (13) with j = k = 1 for any n ≥ 2. Notice that C is not cocanceling because its kernel con-
tains δ0e4 (which means that (8) contains the vector e4), while A is not canceling, as its image contains δ0e1 (which means 
that (10) contains the vector e1). Here, {e j}4

j=1 is the standard orthonormal basis of R4. The example of non-cocanceling C
may seem artificial, but its structure is actually generic, see [5, Lem. 3.10].
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Returning to the question of the validity of the embedding (7) for k ≥ n, P. Bousquet and J. Van Schaftingen [4] have 
shown that such an inequality holds whenever A is canceling, while the first author has proved in [8] that this holds if and 
only if A is weakly canceling:∫

Sn−1

A(ξ)−1e ⊗k−n ξdH n−1(ξ) = 0 for all e ∈
⋂

ξ∈Rn\{0}
imA(ξ), (14)

where v ⊗ j ξ := v ⊗ ξ ⊗ . . . ⊗ ξ , where the outer product is taken j times.
The question of the validity of such an inequality for C f = 0, C cocanceling, has not thus far been explicitly addressed, 

save the new various compatibility conditions that we introduce. In this regime, we show Theorem 1.2.

Theorem 1.2. Let A, C be homogeneous linear differential operators on Rn from V to E and from E to F , respectively. Suppose that 
A is elliptic and has order k ≥ n. Then the estimate for u ∈ C∞

c (Rn, V ), f ∈ C∞
c (Rn, E) satisfying (12)

‖Dk−nu‖L∞(Rn) � c‖ f ‖L1(Rn) (15)

holds if and only if∫
Sn−1

A(ξ)−1e ⊗k−n ξdH n−1(ξ) = 0 for e ∈
⋂

ξ∈Rn\{0}
imA(ξ) ∩ kerC(ξ). (CWC)

Theorem 1.2 implies that for even-dimension solutions to (5) with

A= (−�)n/2

C = div

are bounded, which is a higher-dimensional analogue of the estimate (4) to the equation (1) due to J. Bourgain and H. 
Brezis when n = 2 (naturally the order of the equation must be modified to achieve an L∞ embedding). More generally, this 
applies for any cocanceling operator C , while again one can construct C that are not cocanceling and A that are not weakly 
canceling for which our result holds, e.g., in R4 with V =R2, E =R3, F =R and

A := ((∂4
1 + ∂4

2 )u1, ∂
4
3 u2, ∂

4
4 u2)

C f := ∂1 f1 + ∂2 f2.

For this example, one computes explicitly that e3 ∈ kerC(ξ) for all ξ 
= 0, so that C is not cocanceling. On the other hand, 
e1 ∈ imA(ξ) for all ξ 
= 0 and that MAe1 
= 0, so that A is not weakly canceling (see (17) below and (14)).

The emergence of the integral over the sphere in (CWC) and (14) stems from the convolution formula proved in [8, 
Sec. 3] building on [6, Thm. 7.1.20], namely,

Dk−nu = K ∗Au for u ∈ C∞
c (Rn, V ), where K = H0 + log | · |MA (16)

for

MAe :=
∫

Sn−1

A†(ξ)e ⊗k−n ξdH n−1(ξ) for e ∈ E, (17)

where A†(ξ) := (A∗(ξ)A(ξ))−1A∗(ξ). Here H0 ∈ C∞(Rn \ {0}, Lin(E, V )) is zero-homogeneous and we consider a renor-
malization of the Fourier transform such that the constants are correct.

2. Proofs

We begin by recalling, for the convenience of the reader, that the kernel and image of linear maps are defined in the 
standard way. In particular,

kerC(ξ) := {e ∈ E : C(ξ)e = 0} and imA(ξ) := {A(ξ)v : v ∈ V },
for ξ ∈Rn .

One of the main technical points of this paper is that operators that are homogeneous in each entry can be lifted to 
a homogeneous operator. Therefore, we recall the definition of the former, which is quite classical, having been utilized 
implicitly by K.T. Smith in [9].
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Definition 2.1. We will only work with vectorial partial differential operators on Rn that have real constant coefficients and 
are homogeneous in each entry. To make this precise, an operator C on Rn from E to F can be written as

(C(ξ)e) j = 〈C j(ξ), e〉, e ∈ E, ξ ∈Rn, j = 1, . . . ,dim F ,

where C j are E-valued homogeneous polynomials. A homogeneous operator C will correspond to all C j being homogeneous 
of the same degree, say l, in which case we can write

C(ξ) =
∑
|β|=l

ξβCβ,

which is a Lin(E, F )-valued homogeneous polynomial (here Cβ ∈ Lin(E, F )).

The following algebraic reduction lemma will play an important role in establishing sufficiency of either (CC) or (CWC)
for the claimed estimates.

Lemma 2.2. Let C be a linear differential operator on Rn from E to F , as given by Definition 2.1. Then there exists a homogeneous 
differential operator C̃ on Rn from E to another vector space F̃ such that

ker C̃(ξ) = kerC(ξ) for all ξ ∈Rn

and

{ f ∈ C∞
c (Rn, E) : C̃ f = 0} = { f ∈ C∞

c (Rn, E) : C f = 0}.

Proof. We write (C(ξ)e) j = 〈C j(ξ), e〉 for the rows of C , j = 1, . . . , dim F . These define (scalar) differential operators on Rn

from E to R. Let now d j be the degree of C j and consider an integer l ≥ max{d j}dim F
j=1 . Define the differential operators

C̃ j(ξ) := C j(ξ) ⊗l−d j ξ, so that C̃ j f = Dl−d j C j f for f ∈ C∞
c (Rn, E).

Defining C̃ to be the collection of all the equations given by C̃ j , it is immediate to see that the inclusions “⊃” hold.
Conversely, if f ∈ C∞

c (Rn, E) is such that C̃ f = 0, we have from the above formula that Dl−d j C j f = 0 for all j. Since 
C j f ∈ C∞

c (Rn), we conclude that C f = 0. The other conclusion follows in a similar way, using the fact that ⊗l−d j ξ 
= 0
whenever ξ 
= 0. �
Remark 1. A first relevant consequence of Lemma 2.2 is that the estimate for cocanceling operators [12, Thm. 1.4] holds for 
a larger class of (inhomogeneous) operators, as given by Definition 2.1. In this case, cocancellation would be defined the 
same as in [12, Def. 1.2].

We can now proceed with the proof of Theorem 1.1.

Proof of necessity of (CC). Suppose that condition (CC) fails, so there exists 0 
= e ∈ imA(ξ) ∩ kerC(ξ) for all ξ 
= 0. Then 
C(δ0e) = 0 and there exists u ∈ L1

loc(R
n, V ) such that Au = δ0e (see the proofs of [12, Prop. 2.1] and [8, Lem. 2.5]). In 

particular, u is admissible for the estimate (13). We recall from [4, Lem. 2.1] that, for v ∈ C∞
c (Rn, V ), its derivatives can 

be retrieved from Av by convolution. In particular, if j � min{k, n − 1}, we have that Dk− j v = H j−n ∗ Av , where H j−n ∈
C∞(Rn \ {0}) is a ( j − n)-homogeneous kernel. It follows that Dk−nu = H j−ne, which contradicts the estimate if e 
= 0. �
Proof of sufficiency of (CC). From [12, Sec. 4.2], we know that there exists a homogeneous linear differential operator L(D)

such that ker L(ξ) = imA(ξ) for all ξ 
= 0. In particular, condition (CC) implies that the operator L =: (L(D), C) is cocancel-
ing, so that, by Remark 1, we have the estimate

‖Au‖
Ẇ

−1, n
n−1 (Rn)

= ‖ f ‖Ẇ1,n(Rn)∗ � c‖ f ‖L1(Rn) (18)

for u ∈ C∞
c (Rn, V ), f ∈ C∞

c (Rn, E) satisfying (12). We then write in Fourier space

̂Dk−1u(ξ) = |ξ |A†(ξ)
Âu(ξ)

|ξ | ⊗k−1 ξ,

so that the Hörmander–Mihlin multiplier theorem implies that

‖Dk−1u‖
L

n
n−1 (Rn)

� c

∥∥∥∥∥F−1

(
Âu(ξ)

|ξ |

)∥∥∥∥∥
L

n
n−1 (Rn)

= c‖Au‖
Ẇ

−1, n
n−1 (Rn)

. (19)
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Collecting estimates (18) and (19), we obtain the desired inequality for j = 1. The inequalities for j = 2, . . . , min{k, n − 1}
follow by iteration of the Sobolev inequality. �

It remains to prove Theorem 1.2. Recall the definition (17).

Proof of necessity of (CWC). Suppose that condition (CWC) fails, so there exists 0 
= e ∈ imA(ξ) ∩ kerC(ξ) for all ξ 
= 0 such 
that MAe 
= 0. Then C(δ0e) = 0 and there exists u ∈ L1

loc(R
n, V ) such that Au = δ0e (see the proofs of [12, Prop. 2.1] and [8, 

Lem. 2.5]). In particular, u is admissible for the estimate (13). By (16),

‖Dk−nu‖L∞ ≥ |‖H0e‖L∞ − ‖ log | · |MAe‖L∞|,
which is clearly infinite (near 0) since MAe 
= 0 and H0 is bounded. �

To prove sufficiency of (CWC), we employ a streamlined variant of [8, Lem. 3.1], which relies on [4, Lem. 2.2] and [12, 
Lem. 2.5] (see also [2,3,7,11,12]).

Lemma 2.3. Let L be a linear differential operator on Rn from E to F as given in Definition 2.1 and M ∈ Lin(E, W ). Suppose that 
M

(⋂
ξ 
=0 kerL(ξ)

)
= {0}. Then, for all w ∈ W with |w| = 1, we have∣∣∣∣∣∣

∫
Rn

〈log |x|M∗w, f (x)〉dx

∣∣∣∣∣∣ � c‖ f ‖L1(Rn) for f ∈ C∞
c (Rn, E) such that L f = 0.

Proof. By Lemma 2.2, we can assume that L is homogeneous, say of order l, which we write as L = ∑
|β|=l Lβ∂β , 

where Lβ ∈ Lin(E, F ). Since (ξβ)|β|=l is a basis for homogeneous polynomials of degree l, we have that e ∈ kerL(ξ)

for all ξ 
= 0 is equivalent, with e lying in the kernel of the map T : w �→ (Lβe)|β|=l . By assumption, we have that 
im M∗ ∩ ⋂

ξ∈Sn−1 kerL(ξ) = {0}; hence the restriction of T to im M∗ is injective. Equivalently, this restriction is left-
invertible, so there exist linear maps Kα ∈ Lin(F , im M∗) such that∑

|β|=l

KβLβ �im M∗= Idim M∗ .

Define now the matrix-valued field

P (x) :=
∑
|β|=l

xβ

β! K ∗
β,

which is essentially a right-inverse (integral) of L∗ , as

L∗ P =
∑
|β|=l

L∗
β∂β P =

∑
|β|=l

L∗
β K ∗

β = Idim M∗ . (20)

Writing ϕ := log |x|M∗w and integrating by parts using L f = 0, we have that∣∣∣∣∣∣
∫
Rn

〈ϕ, f 〉dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Rn

〈[L∗ P ]ϕ, f 〉dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∫
Rn

〈[L∗ P ]ϕ −L∗[Pϕ], f 〉dx

∣∣∣∣∣∣ .
We then note that:

[L∗ P ]ϕ −L∗[Pϕ] = [L∗ P ]ϕ − [L∗ P ]ϕ −
l∑

j=1

B j(D jϕ, Dl− j P ),

where B j are bilinear pairings on finite-dimensional spaces that depend on L only. Note that |D jϕ| � c| · |− j and |Dl− j P | �
c| · | j for j = 1, . . . l (here it is crucial that j ≥ 1), so the conclusion follows. �
Proof of sufficiency of (CWC). By (16), the triangle inequality, and Young’s convolution inequality, we have that

‖Dk−nu‖L∞ � c (‖H0 ∗ f ‖L∞ + ‖ log | · | ∗ [MA f ]‖L∞)

� c
(‖H0‖L∞‖ f ‖L1 + ‖ log | · | ∗ [MA f ]‖L∞

)
,
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so it suffices to prove that

‖ log | · | ∗ [MA f ]‖L∞ � c‖ f ‖L1 ,

for u ∈ C∞
c (Rn, V ). Equivalently, it remains to show that, for all v ∈ V , η ∈Rn of unit length, we have that∣∣∣∣∣∣

∫
Rn

〈log |y|v ⊗k−n η, MA f (x − y)〉dy

∣∣∣∣∣∣ � c‖ f ‖L1 for L n-a.e. x ∈ Rn,

which follows from Lemma 2.3 with M = MA , L = (C, L(D)), W = V �k−n Rn , and w = v ⊗k−n η (note that the estimate of 
Lemma 2.3 is translation invariant). Here we wrote, as in the proof of sufficiency of (CC) for Theorem 1.1, L(D) for an exact 
annihilator of A, by which we mean ker L(ξ) = imA(ξ) for all ξ 
= 0 (see [12, Sec. 4.2]). With this notation, condition (CWC)
is equivalent to the assumption on M and L in Lemma 2.3. �
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