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It is shown that, given a representation of a quiver over a finite field, one can check in 
polynomial time whether it is absolutely indecomposable.
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r é s u m é

Nous montrons qu’étant donné une représentation de carquois sur un corps fini, on peut 
vérifier en temps polynomial si elle est absolument indécomposable.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Some results on absolutely indecomposable representations of quivers

Let � be a finite graph without self-loops (but several edges connecting two vertices are allowed), and let V denote the 
set of its vertices. The graph � with an orientation � of its edges is called a quiver. A representation of the quiver (�, �) over 
a field F is a collection of finite-dimensional vector spaces {U v }v∈V over F and linear maps {U v → U w} for each oriented 
edge v → w . Homomorphisms and isomorphisms of two representations are defined in the obvious way. The direct sum of 
two representations ({U v}, {U v → U w}) and ({U ′

v }, {U ′
v → U ′

w}) is the representation

({U v ⊕ U ′
v}, {U v ⊕ U ′

v → U w ⊕ U ′
w}),

where maps are the direct sums of maps. A representation π is called indecomposable if it is not isomorphic to a direct sum 
of two non-zero representations; π is called absolutely indecomposable if it is indecomposable over the algebraic closure F̄
of the field F .

Let r = #V and let Q = ⊕
v∈V

Zαv be a free abelian group of rank r with a fixed basis {αv }v∈V . Let Q + = ⊕
v
Z≥0 αv ⊂ Q . 

The dimension of a representation π = {U v}v∈V is the element
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dimπ =
∑

v∈V
(dim U v)αv ∈ Q +.

The Cartan matrix of the graph � is the symmetric matrix A = (auv)u,v∈V , where av v = 2 and −auv is the number of edges, 
connecting u and v if u �= v . Define a 1

2Z-valued symmetric bilinear form on Q , such that (α|α) ∈Z, by

(αu|αv) = 1

2
auv , u, v ∈ V,

and the following (involutive) automorphisms rv , v ∈ V , of the free abelian group Q

rv(αu) = αu − auvαv , u ∈ V.

The group W ⊂ Aut Q , generated by all rv , v ∈ V , is called the Weyl group of the graph �. It is immediate to see that the 
bilinear form ( . | . ) is invariant with respect to all rv , v ∈ V , hence with respect to the Weyl group W .

It is well known that the group W is finite if and only if the Cartan matrix A is positive definite, which happens if and 
only if all connected components of � are Dynkin diagrams of simple finite-dimensional Lie algebra of type Ar , Dr, E6, E7, E8

(see e.g. [10]). Gabriel’s theorem [4] states that for a quiver (�, �) the number of indecomposable representations, up to 
isomorphism, is finite if and only if the group W is finite. Moreover, in this case the map π 	→ dim π establishes a bijective 
correspondence between isomorphism classes of indecomposable representations of (�, �) and the set of positive roots 
�+ ⊂ Q + of the semisimple Lie algebra with Dynkin diagram �, where

�+ =
⋃

v∈V
((W · αv) ∩ Q +) . (1)

For an arbitrary graph � denote by �re+ the RHS of (1); note that (α|α) = 1 for all α ∈ �re+ . Furthermore, let

C = {α ∈ Q +\{0} | (α|αv) ≤ 0, v ∈ V ,and suppα is connected}, (2)

where for α = ∑
v∈V nvαv , we let suppα = {v| nv �= 0}. We let

�im+ = W · C, �+ = �re+ ∪ �im+ .

It is easy to see that �im+ ⊂ Q + and that (α|α) ∈ Z≤0 for α ∈ �im+ . The set �+ ⊂ Q + is the set of positive roots of the 
Kac-Moody algebra g(A), associated with the Cartan matrix A, and �im+ is empty if and only if the matrix A is positive 
definite [7], [10].

Theorem 1. Let F = Fq be a field of q elements.

(a) The number of absolutely indecomposable representations over Fq of dimension α ∈ Q + of a quiver (�, �) is independent of the 
orientation �. It is zero if α /∈ �+ , and it is given by a monic polynomial P�,α(q) of degree 1 − (α|α) with integer coefficients. In 
particular, P�,α(q) = 1 if α ∈ �re+ .

(b) The constant term P�,α(0) equals to the multiplicity of the root α in g(A).
(c) All coefficients of P�,α(q) are non-negative.
(d) Consequently, for any quiver (�, �) and any α ∈ �+ there exists an absolutely indecomposable representation over Fq of dimen-

sion α.

Claim (a) was proved in [7] and [9]; claims (b) and (c) were conjectured in [7], [9], and proved in [5] and [6] respectively. 
For indivisible α ∈ �+ both claims (b) and (c) were proved earlier in [2].

2. Quasi-nilpotent subalgebras of EndF U

Consider a finite-dimensional vector space U over a field F . An endomorphism a of U is called quasi-nilpotent if all 
its eigenvalues are equal; denote these eigenvalues by eig(a). They are elements of the algebraic closure F̄ of the field F . 
An associative subalgebra A of EndF U is called quasi-nilpotent if it consists of quasi-nilpotent elements. For an associative 
algebra A we denote by A− the Lie algebra obtained from A by taking the bracket [a, b] = ab − ba. We also let A = F ⊗F A, 
U = F ⊗F U .

Lemma 1. Let A be a subalgebra of the associative algebra EndF U .

(a) If A is a quasi-nilpotent subalgebra, then in some basis of U, all endomorphisms a ∈ A have upper triangular matrices with eig(a)

on the diagonal. In particular, eig(a + b) = eig(a) + eig(b) for a, b ∈ A, and A− is a nilpotent Lie algebra.
(b) If A− is a nilpotent Lie algebra and A has a basis, consisting of quasi-nilpotent endomorphisms, then A is a quasi-nilpotent subal-

gebra.
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Proof. Burnside’s theorem says that any subalgebra of the F -algebra EndF U , where U is a finite-dimensional vector space 
over F , which acts irreducibly on U , coincides with End U . Hence, in some basis of U the algebra A consists of upper 
triangular block matrices with blocks EndF F

mi on the diagonal, where mi ≥ 1, 
∑

i mi = dim Ū .

If A is a quasi-nilpotent subalgebra, then so is A , and, in particular, EndF F
mi for all i. This implies that all mi = 1. Hence 

A consists of upper triangular quasi-nilpotent matrices. This proves (a).
In order to prove (b), note that if A− is a nilpotent Lie algebra, then so is Ā− , and, in particular so are all (EndF̄ F

mi
)− . 

It follows that all mi = 1, so that A− consists of upper triangular matrices in some basis of U . Since A has a basis, consisting 
of quasi-nilpotent elements, the subalgebra A is quasi-nilpotent. This proves (b). �
Corollary 1. A subalgebra A of the associative algebra EndF U is quasi-nilpotent if and only if the Lie algebra A− is nilpotent and A
has a basis, consisting of quasi-nilpotent endomorphisms. �
3. Criterion of absolute indecomposability

Let π = ({U v}, {U v → U w}) be a representation of a quiver (�, �) over a field F , of dimension α = ∑
v∈V nv αv . Let 

U = ⊕
v∈V

U v . Then the space HomF (U v , U w) is naturally identified with a subspace of EndF U , so that the representation π

is identified with a collection of endomorphisms for each oriented edge v → w of the quiver (�, �): {πv,w : U v → U w} ⊂
EndF U . An endomorphism a of π decomposes as a = ∑

v∈V av , where av ∈ EndF U v ⊂ EndF U , and the condition that 
a ∈ Endπ , the algebra of endomorphisms of π , means that

awπv,w = πv,wav for all oriented edges v → w. (3)

This simply means that the block diagonal endomorphism a commutes with all endomorphisms πv,w in the algebra EndF U . 
Note that (3) has an obvious solution av = cIU v , v ∈ V , where c ∈ F , hence dim Endπ ≥ 1. In the case of equality, α lies 
in �+ , and it is called a Schur vector; in this and only in this case a generic representation of dimension α is absolutely 
indecomposable [8].

Lemma 2. The representation π is absolutely indecomposable if and only if the algebra of its endomorphisms Endπ is quasi-nilpotent 
in EndF U .

Proof. An endomorphism a ∈ Endπ ⊂ EndF U ⊂ EndF̄ U decomposes in a sum of commuting endomorphisms a = a(s) +a(n) , 
where the endomorphism a(s) is diagonalizable and the endomorphone a(n) is nilpotent (Jordan decomposition). Condition 
(3) means that a commutes with πv,w for all oriented edges v → w . By a well-known fact of linear algebra, it follows that 
the πv,w commute with a(s) . But then the decomposition of U in a direct sum of eigenspaces of a(s) is a decomposition of 
the representation π in a direct sum of representation of the quiver (�, �). Thus, π is absolutely indecomposable if and 
only if a(s) is a scalar endomorphism of U , which is equivalent to say that a is a quasi-nilpotent endomorphism of U . �
4. Main theorem

The following is the main result of the paper.

Theorem 2. Let Fq be a fixed finite field. Then there exists an algorithm which, given as input a quiver (�, �) and its representation 
π = ({U v}, {U v → U w}) over Fq of dimension 

∑
v∈V nvαv , can decide in polynomial in N := ∑

v nv time whether π is absolutely 
indecomposable or not.

Proof. By Lemma 2 one has to check whether Endπ ⊂ EndFq U , where U = ⊕
v∈V

U v , consists of quasi-nilpotent elements. By 

Corollary 1 one has to check two things:

(i) Endπ has a basis, consisting of quasi-nilpotent elements;
(ii) the Lie algebra (Endπ)− is nilpotent.

For this we identify U v with the vector space Fnv
q , so that U is identified with FN

q and EndFq U with the algebra of 
N × N-matrices over Fq . Endπ is a subspace of EndFq U , given by linear homogeneous equation (3), hence, using Gauss 
elimination, we can construct in polynomial in N time a basis a1, . . . , am of Endπ , where m ≤ N .

First, we check that all the ai are quasi-nilpotent. This simply means that

detU (λIN + ai) = (λ + γi)
N , whereγi ∈ Fq. (4)
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The left-hand side of (4) can be computed in polynomial in N time by Gauss elimination. By the separability of F̄q over Fq , 
(4) implies that all γi lie in Fq . Hence we have to check that (4) holds for each i and some element γi ∈ Fq , which can be 
done in polynomial in N time.

Second, we check that (Endπ)− is a nilpotent Lie algebra. Recall that a Lie algebra g of dimension m is nilpotent if and 
only if the member gm of the sequence of subspaces, defined inductively by

g1 = g, g j = [g,g j−1] for j ≥ 2,

is zero. Given a basis {ai} of g (which we already have), the subspace g2 is the span over Fq of all commutators [ai, a j]. 
Using Gauss elimination, construct a basis {bi} of g2. Next, g3 is the span of commutators [ai, b j], and again, using Gauss 
elimination, choose a basis {ci} of g3, etc. The Lie algebra g is nilpotent if and only if gm = 0. �
5. A brief discussion on P vs NP

In terms of matrices over Fq , a representation π over Fq of a quiver (�, �) of dimension α = ∑
v∈V nvαv ∈ Q + is a 

collection of nw × nv matrices πv,w over Fq for each oriented edge v −→ w . An endomorphism of π is a collection of 
nv ×nv matrices av over Fq for each vertex v ∈ V , such that the linear homogeneous equations (3) hold. The representation 
π is absolutely indecomposable if for each endomorphism of π all matrices av , v ∈ V , are quasi-nilpotent (equivalently, by 
Corollary 1, Endπ has a basis of elements with this property).

The following discussion was outlined to me by Mike Sipser. Given a representation π over a fixed finite field Fq of 
a quiver (�, �) of dimension α ∈ �+ , which is a collection of Mα := ∑

v→w nvnw numbers from Fq , the output is YES if 
π is absolutely indecomposable and NO otherwise. Call this problem INDEC; it is a P problem, according to Theorem 2. 
Define a generalization of INDEC, where some of the numbers are replaced by variables xi, i = 1, . . . , M , where M is 
an integer, such that 1 ≤ M ≤ Mα , and call this problem INDEC[x1, . . . , xM ]. Say YES for the latter problem if there exist 
γ1, . . . , γM ∈ Fq we can substitute for x1, . . . , xM , such that the resulting INDEC problem is YES. Obviously INDEC is in P 
implies that INDEC[x1, . . . , xM ] is in NP.

Now assume that INDEC[x1, ..., xMα ] is actually in P. We give a polynomial in Mα time procedure to output an absolutely 
indecomposable representation. Test INDEC[x1, . . . , xMα ]. The answer is YES by Theorem 1(d). Now reduce Mα by 1, by 
trying all possible numbers from Fq in place of xMα and test INDEC[x1, . . . , xMα−1] for each of these numbers. The answer 
must be YES for at least one of these numbers. Repeat this procedure until we find all Mα numbers. That is our answer.

6. Conjectures and examples

Conjecture 1. INDEC[x1, . . . , xMα ] is not in P.

Conjecture 2. INDEC[x1, . . . , xMα ] is in P for any quiver (�, �) if α ∈ �+ is a Schur vector.

Conjecture 3. INDEC[x1, . . . , xMα ] is in P for any quiver (�, �) if α ∈ C (defined by (2)).

Example 1. Let � be a Dynkin diagram of type Ar, Dr, E6, E7, E8. In this case for any orientation � of � all indecomposable 
representations have been constructed explicitly in [4], which shows that in this case INDEC[x1, . . . , xMα ] is in P.

Example 2. Let � be the extended (connected) Dynkin diagram, so that #V = r + 1 and det A = 0. These are the only 
connected graphs, for which the Cartan matrix is positive semidefinite and singular. In this case all absolutely indecom-
posable representations for any orientation � have been constructed in [11] and in [3], which shows that in this case 
INDEC[x1, . . . , xMα ] is in P as well. Note that in this case [7] �im+ = Z≥1δ, where Aδ = 0 and (δ|δ) = 0, and one can show 
that P�,nδ(q) = q + r for n ∈Z≥1.

Example 3. Let �m be the quiver with two vertices v1 and v2, and m arrows from v1 to v2. For m = 1 and 2 this is a 
quiver from Examples 1 and 2 respectively. For m ≥ 3 the explicit expressions for the polynomials P�m,α(q) for an arbitrary 
α ∈ �im+ are unknown. Note that in this case �re (resp. im)

+ = {α = n1α1 +n2α2| ni ∈Z≥0 and n2
1 +n2

2 −mn1n2 = 1 (resp. < 0)}.

Now, let (�, �) be a quiver, and let v be a vertex, which is a source or a sink. In [1] an explicitly computable reflection 
functor R v was constructed, which sends a representation π of dimension α �= v of (�, �) to a representation R v(π) of 
the reflected quiver (�, R v(�)) of dimension rv (α), preserving indecomposability, see also [7]. It follows that if the problem 
INDEC[x1, . . . , xMα ] is in P for the quiver (�, �) and dimension α �= v , and v is a source or a sink of (�, �), then it is in P 
for the quiver (�, R v(�)) and dimension rv (α).

Remark 1. If v is a source or a sink of the quiver (�, �) and α ∈ �+\{v} is a Schur vector, then rv (α) is a Schur vector for 
(�, R v(�)). Also, if α is such that INDEC[x1, . . . , xMα ] is in P, then the same holds for rv (α).
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Remark 2. For an arbitrary quiver (�, �) the set C consists of Schur vectors, except for the vectors with (α|α) = 0 [7], in 
which case, suppα is a graph from Example 2. Hence Conjecture 2 implies Conjecture 3.

Remark 3. Let �m be a quiver from Example 3. Then, using the reflection functors, we see that for all α ∈ �re+ , 
INDEC[x1, . . . , xMα ] is in P. Since for this quiver (α|α) < 0 for all α ∈ C , we see that all α ∈ �im+ are Schur vectors [7], 
and it follows from Remark 1 and Conjecture 2 that for all α ∈ �im+ , INDEC[x1, . . . , xMα ] is in P as well.

However, in general, α ∈ �+ is not a Schur vector, so that a generic representation of a quiver (�, �) of dimension 
α ∈ �+ is not absolutely indecomposable. In this case INDEC[x1, . . . , xMα ] becomes a problem of finding a needle in a 
haystack, which leads me to (naively) believe in Conjecture 1.

In fact, I believe that for any connected quiver, different from those in Examples 1, 2, and 3, there exists α ∈ �+ , for 
which INDEC[x1, . . . , xMα ] is not in P.

Remark 4. As explained in [9], claim (a) of Theorem 1 extends to the case of � with self-loops. Claim (c) is proved in [6] in 
this generality. Theorem 2 holds in this generality as well.
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