Combinatorics/Number theory

On two congruence conjectures

Sur deux conjectures de congruence

Guo-Shuai Maoa, Zhi-Jian Caob

a Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing 210044, People’s Republic of China
b Department of Mathematics, Nanjing University, Nanjing 210093, People’s Republic of China

\textbf{A R T I C L E I N F O}

Article history:
Received 9 October 2019
Accepted 5 November 2019
Available online 26 November 2019
Presented by the Editorial Board

\textbf{A B S T R A C T}

In this paper, we mainly prove a congruence conjecture of M. Apagodu [3] and a supercongruence conjecture of Z.-W. Sun [25].

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\textbf{R É S U M É}

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In the past few years, a lot of researchers worked on congruences for sums of binomial coefficients (see, for instance, [7,12–15,20,26,27]). In 2011, Sun and Tauraso [27] proved that, for any prime $p > 3$,

$$
\sum_{k=0}^{p-1} \binom{2k}{k} \equiv p^2 \binom{p}{3},
$$

(1.1)

where (\cdot) denotes the Legendre symbol.

Pan and Sun [17] proved that, for any odd prime p,

$$
\sum_{n=0}^{p-1} (3n+1) \binom{2n}{n} \equiv_p \binom{p}{3}.
$$

Then Apagodu [3] gave the following conjecture.
Conjecture 1.1. For any odd prime \(p \), we have:
\[
\sum_{n=0}^{p-1} (5n + 1) \binom{4n}{2n} \equiv_p -\left(\frac{p}{3} \right).
\]

In this paper, we first prove the above conjecture and give another congruence.

Theorem 1.1. Conjecture 1.1 is true. And we prove that, for each odd prime \(p \),
\[
\sum_{n=0}^{p-1} (3n + 1) \binom{4n}{2n} \equiv_p -\frac{1}{5} \left(\frac{p}{5} \right).
\]

Recall that the Euler numbers and the Bernoulli numbers are given by
\[
E_0 = 1, \quad E_n = -\sum_{k=1}^{\lfloor n/2 \rfloor} \binom{n}{2k} E_{n-2k} \quad \text{for} \quad n \in \mathbb{Z}^+ = \{1, 2, \ldots\},
\]
\[
B_0 = 1, \quad \sum_{k=0}^{n-1} \binom{n}{k} B_k = 0 \quad (n = 2, 3, \ldots).
\]

The well-known Catalan–Larcombe–French numbers \(P_0, P_1, P_2, \ldots \) (cf. [8]) are given by
\[
P_n = \sum_{k=0}^{n} \frac{(2k)!^2 (2n-k)!^2}{(n-k)! (k)!^2},
\]
which arose from the theory of elliptic integrals (see [11]). It is known that \((n + 1)P_{n+1} = (24n(n + 1) + 8)P_n - 128n^2 P_{n-1}\) for all \(n \in \mathbb{Z}^+ \). The sequence \((P_n)_{n \geq 0}\) is also related to the theory of modular forms. See D. Zagier [29].

Many researchers worked on the Catalan–Larcombe–French numbers, (see [9,8,13]). For instance, in 2017, the author proved that
\[
\sum_{k=0}^{p-1} \frac{P_k}{8^k} \equiv 1 + 2(-1)^{(p-1)/2} p^2 E_{p-3} \pmod{p^3},
\]
\[
\sum_{k=0}^{p-1} \frac{P_k}{16^k} \equiv (-1)^{(p-1)/2} - p^2 E_{p-3} \pmod{p^3}.
\]

In [23], Sun proved that
\[
\sum_{k=0}^{(p-1)/2} \frac{(2k)!^2}{16^k} \equiv (-1)^{(p-1)/2} + p^2 E_{p-3} \pmod{p^3},
\]
which plays an important role for proving the above two supercongruences involving \(P_n \).

The famous Domb numbers are defined by
\[
D(n) = \sum_{k=0}^{n} \binom{n}{k}^2 \binom{2k}{k} \binom{2n-2k}{n-k}.
\]

This ubiquitous sequence (see A002895 of Sloane [19]) not only arises in the theory of third-order Apéry-like differential equations [2], odd moments of Bessel functions in quantum field theory [4], uniform random walks in the plane [5], new series for \(1/\pi \) [6], interacting systems on crystal lattices [29] and the enumeration of abelian squares of length \(2n \) over an alphabet with 4 letters [18], but if
\[
F(z) = \frac{\eta^4(z)\eta^4(3z)}{\eta^2(2z)\eta^2(6z)} \quad \text{and} \quad t(z) = \left(\frac{\eta(6z)\eta(2z)}{\eta(z)\eta(3z)} \right)^6,
\]
then (see [6])
There are also many researchers working on the Domb numbers (see, [16,21]). For example, the author and Wang [16] confirmed a conjecture of Sun [22]: for any prime \(p > 3 \), we have:

\[
D(p - 1) \equiv 64^{p-1} - \frac{p^3}{6} B_{p-3} \pmod{p^4}.
\]

Motivated by the above work, we will work on the sequence of numbers defined by

\[
C_n = \sum_{k=0}^{n} \binom{2k}{k}^2 \binom{2n}{n-k}^2,
\]

which are the coefficients of the solutions to the Calabi-Yau equations. We know that the Calabi-Yau-type equation \(D_y = 0 \), with

\[
D = \theta^4 - 2^4 z(2\theta + 1)^2 (2\theta^2 + 2\theta + 1) + 2^{10} z^2 (\theta + 1)^2 (2\theta + 1)(2\theta + 3),
\]

has the solution [1, Appendix A, case #3∗]:

\[
y_0 = \sum_{n=0}^{\infty} z^n \frac{2n}{n} C_n.
\]

Sun [25] proved the following congruence involving \(C_n \)

\[
\sum_{n=0}^{p-1} \frac{n}{32^n} C_n \equiv 0 \pmod{p^3}.
\]

He gave the following conjecture:

Conjecture 1.2. Let \(p \) be an odd prime. Then

\[
\sum_{n=0}^{p-1} \frac{n}{32^n} C_n \equiv -2p^3 E_{p-3} \pmod{p^4}.
\]

In this paper, we confirm this conjecture.

Theorem 1.2. Conjecture 1.2 is true.

We end this introduction by giving the organization of this paper. We shall prove Theorem 1.1 in Section 2, and Section 3 is devoted to prove Theorem 1.2.

2. **Proof of Theorem 1.1**

Lemma 2.1. Let \(p \) be an odd prime. Then

\[
\binom{2k}{k} \equiv_p \binom{(p - 1)/2}{k} (-4)^k.
\]

Proof. It is easy to see that

\[
\binom{(p - 1)/2}{k} (-4)^k = \frac{(p^2 - 1) \cdots (p^2 - k + 1)}{k!} (-4)^k = \frac{(1 - p)(3 - p) \cdots (2k - 1 - p) 2^k}{k!} \equiv_p \frac{1 \cdots (2k - 1)}{k!} 2^k = \binom{2k}{k}.
\]

Now we finish the proof of Lemma 2.1. \(\square \)
We shall separate the left-hand side of Conjecture 1.1 into two parts, one is \(\vartheta_1 = \sum_{n=0}^{p-1} \left(\frac{4n}{2n} \right) \), the other is \(\vartheta_2 = \sum_{n=0}^{p-1} \left(\frac{4n}{2n} \right) \).

We only consider \(p > 5 \), the cases \(p = 3 \) and \(p = 5 \) can be checked directly. We calculate \(\vartheta_1 \) first. It is easy to see the identity as follows:

\[
\vartheta_1 = \frac{1}{2} \sum_{k=0}^{2p-1} \binom{2k}{k} + \sum_{k=0}^{2p-1} \binom{2k}{k} - \binom{2k}{k}.
\]

By the Lucas congruence and (1.1), we have:

\[
\sum_{k=0}^{2p-1} \binom{2k}{k} = \sum_{k=0}^{p-1} \binom{2k}{k} + \sum_{k=p}^{2p-1} \binom{2k}{k} = \sum_{k=0}^{p-1} \binom{2k}{k} + \sum_{k=0}^{p-1} \left(\frac{2p + 2k}{p + k} \right) = \equiv_p \sum_{k=0}^{p-1} \binom{2k}{k} + \sum_{k=0}^{p-1} \left(\frac{2k}{1} \right) = 3 \sum_{k=0}^{p-1} \binom{2k}{k} = \equiv_p \frac{3}{3}.
\]

and

\[
\sum_{k=0}^{2p-1} (-1)^k \binom{2k}{k} = \sum_{k=0}^{p-1} (-1)^k \binom{2k}{k} + \sum_{k=p}^{2p-1} (-1)^k \binom{2k}{k} = \sum_{k=0}^{p-1} (-1)^k \binom{2k}{k} + \sum_{k=0}^{p-1} (-1)^{p+k} \binom{p + 2k}{p + k} = \equiv_p \sum_{k=0}^{p-1} (-1)^k \binom{2k}{k} - \sum_{k=0}^{p-1} (-1)^{p+k} \binom{2k}{1} = - \sum_{k=0}^{p-1} (-1)^k \binom{2k}{k}.
\]

Note that \(\binom{2k}{k} \equiv 0 \pmod{p} \) for each \(k \) such that \(p/2 < k < p \). So, by Lemma 2.1, we have:

\[
\sum_{k=0}^{2p-1} (-1)^k \binom{2k}{k} = \equiv_p - \sum_{k=0}^{p-1} \binom{2k}{k} - 1 = - \left(2n + 1 \right) \equiv_p \frac{5}{p} = - \left(\frac{5}{p} \right).
\]

Hence,

\[
\vartheta_1 = \frac{1}{2} \left(3 \left(\frac{p}{3} \right) - \left(\frac{5}{p} \right) \right).
\]

(2.1)

Now we turn to calculate \(\vartheta_2 \); like the identity of \(\vartheta_1 \), we have the following identity:

\[
\vartheta_2 = \frac{1}{4} \sum_{k=0}^{2p-1} \binom{2k}{k} + \sum_{k=0}^{2p-1} (-1)^k \binom{2k}{k}.
\]

It is easy to see that

\[
\sum_{k=0}^{2p-1} \binom{2k}{k} = \sum_{k=0}^{p-1} \binom{2k}{k} + \sum_{k=p}^{2p-1} \binom{2k}{k} = \sum_{k=0}^{p-1} \binom{2k}{k} + \sum_{k=0}^{p-1} \binom{p + 2k}{p + k} \]

and

\[
\sum_{k=0}^{2p-1} (-1)^k \binom{2k}{k} = \sum_{k=0}^{p-1} (-1)^k \binom{2k}{k} + \sum_{k=p}^{2p-1} (-1)^k \binom{2k}{k} = \sum_{k=0}^{p-1} (-1)^k \binom{2k}{k} + \sum_{k=0}^{p-1} \binom{p + k}{p + k} \binom{2p + 2k}{p + k}.
\]
Then, by Lucas congruence, we have:

\[
\sum_{k=0}^{2p-1} k \binom{2k}{k} \equiv p \sum_{k=0}^{p-1} k \binom{2k}{k} + (p-1)/2 \sum_{k=0}^{p-1} k \binom{2k}{1} \binom{2k}{k} = 3 \sum_{k=0}^{p-1} k \binom{2k}{k}
\]

\[
\equiv p 3 \sum_{k=0}^{(p-1)/2} k \binom{(p-1)/2}{k} (-4)^k
\]

\[
\equiv p 6 \sum_{k=0}^{(p-3)/2} \binom{(p-3)/2}{k} (-4)^k \equiv p -2 \binom{3}{p} = -2 \binom{3}{p}
\]

and

\[
\sum_{k=0}^{2p-1} (-1)^k k \binom{2k}{k} \equiv p \sum_{k=0}^{p-1} (-1)^k k \binom{2k}{k} - \sum_{k=0}^{p-1} (-1)^k \binom{2k}{1} \binom{2k}{k}
\]

\[
= - \sum_{k=0}^{p-1} (-1)^k k \binom{2k}{k} \equiv p - \sum_{k=0}^{(p-1)/2} k \binom{(p-1)/2}{k} 4^k
\]

\[
\equiv p 2 \cdot 5^{(p-3)/2} \equiv p \frac{2}{5} \left(\frac{p}{5} \right).
\]

Therefore,

\[
\vartheta_2 \equiv p \frac{1}{4} \left(-2 \binom{3}{p} + \frac{2}{5} \binom{5}{p} \right) = - \frac{1}{2} \binom{3}{p} + \frac{1}{10} \binom{5}{p}. \tag{2.2}
\]

Combining (2.1) and (2.2), we immediately obtain that

\[
\sum_{n=0}^{p-1} (5n+1) \binom{4n}{2n} = \vartheta_1 + 5 \vartheta_2 \equiv p - \binom{3}{p}
\]

and

\[
\sum_{n=0}^{p-1} (3n+1) \binom{4n}{2n} \equiv p - \frac{1}{5} \binom{5}{p}.
\]

So the proof of Theorem 1.1 is complete. \(\square\)

3. **Proof of Theorem 1.2**

Lemma 3.1. ([23, Lemma 2.1]) Let \(p\) be an odd prime. Then, for any \(k = 1, \ldots, p - 1\), we have:

\[
k \binom{2k}{k} \binom{2(p-k)}{p-k} \equiv (-1)^{2k/p} -1 \pmod{p^2}.
\]

Lemma 3.2. ([24, Lemma 3.1]) For any \(n = 0, 1, 2, \ldots\), we have:

\[
\sum_{k=0}^{n} k \binom{2k}{k} \binom{2n-2k}{n-k} = \sum_{k=0}^{n} k \binom{2k}{k} \binom{2n}{n-k} (-16)^{n-k}.
\]

Lemma 3.3. (Sun [23, (1.4)]) For any prime \(p > 3\), we have:

\[
\sum_{k=1}^{(p-1)/2} \frac{4^k}{k^2 \binom{2k}{k}} \equiv (-1)^{(p-1)/2} 4E_{p-3} \pmod{p}.
\]
Proof of Theorem 1.2. The \(p = 3 \) case is easy to check. So we just need to prove that for \(p > 3 \). First by Lemma 3.2, we have:

\[
\sum_{n=0}^{p-1} \frac{n}{32^n} C_n = \sum_{n=0}^{p-1} \frac{n}{32^n} \sum_{k=0}^{n} \binom{2k}{k}^3 \binom{k}{n-k} (-16)^{n-k}
\]

\[
= \sum_{k=0}^{p-1} \binom{2k}{k}^3 \sum_{n=k}^{p-1} \frac{n}{32^n} \binom{k}{n-k} (-16)^{n-k}
\]

\[
= \sum_{k=0}^{p-1} \binom{2k}{k}^3 \sum_{n=0}^{p-1-k} (n+k) \binom{k}{n} \left(-\frac{1}{2}\right)^n.
\]

Then we divide the sum into two parts for \(p - 1 - k \geq k \) and \(p - 1 - k < k \). Set

\[
\theta_1 = \sum_{k=0}^{(p-1)/2} \frac{(2k)!}{32^k} \sum_{n=0}^{p-1-k} (n+k) \binom{k}{n} \left(-\frac{1}{2}\right)^n
\]

and

\[
\theta_2 = \sum_{k=(p+1)/2}^{p-1} \frac{(2k)!}{32^k} \sum_{n=0}^{p-1-k} (n+k) \binom{k}{n} \left(-\frac{1}{2}\right)^n.
\]

Thus,

\[
\sum_{n=0}^{p-1} \frac{n}{32^n} C_n = \theta_1 + \theta_2.
\]

Now we calculate \(\theta_1 \). Recall that we have \(p - 1 - k \geq k \); thus,

\[
\sum_{n=0}^{p-1-k} (n+k) \binom{k}{n} \left(-\frac{1}{2}\right)^n = \sum_{n=0}^{k} (n+k) \binom{k}{n} \left(-\frac{1}{2}\right)^n
\]

\[
= \binom{k}{2k} + k \sum_{n=1}^{k} \binom{k-1}{n} \left(-\frac{1}{2}\right)^n
\]

\[
= \binom{k}{2k} - k \frac{1}{2k} = 0.
\]

Hence

\[
\theta_1 = 0.
\]

Then we turn to compute \(\theta_2 \); now \(p - 1 - k < k \); by Lemma 3.1, we have:

\[
\theta_2 = \sum_{k=1}^{(p-1)/2} \frac{(2p-2k)!}{32^k} \sum_{n=0}^{k-1} (n+p-k) \binom{p-k}{n} \left(-\frac{1}{2}\right)^n
\]

\[
= - \frac{p^3}{4} \sum_{k=1}^{(p-1)/2} \frac{32^k}{k^3} \sum_{n=0}^{k-1} (n-k) \binom{-k}{n} \left(-\frac{1}{2}\right)^n \pmod{p^4}.
\]

Note that \(\binom{-k}{n} = (-1)^n \binom{n+k-1}{n} \); we have:

\[
\sum_{n=0}^{k-1} (n-k) \binom{-k}{n} \left(-\frac{1}{2}\right)^n
\]

\[
= - k \sum_{n=0}^{k-1} \binom{k}{n} \left(-\frac{1}{2}\right)^n - k \sum_{n=1}^{k-1} \binom{k-1}{n} \left(-\frac{1}{2}\right)^n
\]

\[
= - k \sum_{n=0}^{k-1} \binom{n+k-1}{n} \left(-\frac{1}{2}\right)^n + k \sum_{n=0}^{k-2} \binom{n+k}{n} \frac{1}{2^n}.
\]
By taking $m = n$ and $x = 1/2$ in, e.g., [10, (1.1)], we obtain that
\begin{equation*}
\sum_{n=0}^{k} \binom{n+k}{n} \frac{1}{2^n} = 2^k.
\end{equation*}
So,
\begin{equation*}
\begin{align*}
\sum_{n=0}^{k-1} (n-k) \binom{-k}{n} \left(-\frac{1}{2} \right)^n &= -k2^{k-1} \left(\frac{k}{2} \right) - \left(\sum_{n=0}^{k} \binom{n+k}{n} \frac{1}{2^n} \right) \left(\frac{2k-1}{k-1} \right) - \left(\frac{2k}{2^k} \right) \\
&= -k2^{k-1} + \frac{k}{2} \left(2^k - \frac{2k}{2^k} \right) = -k \frac{2k}{2^k}.
\end{align*}
\end{equation*}
Hence,
\begin{equation*}
\theta_2 \equiv \frac{p}{4} \sum_{k=1}^{(p-1)/2} \frac{\sum_{k=0}^{n} \left(\sum_{k=0}^{n} \frac{1}{n^2} \right) = 1}{\binom{n}{k}^2 (2k) \binom{2k}{k}} \equiv \frac{16k}{4} \sum_{k=1}^{(p-1)/2} \frac{\sum_{k=0}^{n} \frac{1}{n^2} \right) = 1}{\binom{n}{k}^2 (2k) \binom{2k}{k}} \binom{2k}{k} \mod p^4.
\end{equation*}
Set $n = (p-1)/2$; then we have:
\begin{equation*}
\binom{p}{2} \frac{\sum_{k=0}^{n} \frac{1}{n^2} \right) = 1}{\binom{n}{k}^2 (2k) \binom{2k}{k}} \equiv \frac{4}{4} \sum_{k=0}^{(n-1)/2} \binom{n-1}{k} \binom{2k}{k} \mod p.
\end{equation*}
We have the following identity in [28],
\begin{equation*}
\sum_{k=0}^{n-1} \frac{1}{n^2} = \frac{2n^2}{n+1} \sum_{k=0}^{n} \frac{1}{n^2} = \frac{1}{n+1} \sum_{k=0}^{n} \frac{1}{k^2}.
\end{equation*}
So,
\begin{equation*}
\binom{p}{2} \frac{\sum_{k=0}^{n} \frac{1}{n^2} \right) = 1}{\binom{n}{k}^2 (2k) \binom{2k}{k}} \equiv 4 \sum_{k=1}^{n} \frac{1}{k^2} \binom{k}{n} \binom{k}{(n-1)} = 4n \sum_{k=1}^{n} \frac{1}{k^2} \binom{k}{n} \binom{k}{(n-1)} = 4n \sum_{k=1}^{n} \frac{1}{k^2} \binom{k}{n} \binom{k}{(n-1)} = -2(-1)^n \sum_{k=1}^{n} \frac{4k}{k^2} \binom{2k}{k} \mod p.
\end{equation*}
Therefore, with the help of Lemma 3.3, we finally obtain
\begin{equation*}
\binom{p}{2} \frac{\sum_{k=1}^{(p-1)/2} \frac{16k}{k^2 (2k) \binom{2k}{k}} \equiv -8E_{p-3} \mod p}
\end{equation*}
and hence
\begin{equation*}
\theta_2 \equiv -2p^3 E_{p-3} \mod p^4.
\end{equation*}
This, with (3.1) and (3.2), yields that
\begin{equation*}
\sum_{n=0}^{p-1} \frac{n}{32n} C_n \equiv -2p^3 E_{p-3} \mod p^4,
\end{equation*}
as desired. □

Acknowledgement

The authors would like to thank the referee for his/her careful reading and valuable comments. The first author is funded by the Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology (No. 2019r062).
References