ELSEVIER Contents lists available at ScienceDirect # C. R. Acad. Sci. Paris. Ser. I www.sciencedirect.com Algebra # On complexity of representations of quivers # Sur la complexité des représentations de carquois Victor G. Kac 1 Department of Mathematics, M.I.T, Cambridge, MA 02139, USA #### ARTICLE INFO Article history: Received 24 October 2019 Accepted 25 October 2019 Available online 11 November 2019 Presented by Michèle Vergne #### ABSTRACT It is shown that, given a representation of a quiver over a finite field, one can check in polynomial time whether it is absolutely indecomposable. © 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. ## RÉSUMÉ Nous montrons qu'étant donné une représentation de carquois sur un corps fini, on peut vérifier en temps polynomial si elle est absolument indécomposable. © 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. ### 1. Some results on absolutely indecomposable representations of quivers Let Γ be a finite graph without self-loops (but several edges connecting two vertices are allowed), and let $\mathcal V$ denote the set of its vertices. The graph Γ with an orientation Ω of its edges is called a *quiver*. A *representation* of the quiver (Γ, Ω) over a field $\mathbb F$ is a collection of finite-dimensional vector spaces $\{U_v\}_{v\in\mathcal V}$ over $\mathbb F$ and linear maps $\{U_v\to U_w\}$ for each oriented edge $v\to w$. Homomorphisms and isomorphisms of two representations are defined in the obvious way. The *direct sum* of two representations $(\{U_v\}, \{U_v\to U_w\})$ and $(\{U_v'\}, \{U_v'\to U_w'\})$ is the representation $$(\{U_{\nu} \oplus U'_{\nu}\}, \{U_{\nu} \oplus U'_{\nu} \rightarrow U_{w} \oplus U'_{w}\}),$$ where maps are the direct sums of maps. A representation π is called *indecomposable* if it is not isomorphic to a direct sum of two non-zero representations; π is called *absolutely indecomposable* if it is indecomposable over the algebraic closure $\overline{\mathbb{F}}$ of the field \mathbb{F} . Let $r = \#\mathcal{V}$ and let $Q = \bigoplus_{v \in \mathcal{V}} \mathbb{Z}\alpha_v$ be a free abelian group of rank r with a fixed basis $\{\alpha_v\}_{v \in \mathcal{V}}$. Let $Q_+ = \bigoplus_v \mathbb{Z}_{\geq 0} \alpha_v \subset Q$. The dimension of a representation $\pi = \{U_v\}_{v \in \mathcal{V}}$ is the element E-mail address: kac@math.mit.edu. ¹ Supported in part by the Bert and Ann Kostant fund. $$\dim \pi = \sum_{v \in \mathcal{V}} (\dim U_v) \alpha_v \in Q_+.$$ The *Cartan matrix* of the graph Γ is the symmetric matrix $A=(a_{uv})_{u,v\in\mathcal{V}}$, where $a_{vv}=2$ and $-a_{uv}$ is the number of edges, connecting u and v if $u\neq v$. Define a $\frac{1}{2}\mathbb{Z}$ -valued symmetric bilinear form on \mathbb{Q} , such that $(\alpha|\alpha)\in\mathbb{Z}$, by $$(\alpha_u|\alpha_v)=\frac{1}{2}a_{uv},\ u,v\in\mathcal{V},$$ and the following (involutive) automorphisms r_v , $v \in \mathcal{V}$, of the free abelian group Q $$r_{\nu}(\alpha_{u}) = \alpha_{u} - a_{u\nu}\alpha_{\nu}, \ u \in \mathcal{V}.$$ The group $W \subset \text{Aut } Q$, generated by all $r_v, v \in \mathcal{V}$, is called the *Weyl group* of the graph Γ . It is immediate to see that the bilinear form (.|.) is invariant with respect to all $r_v, v \in \mathcal{V}$, hence with respect to the Weyl group W. It is well known that the group W is finite if and only if the Cartan matrix A is positive definite, which happens if and only if all connected components of Γ are Dynkin diagrams of simple finite-dimensional Lie algebra of type A_r , D_r , E_6 , E_7 , E_8 (see e.g. [10]). Gabriel's theorem [4] states that for a quiver (Γ, Ω) the number of indecomposable representations, up to isomorphism, is finite if and only if the group W is finite. Moreover, in this case the map $\pi \mapsto \dim \pi$ establishes a bijective correspondence between isomorphism classes of indecomposable representations of (Γ, Ω) and the set of positive roots $\Delta_+ \subset Q_+$ of the semisimple Lie algebra with Dynkin diagram Γ , where $$\Delta_{+} = \bigcup_{\nu \in \mathcal{V}} \left((W \cdot \alpha_{\nu}) \cap Q_{+} \right). \tag{1}$$ For an arbitrary graph Γ denote by Δ_+^{re} the RHS of (1); note that $(\alpha|\alpha) = 1$ for all $\alpha \in \Delta_+^{re}$. Furthermore, let $$C = \{ \alpha \in Q_+ \setminus \{0\} \mid (\alpha \mid \alpha_{\nu}) \le 0, \nu \in \mathcal{V}, \text{ and supp } \alpha \text{ is connected} \},$$ (2) where for $\alpha = \sum_{\nu \in \mathcal{V}} n_{\nu} \alpha_{\nu}$, we let $supp \alpha = \{ \nu | n_{\nu} \neq 0 \}$. We let $$\Delta_{+}^{\text{im}} = W \cdot C, \quad \Delta_{+} = \Delta_{+}^{\text{re}} \cup \Delta_{+}^{\text{im}}.$$ It is easy to see that $\Delta_+^{\mathrm{im}} \subset Q_+$ and that $(\alpha | \alpha) \in \mathbb{Z}_{\leq 0}$ for $\alpha \in \Delta_+^{\mathrm{im}}$. The set $\Delta_+ \subset Q_+$ is the set of *positive roots* of the Kac-Moody algebra $\mathfrak{g}(A)$, associated with the Cartan matrix A, and Δ_+^{im} is empty if and only if the matrix A is positive definite [7], [10]. **Theorem 1.** Let $\mathbb{F} = \mathbb{F}_q$ be a field of q elements. - (a) The number of absolutely indecomposable representations over \mathbb{F}_q of dimension $\alpha \in \mathbb{Q}_+$ of a quiver (Γ, Ω) is independent of the orientation Ω . It is zero if $\alpha \notin \Delta_+$, and it is given by a monic polynomial $P_{\Gamma,\alpha}(q)$ of degree $1-(\alpha|\alpha)$ with integer coefficients. In particular, $P_{\Gamma,\alpha}(q)=1$ if $\alpha \in \Delta_+^{\mathrm{re}}$. - (b) The constant term $P_{\Gamma,\alpha}(0)$ equals to the multiplicity of the root α in $\mathfrak{g}(A)$. - (c) All coefficients of $P_{\Gamma,\alpha}(q)$ are non-negative. - (d) Consequently, for any quiver (Γ, Ω) and any $\alpha \in \Delta_+$ there exists an absolutely indecomposable representation over \mathbb{F}_q of dimension α . Claim (a) was proved in [7] and [9]; claims (b) and (c) were conjectured in [7], [9], and proved in [5] and [6] respectively. For indivisible $\alpha \in \Delta_+$ both claims (b) and (c) were proved earlier in [2]. # 2. Quasi-nilpotent subalgebras of $\operatorname{End}_{\mathbb{F}} U$ Consider a finite-dimensional vector space U over a field \mathbb{F} . An endomorphism a of U is called *quasi-nilpotent* if all its eigenvalues are equal; denote these eigenvalues by $\operatorname{eig}(a)$. They are elements of the algebraic closure $\overline{\mathbb{F}}$ of the field \mathbb{F} . An associative subalgebra A of $\operatorname{End}_{\mathbb{F}} U$ is called *quasi-nilpotent* if it consists of quasi-nilpotent elements. For an associative algebra A we denote by A_- the Lie algebra obtained from A by taking the bracket [a,b]=ab-ba. We also let $\overline{A}=\overline{\mathbb{F}}\otimes_{\mathbb{F}} A$, $\overline{U}=\overline{\mathbb{F}}\otimes_{\mathbb{F}} U$. **Lemma 1.** Let A be a subalgebra of the associative algebra $\operatorname{End}_{\mathbb{F}} U$. - (a) If A is a quasi-nilpotent subalgebra, then in some basis of \overline{U} , all endomorphisms $a \in A$ have upper triangular matrices with $\operatorname{eig}(a)$ on the diagonal. In particular, $\operatorname{eig}(a+b) = \operatorname{eig}(a) + \operatorname{eig}(b)$ for $a,b \in A$, and A_- is a nilpotent Lie algebra. - (b) If A₋ is a nilpotent Lie algebra and A has a basis, consisting of quasi-nilpotent endomorphisms, then A is a quasi-nilpotent subalgebra. **Proof.** Burnside's theorem says that any subalgebra of the $\overline{\mathbb{F}}$ -algebra $\operatorname{End}_{\overline{\mathbb{F}}}\overline{U}$, where \overline{U} is a finite-dimensional vector space over $\overline{\mathbb{F}}$, which acts irreducibly on \overline{U} , coincides with $\operatorname{End}\overline{U}$. Hence, in some basis of \overline{U} the algebra \overline{A} consists of upper triangular block matrices with blocks $\operatorname{End}_{\overline{\mathbb{F}}}\overline{\mathbb{F}}^{m_i}$ on the diagonal, where $m_i \geq 1$, $\sum_i m_i = \dim \overline{U}$. If A is a quasi-nilpotent subalgebra, then so is \overline{A} , and, in particular, $\operatorname{End}_{\overline{\mathbb{F}}} \overline{\mathbb{F}}^{m_i}$ for all i. This implies that all $m_i = 1$. Hence \overline{A} consists of upper triangular quasi-nilpotent matrices. This proves (a). In order to prove (b), note that if A_- is a nilpotent Lie algebra, then so is \overline{A}_- , and, in particular so are all $(\operatorname{End}_{\overline{\mathbb{F}}} \overline{\mathbb{F}}^{m_i})_-$. It follows that all $m_i = 1$, so that \overline{A}_- consists of upper triangular matrices in some basis of \overline{U} . Since A has a basis, consisting of quasi-nilpotent elements, the subalgebra A is quasi-nilpotent. This proves (b). \square **Corollary 1.** A subalgebra A of the associative algebra $\operatorname{End}_{\mathbb{F}} U$ is quasi-nilpotent if and only if the Lie algebra A_- is nilpotent and A has a basis, consisting of quasi-nilpotent endomorphisms. \Box ## 3. Criterion of absolute indecomposability Let $\pi = (\{U_v\}, \{U_v \to U_w\})$ be a representation of a quiver (Γ, Ω) over a field $\mathbb F$, of dimension $\alpha = \sum_{v \in \mathcal V} n_v \ \alpha_v$. Let $U = \bigoplus_{v \in \mathcal V} U_v$. Then the space $\operatorname{Hom}_{\mathbb F}(U_v, U_w)$ is naturally identified with a subspace of $\operatorname{End}_{\mathbb F} U$, so that the representation π is identified with a collection of endomorphisms for each oriented edge $v \to w$ of the quiver (Γ, Ω) : $\{\pi_{v,w} : U_v \to U_w\} \subset \operatorname{End}_{\mathbb F} U$. An endomorphism a of π decomposes as $a = \sum_{v \in \mathcal V} a_v$, where $a_v \in \operatorname{End}_{\mathbb F} U_v \subset \operatorname{End}_{\mathbb F} U$, and the condition that $a \in \operatorname{End} \pi$, the algebra of endomorphisms of π , means that $$a_W \pi_{V,W} = \pi_{V,W} a_V$$ for all oriented edges $v \to w$. (3) This simply means that the block diagonal endomorphism a commutes with all endomorphisms $\pi_{v,w}$ in the algebra $\operatorname{End}_{\mathbb{F}} U$. Note that (3) has an obvious solution $a_v = cI_{U_v}$, $v \in \mathcal{V}$, where $c \in \mathbb{F}$, hence $\dim \operatorname{End} \pi \geq 1$. In the case of equality, α lies in Δ_+ , and it is called a *Schur vector*; in this and only in this case a generic representation of dimension α is absolutely indecomposable [8]. **Lemma 2.** The representation π is absolutely indecomposable if and only if the algebra of its endomorphisms $\operatorname{End} \pi$ is quasi-nilpotent in $\operatorname{End}_{\mathbb{F}} U$. **Proof.** An endomorphism $a \in \operatorname{End}_{\overline{\mathbb{F}}} U \subset \operatorname{End}_{\overline{\mathbb{F}}} \overline{U}$ decomposes in a sum of commuting endomorphisms $a = a_{(s)} + a_{(n)}$, where the endomorphism $a_{(s)}$ is diagonalizable and the endomorphone $a_{(n)}$ is nilpotent (Jordan decomposition). Condition (3) means that a commutes with $\pi_{V,W}$ for all oriented edges $v \to w$. By a well-known fact of linear algebra, it follows that the $\pi_{V,W}$ commute with $a_{(s)}$. But then the decomposition of \overline{U} in a direct sum of eigenspaces of $a_{(s)}$ is a decomposition of the representation π in a direct sum of representation of the quiver (Γ, Ω) . Thus, π is absolutely indecomposable if and only if $a_{(s)}$ is a scalar endomorphism of \overline{U} , which is equivalent to say that a is a quasi-nilpotent endomorphism of U. \square ## 4. Main theorem The following is the main result of the paper. **Theorem 2.** Let \mathbb{F}_q be a fixed finite field. Then there exists an algorithm which, given as input a quiver (Γ, Ω) and its representation $\pi = (\{U_v\}, \{U_v \to U_w\})$ over \mathbb{F}_q of dimension $\sum_{v \in \mathcal{V}} n_v \alpha_v$, can decide in polynomial in $N := \sum_v n_v$ time whether π is absolutely indecomposable or not. **Proof.** By Lemma 2 one has to check whether $\operatorname{End}_{\mathbb{F}_q}U$, where $U=\bigoplus_{v\in\mathcal{V}}U_v$, consists of quasi-nilpotent elements. By Corollary 1 one has to check two things: - (i) End π has a basis, consisting of quasi-nilpotent elements; - (ii) the Lie algebra (End π)_ is nilpotent. For this we identify U_{ν} with the vector space $\mathbb{F}_q^{n_{\nu}}$, so that U is identified with \mathbb{F}_q^N and $\operatorname{End}_{\mathbb{F}_q}U$ with the algebra of $N \times N$ -matrices over \mathbb{F}_q . End π is a subspace of $\operatorname{End}_{\mathbb{F}_q}U$, given by linear homogeneous equation (3), hence, using Gauss elimination, we can construct in polynomial in N time a basis a_1, \ldots, a_m of $\operatorname{End} \pi$, where $m \leq N$. First, we check that all the a_i are quasi-nilpotent. This simply means that $$\det_{U}(\lambda I_{N} + a_{i}) = (\lambda + \gamma_{i})^{N}, \text{ where } \gamma_{i} \in \overline{\mathbb{F}}_{q}.$$ $$\tag{4}$$ The left-hand side of (4) can be computed in polynomial in N time by Gauss elimination. By the separability of $\bar{\mathbb{F}}_q$ over \mathbb{F}_q , (4) implies that all γ_i lie in \mathbb{F}_q . Hence we have to check that (4) holds for each i and some element $\gamma_i \in \mathbb{F}_q$, which can be done in polynomial in N time. Second, we check that $(\operatorname{End} \pi)_{-}$ is a nilpotent Lie algebra. Recall that a Lie algebra \mathfrak{g} of dimension m is nilpotent if and only if the member \mathfrak{g}^m of the sequence of subspaces, defined inductively by $$\mathfrak{g}^1 = \mathfrak{g}, \quad \mathfrak{g}^j = [\mathfrak{g}, \mathfrak{g}^{j-1}] \text{ for } j \geq 2,$$ is zero. Given a basis $\{a_i\}$ of \mathfrak{g} (which we already have), the subspace \mathfrak{g}^2 is the span over \mathbb{F}_q of all commutators $[a_i, a_j]$. Using Gauss elimination, construct a basis $\{b_i\}$ of \mathfrak{g}^2 . Next, \mathfrak{g}^3 is the span of commutators $[a_i, b_j]$, and again, using Gauss elimination, choose a basis $\{c_i\}$ of \mathfrak{g}^3 , etc. The Lie algebra \mathfrak{g} is nilpotent if and only if $\mathfrak{g}^m = 0$. \square ### 5. A brief discussion on P vs NP In terms of matrices over \mathbb{F}_q , a representation π over \mathbb{F}_q of a quiver (Γ, Ω) of dimension $\alpha = \sum_{v \in \mathcal{V}} n_v \alpha_v \in Q_+$ is a collection of $n_w \times n_v$ matrices $\pi_{v,w}$ over \mathbb{F}_q for each oriented edge $v \longrightarrow w$. An endomorphism of π is a collection of $n_v \times n_v$ matrices a_v over \mathbb{F}_q for each vertex $v \in \mathcal{V}$, such that the linear homogeneous equations (3) hold. The representation π is absolutely indecomposable if for each endomorphism of π all matrices $a_v, v \in \mathcal{V}$, are quasi-nilpotent (equivalently, by Corollary 1, End π has a basis of elements with this property). The following discussion was outlined to me by Mike Sipser. Given a representation π over a fixed finite field \mathbb{F}_q of a quiver (Γ, Ω) of dimension $\alpha \in \Delta_+$, which is a collection of $M_\alpha := \sum_{\nu \to w} n_\nu n_w$ numbers from \mathbb{F}_q , the output is YES if π is absolutely indecomposable and NO otherwise. Call this problem INDEC; it is a P problem, according to Theorem 2. Define a generalization of INDEC, where some of the numbers are replaced by variables x_i , $i=1,\ldots,M$, where M is an integer, such that $1 \le M \le M_\alpha$, and call this problem INDEC[x_1,\ldots,x_M]. Say YES for the latter problem if there exist $\gamma_1,\ldots,\gamma_M \in \mathbb{F}_q$ we can substitute for x_1,\ldots,x_M , such that the resulting INDEC problem is YES. Obviously INDEC is in P implies that INDEC[x_1,\ldots,x_M] is in NP. Now assume that INDEC[$x_1, ..., x_{M_{\alpha}}$] is actually in P. We give a polynomial in M_{α} time procedure to output an absolutely indecomposable representation. Test INDEC[$x_1, ..., x_{M_{\alpha}}$]. The answer is YES by Theorem 1(d). Now reduce M_{α} by 1, by trying all possible numbers from \mathbb{F}_q in place of $x_{M_{\alpha}}$ and test INDEC[$x_1, ..., x_{M_{\alpha}-1}$] for each of these numbers. The answer must be YES for at least one of these numbers. Repeat this procedure until we find all M_{α} numbers. That is our answer. # 6. Conjectures and examples **Conjecture 1.** *INDEC*[$x_1, ..., x_{M_\alpha}$] is not in *P*. **Conjecture 2.** *INDEC*[$x_1, \ldots, x_{M\alpha}$] is in P for any quiver (Γ, Ω) if $\alpha \in \Delta_+$ is a Schur vector. **Conjecture 3.** *INDEC*[$x_1, \ldots, x_{M_\alpha}$] *is in P for any quiver* (Γ, Ω) *if* $\alpha \in \mathcal{C}$ (defined by (2)). **Example 1.** Let Γ be a Dynkin diagram of type A_r , D_r , E_6 , E_7 , E_8 . In this case for any orientation Ω of Γ all indecomposable representations have been constructed explicitly in [4], which shows that in this case INDEC[$x_1, \ldots, x_{M_{\alpha}}$] is in P. **Example 2.** Let Γ be the extended (connected) Dynkin diagram, so that $\#\mathcal{V}=r+1$ and det A=0. These are the only connected graphs, for which the Cartan matrix is positive semidefinite and singular. In this case all absolutely indecomposable representations for any orientation Ω have been constructed in [11] and in [3], which shows that in this case INDEC[$x_1, \ldots, x_{M_\alpha}$] is in P as well. Note that in this case [7] $\Delta_+^{\text{im}} = \mathbb{Z}_{\geq 1} \delta$, where $A\delta = 0$ and $(\delta | \delta) = 0$, and one can show that $P_{\Gamma,n\delta}(q) = q + r$ for $n \in \mathbb{Z}_{\geq 1}$. **Example 3.** Let Γ_m be the quiver with two vertices v_1 and v_2 , and m arrows from v_1 to v_2 . For m=1 and 2 this is a quiver from Examples 1 and 2 respectively. For $m \geq 3$ the explicit expressions for the polynomials $P_{\Gamma_m,\alpha}(q)$ for an arbitrary $\alpha \in \Delta^{\text{im}}_+$ are unknown. Note that in this case $\Delta^{\text{re}}_+(\text{resp. im}) = \{\alpha = n_1\alpha_1 + n_2\alpha_2 | n_i \in \mathbb{Z}_{\geq 0} \text{ and } n_1^2 + n_2^2 - mn_1n_2 = 1 \text{ (resp. < 0)}\}.$ Now, let (Γ, Ω) be a quiver, and let v be a vertex, which is a source or a sink. In [1] an explicitly computable reflection functor R_v was constructed, which sends a representation π of dimension $\alpha \neq v$ of (Γ, Ω) to a representation $R_v(\pi)$ of the reflected quiver $(\Gamma, R_v(\Omega))$ of dimension $r_v(\alpha)$, preserving indecomposability, see also [7]. It follows that if the problem INDEC[$x_1, \ldots, x_{M_\alpha}$] is in P for the quiver (Γ, Ω) and dimension $\alpha \neq v$, and v is a source or a sink of (Γ, Ω) , then it is in P for the quiver $(\Gamma, R_v(\Omega))$ and dimension $r_v(\alpha)$. **Remark 1.** If v is a source or a sink of the quiver (Γ, Ω) and $\alpha \in \Delta_+ \setminus \{v\}$ is a Schur vector, then $r_v(\alpha)$ is a Schur vector for $(\Gamma, R_v(\Omega))$. Also, if α is such that INDEC $[x_1, \ldots, x_{M_\alpha}]$ is in P, then the same holds for $r_v(\alpha)$. **Remark 2.** For an arbitrary quiver (Γ, Ω) the set \mathcal{C} consists of Schur vectors, except for the vectors with $(\alpha | \alpha) = 0$ [7], in which case, supp α is a graph from Example 2. Hence Conjecture 2 implies Conjecture 3. **Remark 3.** Let Γ_m be a quiver from Example 3. Then, using the reflection functors, we see that for all $\alpha \in \Delta^{\rm re}_+$, INDEC[$x_1, \ldots, x_{M_\alpha}$] is in P. Since for this quiver $(\alpha | \alpha) < 0$ for all $\alpha \in \mathcal{C}$, we see that all $\alpha \in \Delta^{\rm im}_+$ are Schur vectors [7], and it follows from Remark 1 and Conjecture 2 that for all $\alpha \in \Delta^{\rm im}_+$, INDEC[$x_1, \ldots, x_{M_\alpha}$] is in P as well. However, in general, $\alpha \in \Delta_+$ is not a Schur vector, so that a generic representation of a quiver (Γ, Ω) of dimension $\alpha \in \Delta_+$ is not absolutely indecomposable. In this case INDEC[$x_1, \ldots, x_{M_\alpha}$] becomes a problem of finding a needle in a haystack, which leads me to (naively) believe in Conjecture 1. In fact, I believe that for any connected quiver, different from those in Examples 1, 2, and 3, there exists $\alpha \in \Delta_+$, for which INDEC[$x_1, \ldots, x_{M_\alpha}$] is not in P. **Remark 4.** As explained in [9], claim (a) of Theorem 1 extends to the case of Γ with self-loops. Claim (c) is proved in [6] in this generality. Theorem 2 holds in this generality as well. ### Acknowledgements I am grateful to L. Babai, L. Levin, S. Micali, B. Poonen, M. Sipser, M. Sudan, and R. Williams for very valuable discussions and correspondence. ### References - [1] I.N. Bernstein, I.M. Gelfand, V.A. Ponomarev, Coxeter functors and Gabriel's theorem, Usp. Mat. Nauk 28 (1973) 17–32. - [2] W. Crawley-Boevey, M. Van den Bergh, Absolutely indecomposable representations and Kac-Moody Lie algebras, with an appendix by Hiraku Nakajima, Invent. Math. 155 (3) (2004) 537–559. - [3] P.W. Donovan, M.R. Freislich, The Representation Theory of Finite Graphs and Associated Algebras, Carleton Math. Lecture Notes, vol. 5, Carleton University, Ottawa, Ontario, Canada, 1973. - [4] P. Gabriel, Unzerlegbare Darstellungen. I, Manuscr. Math. 6 (1972) 71–103 (in German, with English summary); correction: Manuscr. Math. 6 (1972) 309. - [5] T. Hausel, Kac's conjecture from Nakajima quiver varieties, Invent. Math. 181 (1) (2010) 21-37. - [6] T. Hausel, E. Letellier, F. Rodriguez-Villegas, Positivity for Kac polynomials and DT-invariants of quivers, Ann. of Math. (2) 177 (3) (2013) 1147-1168. - [7] V.G. Kac, Infinite root systems, representations of graphs and invariant theory, Invent. Math. 56 (1) (1980) 57-92. - [8] V.G. Kac, Infinite root systems, representations of graphs and invariant theory II, J. Algebra 78 (1982) 141-162. - [9] V.G. Kac, Root systems, representations of quivers and invariant theory, in: Invariant Theory, Montecatini, 1982, in: Lecture Notes in Math., vol. 996, Springer, Berlin, 1983, pp. 74–108. - [10] V.G. Kac, Infinite-Dimensional Lie Algebras, third edition, Cambridge University Press, Cambridge, UK, 1990. - [11] L.A. Nazarova, Representations of quivers of infinite type, Math. USSR Izv., Ser. Mat. 7 (1973) 752-791.