Number theory/Combinatorics

A note on multiplicative automatic sequences ${ }^{\text {N }}$

Une note sur les séquences multiplicatives automatiques

Oleksiy Klurman, Pär Kurlberg
Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden

A R T I C L E I N F O

Article history:

Received 29 April 2019
Accepted after revision 7 October 2019
Available online 16 October 2019
Presented by the Editorial Board

Abstract

We prove that any q-automatic completely multiplicative function $f: \mathbb{N} \rightarrow \mathbb{C}$ essentially coincides with a Dirichlet character. This answers a question of J.-P. Allouche and L. Goldmakher and confirms a conjecture of J. Bell, N. Bruin and M. Coons for completely multiplicative functions. Further, assuming GRH, the methods allow us to replace completely multiplicative functions with multiplicative functions.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Abstract

RÉS U M É Nous montrons qu'une fonction complètement multiplicative $f: \mathbb{N} \rightarrow \mathbb{C}$ qui est également q-automatique est ultimement périodique, coïncidant donc avec un caractère de Dirichlet pour tout nombre premier suffisamment grand. Ceci résout un problème de J.-P. Allouche et L. Goldmakher et confirme une conjecture de J. Bell, N. Bruin et M. Coons pour les fonctions complètement multiplicatives. De plus, sous l'hypothèse de Riemann généralisée, notre démonstration peut être adaptée pour prouver cette conjecture pour toute fonction simplement supposée multiplicative.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Automatic sequences play an important role in computer science and number theory. For a detailed account of the theory and applications, we refer the reader to the classical monograph [2]. One of the applications of such sequences in number theory stems from a celebrated theorem of Christol [4] (also cf. [5]), which asserts that, in order to show the transcendence of the power series $\sum_{n>1} f(n) z^{n}$, it is enough to establish that the function $f: \mathbb{N} \rightarrow \mathbb{C}$ is not automatic. In this note, rather than working within the general set up, we confine ourselves to functions taking their values in \mathbb{C}. There are several equivalent definitions of automatic (or more precisely, q-automatic) sequences. It will be convenient for us to use the following one.

[^0]Definition 1.1. The sequence $f: \mathbb{N} \rightarrow \mathbb{C}$ is called q-automatic if its q-kernel, defined as a set of subsequences

$$
K_{q}(f)=\left\{\left\{f\left(q^{i} n+r\right\}_{n \geq 0} \mid i \geq 1,0 \leq r \leq q^{i}-1\right\}\right.
$$

is finite.

We remark that any q-automatic sequence takes only finitely many values, since it is a function of the states of a finite automation. A function $f: \mathbb{N} \rightarrow \mathbb{C}$ is called completely multiplicative if $f(m n)=f(m) f(n)$ for all $m, n \in \mathbb{N}$. The question of which multiplicative functions are q-automatic attracted considerable attention from several authors, including [14], [13], [3], [12], [11] and [1]. In particular, the following conjecture was made in [3].

Conjecture 1.2 (Bell-Bruin-Coons). For any multiplicative q-automatic function $f: \mathbb{N} \rightarrow \mathbb{C}$, there exists an eventually periodic function $g: \mathbb{N} \rightarrow \mathbb{C}$, such that $f(p)=g(p)$ for all primes p.

This conjecture is still open in general, although some progress has been made when f is assumed to be completely multiplicative. In particular, Schlage-Puchta [13] showed that a completely multiplicative q-automatic sequence that does not vanish is almost periodic. Hu [8] improved on that result by showing that the same conclusion holds under a slightly weaker hypothesis. Our first result confirms a strong form of Conjecture 1.2 when f is additionally assumed to be a completely multiplicative function.

Theorem 1.3. Let $q \geq 2$ and let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a completely multiplicative q-automatic sequence. Then, there exists a Dirichlet character of conductor Q such that either $f(n)=\chi(n)$, for all $n \in \mathbb{N}$ such that $(n, Q)=1$ or $f(p)=0$ for all sufficiently large p.

Theorem 1.3 also confirms the first part of a Conjecture 4.2 in [1]. We remark that a similar result has been very recently obtained independently by Li [11] using combinatorial methods relying on the techniques developed in the theory of automatic sequences. Our proof is shorter and builds upon two deep number theoretic results. Further, assuming the generalized Riemann hypothesis (which in particular implies a strong form of the Artin primitive root conjecture for primes in progressions), our method can be adapted to show the full conjecture (i.e. the assumption on complete multiplicativity can be removed).

Note added in July 2019. While the present article was under submission, the authors [9] and independently J. Konieczny [10] found rather different ways to settle Conjecture 1.2 unconditionally. Both approaches use a modification of our Proposition 2.1 to deal with the case where f vanishes on finitely many primes, but then deviate significantly from the approach taken here. In [10], the author proceeds by using the structural theory of automatic sequences, in particular the notion of "arid sets," to deal with the remaining cases. In our work [9], instead of using the connection to the Artin conjecture (as in the present paper), we establish certain properties of the divisors of the sequences $\left\{a q^{n}+b\right\}_{n \geq 1}$, for $a, b, q \in \mathbb{N}$, to finish up the proof.

2. Proof of the main result

We begin with a simple albeit important remark. Since f is q-automatic and completely multiplicative, the image of $f: \mathbb{N} \rightarrow \mathbb{C}$ is finite and therefore, for any prime $p, f(p)=0$ or $f(p)$, is a root of unity.

Proposition 2.1. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ be a q-automatic completely multiplicative function and let $\mathscr{M}_{0}=\{p \mid f(p)=0\}$. If $\left|\mathscr{M}_{0}\right|<\infty$, then there exists a Dirichlet character $\chi: \mathbb{N} \rightarrow \mathbb{C}$ such that $f(p)=\chi(p)$ for all $p \notin \mathscr{M}_{0}$.

Proof. Since f is q-automatic, there exist positive integers $i_{1} \neq i_{2}$ such that $f\left(q^{i_{1}} n+1\right)=f\left(q^{i_{2}} n+1\right)$ for all $n \geq 1$. If $n=m \prod_{p \in \mathscr{M}_{0}} p$, then

$$
\frac{f\left(q^{i_{1}} m \prod_{p \in \mathscr{M}_{0}} p+1\right)}{f\left(q^{i_{2}} m \prod_{p \in \mathscr{M}_{0}} p+1\right)}=1 \neq 0
$$

for all $m \geq 1$. The conclusion now immediately follows from Theorem 2 of [6].

Suppose that $\left|\mathscr{M}_{0}\right|=\infty$. We are going to show that, in this case, $f(p)=0$ for all sufficiently large primes p. Replacing f by $|f|$, which is also q-automatic, it is enough to prove the claim for the binary valued $f: \mathbb{N} \rightarrow\{0,1\}$.

Let $\overline{1, n}=[1, n] \cap \mathbb{Z}$. Since f is q-automatic, the q-kernel of f is finite and therefore there exists $k_{0}=k_{0}(f)$, such that for all $i \geq 1$ and $0 \leq r \leq q^{i}-1$, the equalities $f\left(q^{i} n+r\right)=0$ for $n \in \overline{1, k_{0}}$ imply $f\left(q^{i} n+r\right)=0$ for all $n \geq 1$.

Lemma 2.2. Suppose that $\left|\mathscr{M}_{0}\right|=\infty$. For k_{0} as above and for any $p_{1}, p_{2}, \ldots, p_{k_{0}} \in \mathscr{M}_{0}$, such that $p_{j}>\max \left\{q, k_{0}\right\}$ for all $j \in \overline{1, k_{0}}$, there exists $r=r\left(q, p_{1}, \ldots, p_{k_{0}}\right)$ such that $\left(r, q p_{i}\right)=1$ for all $i \in \overline{1, k_{0}}$ and $f\left(n \prod_{i \leq k_{0}} p_{i}+r\right)=0$ for all $n \geq 1$. We may further assume that $r \equiv 3(\bmod 16)$, and $\left(r-1, \prod_{i \leq k_{0}} p_{i}\right)=1$.

Proof. For an integer parameter $A \geq \log _{q} p_{k_{0}}$, which we shall choose later, by the Chinese remainder theorem, there exists r_{A} such that $\left(r_{A}, q\right)=1$ and $r_{A} \equiv-s q^{2 A}\left(\bmod p_{s}\right)$ for all $s \in \overline{1, k_{0}}$. Since $p_{s} \mid q^{2 A} s+r_{A}$, we have $f\left(q^{2 A} n+r_{A}\right)=0$ for all $n \in \overline{1, k_{0}}$. The latter implies that $f\left(q^{2 A} n+r_{A}\right)=0$ for all $n \geq 1$. We claim that $f\left(r_{A}\right)=0$. Indeed, if this is not the case, we choose a prime p such that $f(p)=1$ and consider $m=p^{\varphi\left(q^{2 A}\right)} r_{A}$, where $\varphi(n)$ denotes the usual Euler totient function. Clearly, $m \equiv r_{A}\left(\bmod q^{2 A}\right)$, and consequently $0=f(m)=(f(p))^{\varphi\left(q^{2 A}\right)} f\left(r_{A}\right)=1$, which is a contradiction. Note that the same argument works for $n \prod_{i \leq k_{0}} p_{i}+r_{A}$ in place of r_{A}, and therefore we conclude that $f\left(n \prod_{i \leq k_{0}} p_{i}+r_{A}\right)=0$ for all $n \geq 1$. Setting $r=r_{A}$ finishes the proof.

Next, without loss of generality, we may assume that there exist three sufficiently large primes $t, t^{\prime}, t^{\prime \prime}>\max \left(q, k_{0}\right)$ such that $f(t)=f\left(t^{\prime}\right)=f\left(t^{\prime \prime}\right)=1$, since otherwise we are done. We write $\prod_{a<p \leq b} p$ to denote the product of all primes $a<p \leq b$. We will require the following consequence of a result due to Heath-Brown [7].

Lemma 2.3. Given distinct primes $t, t^{\prime}, t^{\prime \prime}>\max \left(q, k_{0}\right)$ and $r=r\left(q, p_{1}, \ldots, p_{k_{0}}\right)$ as in Lemma 2.2, there exists infinitely many primes $q_{i} \equiv r\left(\bmod 16 \prod_{i \leq k_{0}} p_{i}\right)$ such that at least one of $t, t^{\prime}, t^{\prime \prime}($ say $t)$ is a primitive root modulo q_{i}. Moreover, by passing to a subsequence, we may assume that for such primes $\left(q_{i}-1, q_{j}-1\right)=2$ for $i \neq j$, and for each $l \in \overline{1, k_{0}}$ we have $\left(l / q_{i}\right)=1$ for all $i \in \overline{1, k_{0}}$.

Proof. Let $v=16\left(\prod_{i \leq k_{0}} p_{i}\right) \prod_{2<p \leq k_{0}} p$ and chose u such that $u \equiv 3(\bmod 16)$ and $u \equiv r\left(\bmod \prod_{i \leq k_{0}} p_{i}\right)$, with r as in Lemma 2.2. Moreover, by quadratic reciprocity, we may further select $u\left(\bmod \prod_{2<p \leq k_{0}} p\right)$ such that $(u / p)=1$ for all primes $p \leq k_{0}$, and $\left(u-1, \prod_{2<p \leq k_{0}} p\right)=1$. In particular, we have $(-3 / p)=-1$ for any prime $p \equiv u \bmod v$. Applying Lemma 3 of [7], with u, v as above and $k=1$ (and $K=2^{k}=2$), there exists $\alpha \in(1 / 4,1 / 2$] and $\delta>0$ such that

$$
\mid\left\{p \leq x: p \equiv u \quad(\bmod v),(p-1) / K=P_{2}(\alpha, \delta) \mid \gg x /(\log x)^{2}\right.
$$

with the implied constant possibly depending on α, with $P_{2}(\alpha, \delta)$ denoting the union of the set of primes, together with the set of almost primes $n=t_{1} t_{2}$ with $t_{1}<t_{2}$ both primes, and $t_{1} \in\left[n^{\alpha}, n^{1 / 2-\delta}\right]$. Heath-Brown's argument then shows that at least one of $t, t^{\prime}, t^{\prime \prime}$ is a primitive root for infinitely many primes $p \equiv u(\bmod v)$. Whether the primes q_{i} produced have the properties that $\left(q_{i}-1\right) / 2$ is prime, or that $\left(q_{i}-1\right) / 2=t_{1} t_{2}$, we may pass to an infinite subsequence of primes $q_{1}<q_{2}<\ldots$ (satisfying $q_{1}>q$) so that $\left(q_{i}-1, q_{j}-1\right)=2$ for $i \neq j$ (for the latter case of almost primes, note that both t_{1} and t_{2} are growing).

Proposition 2.4. Suppose that $\left|\mathscr{M}_{0}\right|=\infty$. Then, $f(p)=0$ for all sufficiently large primes p.
Proof. By Lemma 2.3, we may select prime t with $f(t)=1$, which is a primitive root modulo infinitely primes $q_{1}<$ $q_{2} \cdots<q_{k_{0}}$ (satisfying $\left.q_{1}>\max \left(k_{0}, q\right)\right)$ such that $q_{i} \equiv r\left(\bmod 16 \prod_{j \leq k_{0}} p_{k_{0}}\right)$ and consequently $f\left(q_{i}\right)=0$. From the proof of Lemma 2.2 it follows that there exists r_{A} such that $f\left(n \prod_{i \leq k_{0}} q_{i}+r_{A}\right)=$ for all $n \geq 1$. Since t is a primitive root modulo q_{j} for $j \in \overline{1, k_{0}}$, there exists γ_{j} such that $t^{\gamma_{j}} \equiv r_{A}\left(\bmod q_{j}\right)$ for $j \in \overline{1, k_{0}}$. By the construction and Lemma 2.3, we have $\left(r_{A} / q_{i}\right)=\left(-i q^{2 A} / q_{i}\right)=-1$ and thus all γ_{i} have the same parity. Consequently, by the Chinese remainder theorem, we can choose $\gamma \in \mathbb{N}$, such that $\gamma \equiv \gamma_{j}\left(\bmod q_{j}-1\right)$ for all $j \in \overline{1, k_{0}}$. For γ defined this way, we have $t^{\gamma} \equiv r_{A}\left(\bmod \prod_{j \leq k_{0}} q_{j}\right)$. Hence, $f\left(t^{\gamma}\right)$ must be zero. On the other hand, $f\left(t^{\gamma}\right)=f(t)^{\gamma}=1$, and this contradiction finishes the proof.

Combining Proposition 2.1 and Proposition 2.4 yields the conclusion of Theorem 1.3.

Acknowledgements

The first author learnt about the question considered here while attending an excellent talk of J.-P. Allouche at the "Institut Henri-Poincaré" (IHP), Paris. We are also grateful to the referee for valuable comments and suggestions. O.K. would like to thank IHP for excellent working conditions during his visit.

References

[1] J.-P. Allouche, L. Goldmakher, Mock characters and the Kronecker symbol, J. Number Theory 192 (2018) 356-372.
[2] J.-P. Allouche, J. Shallit, Automatic Sequences. Theory, Applications, Generalizations, Cambridge University Press, Cambridge, UK, 2003.
[3] J.P. Bell, N. Bruin, M. Coons, Transcendence of generating functions whose coefficients are multiplicative, Trans. Amer. Math. Soc. 364 (2) (2012) 933-959.
[4] G. Christol, Ensembles presque periodiques k-reconnaissables, Theor. Comput. Sci. 9 (1) (1979) 141-145.
[5] G. Christol, T. Kamae, M. Mendès France, G. Rauzy, Suites algébriques, automates et substitutions, Bull. Soc. Math. Fr. 108 (4) (1980) $401-419$.
[6] P.D.T.A. Elliott, J. Kish, Harmonic analysis on the positive rationals. Determination of the group generated by the ratios $(a n+b) /(A n+B)$, Mathematika 63 (3) (2017) 919-943.
[7] D.R. Heath-Brown, Artin's conjecture for primitive roots, Q. J. Math. Oxford, Ser. 237 (145) (1986) 27-38.
[8] Y. Hu, Subword complexity and non-automaticity of certain completely multiplicative functions, Adv. Appl. Math. 84 (2017) 73-81.
[9] O. Klurman, P. Kurlberg, A note on multiplicative automatic sequences, II, https://arxiv.org/abs/1905.10897, 2019.
[10] J. Konieczny, On multiplicative automatic sequences, https://arxiv.org/abs/1905.11981, 2019.
[11] S. Li, On completely multiplicative automatic sequences, https://arxiv.org/pdf/1903.04385.pdf.
[12] J.-C. Schlage-Puchta, A criterion for non-automaticity of sequences, J. Integer Seq. 6 (3) (2003) 03.3.8, 5.
[13] J.-C. Schlage-Puchta, Completely multiplicative automatic functions, Integers 11 (8) (2011) A31.
[14] S. Yazdani, Multiplicative functions and k-automatic sequences, J. Théor. Nr. Bordx. 13 (2) (2001) 651-658.

[^0]: तh P.K. was partially supported by the Swedish Research Council (2016-03701).
 E-mail addresses: lklurman@gmail.com (O. Klurman), kurlberg@math.kth.se (P. Kurlberg).

