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We prove that any q-automatic completely multiplicative function f : N → C essentially 
coincides with a Dirichlet character. This answers a question of J.-P. Allouche and L. Gold-
makher and confirms a conjecture of J. Bell, N. Bruin and M. Coons for completely mul-
tiplicative functions. Further, assuming GRH, the methods allow us to replace completely 
multiplicative functions with multiplicative functions.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous montrons qu’une fonction complètement multiplicative f :N →C qui est également 
q-automatique est ultimement périodique, coïncidant donc avec un caractère de Dirichlet 
pour tout nombre premier suffisamment grand. Ceci résout un problème de J.-P. Allouche 
et L. Goldmakher et confirme une conjecture de J. Bell, N. Bruin et M. Coons pour les 
fonctions complètement multiplicatives. De plus, sous l’hypothèse de Riemann généralisée, 
notre démonstration peut être adaptée pour prouver cette conjecture pour toute fonction 
simplement supposée multiplicative.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Automatic sequences play an important role in computer science and number theory. For a detailed account of the 
theory and applications, we refer the reader to the classical monograph [2]. One of the applications of such sequences 
in number theory stems from a celebrated theorem of Christol [4] (also cf. [5]), which asserts that, in order to show the 
transcendence of the power series 

∑
n≥1 f (n)zn , it is enough to establish that the function f :N →C is not automatic. In 

this note, rather than working within the general set up, we confine ourselves to functions taking their values in C. There 
are several equivalent definitions of automatic (or more precisely, q-automatic) sequences. It will be convenient for us to 
use the following one.
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Definition 1.1. The sequence f :N →C is called q-automatic if its q-kernel, defined as a set of subsequences

Kq( f ) =
{
{ f (qin + r}n≥0| i ≥ 1,0 ≤ r ≤ qi − 1

}

is finite.

We remark that any q-automatic sequence takes only finitely many values, since it is a function of the states of a finite 
automation. A function f : N → C is called completely multiplicative if f (mn) = f (m) f (n) for all m, n ∈ N . The question 
of which multiplicative functions are q-automatic attracted considerable attention from several authors, including [14], [13], 
[3], [12], [11] and [1]. In particular, the following conjecture was made in [3].

Conjecture 1.2 (Bell–Bruin–Coons). For any multiplicative q-automatic function f : N → C, there exists an eventually peri-
odic function g :N →C, such that f (p) = g(p) for all primes p.

This conjecture is still open in general, although some progress has been made when f is assumed to be completely 
multiplicative. In particular, Schlage-Puchta [13] showed that a completely multiplicative q-automatic sequence that does not 
vanish is almost periodic. Hu [8] improved on that result by showing that the same conclusion holds under a slightly weaker 
hypothesis. Our first result confirms a strong form of Conjecture 1.2 when f is additionally assumed to be a completely
multiplicative function.

Theorem 1.3. Let q ≥ 2 and let f : N → C be a completely multiplicative q-automatic sequence. Then, there exists a Dirichlet char-
acter of conductor Q such that either f (n) = χ(n), for all n ∈N such that (n, Q ) = 1 or f (p) = 0 for all sufficiently large p.

Theorem 1.3 also confirms the first part of a Conjecture 4.2 in [1]. We remark that a similar result has been very 
recently obtained independently by Li [11] using combinatorial methods relying on the techniques developed in the theory 
of automatic sequences. Our proof is shorter and builds upon two deep number theoretic results. Further, assuming the 
generalized Riemann hypothesis (which in particular implies a strong form of the Artin primitive root conjecture for primes 
in progressions), our method can be adapted to show the full conjecture (i.e. the assumption on complete multiplicativity 
can be removed).

Note added in July 2019. While the present article was under submission, the authors [9] and independently J. Konieczny [10]
found rather different ways to settle Conjecture 1.2 unconditionally. Both approaches use a modification of our Proposi-
tion 2.1 to deal with the case where f vanishes on finitely many primes, but then deviate significantly from the approach 
taken here. In [10], the author proceeds by using the structural theory of automatic sequences, in particular the notion of 
“arid sets,” to deal with the remaining cases. In our work [9], instead of using the connection to the Artin conjecture (as in 
the present paper), we establish certain properties of the divisors of the sequences {aqn + b}n≥1, for a, b, q ∈N , to finish up 
the proof.

2. Proof of the main result

We begin with a simple albeit important remark. Since f is q-automatic and completely multiplicative, the image of 
f :N →C is finite and therefore, for any prime p, f (p) = 0 or f (p), is a root of unity.

Proposition 2.1. Let f :N →C be a q-automatic completely multiplicative function and let M0 = {p| f (p) = 0}. If |M0| < ∞, then 
there exists a Dirichlet character χ :N →C such that f (p) = χ(p) for all p /∈ M0 .

Proof. Since f is q-automatic, there exist positive integers i1 �= i2 such that f (qi1n + 1) = f (qi2n + 1) for all n ≥ 1. If 
n = m 

∏
p∈M0

p, then

f (qi1m
∏

p∈M0
p + 1)

f (qi2m
∏

p∈M0
p + 1)

= 1 �= 0,

for all m ≥ 1. The conclusion now immediately follows from Theorem 2 of [6]. �
Suppose that |M0| = ∞. We are going to show that, in this case, f (p) = 0 for all sufficiently large primes p. Replacing 

f by | f |, which is also q-automatic, it is enough to prove the claim for the binary valued f :N → {0, 1}.
Let 1,n = [1, n] ∩Z. Since f is q-automatic, the q-kernel of f is finite and therefore there exists k0 = k0( f ), such that 

for all i ≥ 1 and 0 ≤ r ≤ qi − 1, the equalities f (qin + r) = 0 for n ∈ 1,k0 imply f (qin + r) = 0 for all n ≥ 1.
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Lemma 2.2. Suppose that |M0| = ∞. For k0 as above and for any p1, p2, . . . , pk0 ∈ M0 , such that p j > max{q, k0} for all j ∈ 1,k0 , 
there exists r = r(q, p1, . . . , pk0) such that (r, qpi) = 1 for all i ∈ 1,k0 and f (n 

∏
i≤k0

pi + r) = 0 for all n ≥ 1. We may further assume 
that r ≡ 3 (mod 16), and (r − 1, 

∏
i≤k0

pi) = 1.

Proof. For an integer parameter A ≥ logq pk0 , which we shall choose later, by the Chinese remainder theorem, there exists 
rA such that (rA, q) = 1 and rA ≡ −sq2A (mod ps) for all s ∈ 1,k0. Since ps|q2A s + rA , we have f (q2An + rA) = 0 for all 
n ∈ 1,k0. The latter implies that f (q2An + rA) = 0 for all n ≥ 1. We claim that f (rA) = 0. Indeed, if this is not the case, 
we choose a prime p such that f (p) = 1 and consider m = pϕ(q2A)rA , where ϕ(n) denotes the usual Euler totient function. 
Clearly, m ≡ rA (mod q2A), and consequently 0 = f (m) = ( f (p))ϕ(q2A) f (rA) = 1, which is a contradiction. Note that the 
same argument works for n 

∏
i≤k0

pi + rA in place of rA , and therefore we conclude that f (n 
∏

i≤k0
pi + rA) = 0 for all n ≥ 1. 

Setting r = rA finishes the proof. �
Next, without loss of generality, we may assume that there exist three sufficiently large primes t, t′, t′′ > max(q, k0)

such that f (t) = f (t′) = f (t′′) = 1, since otherwise we are done. We write 
∏

a<p≤b p to denote the product of all primes 
a < p ≤ b. We will require the following consequence of a result due to Heath-Brown [7].

Lemma 2.3. Given distinct primes t, t′, t′′ > max(q, k0) and r = r(q, p1, . . . , pk0) as in Lemma 2.2, there exists infinitely many primes 
qi ≡ r (mod 16 

∏
i≤k0

pi) such that at least one of t, t′, t′′ (say t) is a primitive root modulo qi . Moreover, by passing to a subsequence, 
we may assume that for such primes (qi − 1, q j − 1) = 2 for i �= j, and for each l ∈ 1,k0 we have (l/qi) = 1 for all i ∈ 1,k0 .

Proof. Let v = 16(
∏

i≤k0
pi) 

∏
2<p≤k0

p and chose u such that u ≡ 3 (mod 16) and u ≡ r (mod
∏

i≤k0
pi), with r as in 

Lemma 2.2. Moreover, by quadratic reciprocity, we may further select u (mod
∏

2<p≤k0
p) such that (u/p) = 1 for all primes 

p ≤ k0, and (u − 1, 
∏

2<p≤k0
p) = 1. In particular, we have (−3/p) = −1 for any prime p ≡ u mod v . Applying Lemma 3 of 

[7], with u, v as above and k = 1 (and K = 2k = 2), there exists α ∈ (1/4, 1/2] and δ > 0 such that

|{p ≤ x : p ≡ u (mod v), (p − 1)/K = P2(α, δ)| � x/(log x)2,

with the implied constant possibly depending on α, with P2(α, δ) denoting the union of the set of primes, together with the 
set of almost primes n = t1t2 with t1 < t2 both primes, and t1 ∈ [nα, n1/2−δ]. Heath-Brown’s argument then shows that at 
least one of t, t′, t′′ is a primitive root for infinitely many primes p ≡ u (mod v). Whether the primes qi produced have the 
properties that (qi − 1)/2 is prime, or that (qi − 1)/2 = t1t2, we may pass to an infinite subsequence of primes q1 < q2 < . . .

(satisfying q1 > q) so that (qi − 1, q j − 1) = 2 for i �= j (for the latter case of almost primes, note that both t1 and t2 are 
growing). �
Proposition 2.4. Suppose that |M0| = ∞. Then, f (p) = 0 for all sufficiently large primes p.

Proof. By Lemma 2.3, we may select prime t with f (t) = 1, which is a primitive root modulo infinitely primes q1 <

q2 · · · < qk0 (satisfying q1 > max(k0, q)) such that qi ≡ r (mod 16 
∏

j≤k0
pk0 ) and consequently f (qi) = 0. From the proof of 

Lemma 2.2 it follows that there exists rA such that f (n 
∏

i≤k0
qi + rA) = for all n ≥ 1. Since t is a primitive root modulo 

q j for j ∈ 1,k0, there exists γ j such that tγ j ≡ rA (mod q j) for j ∈ 1,k0. By the construction and Lemma 2.3, we have 
(rA/qi) = (−iq2A/qi) = −1 and thus all γi have the same parity. Consequently, by the Chinese remainder theorem, we can 
choose γ ∈ N , such that γ ≡ γ j (mod q j − 1) for all j ∈ 1,k0. For γ defined this way, we have tγ ≡ rA (mod

∏
j≤k0

q j). 
Hence, f (tγ ) must be zero. On the other hand, f (tγ ) = f (t)γ = 1, and this contradiction finishes the proof. �

Combining Proposition 2.1 and Proposition 2.4 yields the conclusion of Theorem 1.3.
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