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In this article, we prove that compact simple Lie groups SO(n) (n > 12) admit at least two 
left-invariant Einstein metrics that are not geodesic orbit, which gives a positive answer to 
a problem recently posed by Nikonorov.
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r é s u m é

Dans cette Note, nous démontrons que les groupes de Lie simples, compacts, SO(n) (n > 12) 
admettent au moins deux métriques d’Einstein invariantes à gauche, dont des géodésiques 
maximales ne sont pas des orbites de sous-groupes à un paramètre du groupe d’isométries 
complet. Ceci répond par l’affirmative à une question récemment posée par Nikonorov.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Recall that a Riemannian metric on a connected manifold M is said to be a geodesic orbit metric if any maximal geodesic 
of the metric is the orbit of a one-parameter subgroup of the full group of isometries (in this case, the Riemannian manifold 
is called a geodesic orbit space). It is well known that any naturally reductive metric must be geodesic orbit, but the 
converse is not true.

In [1], A. Arvanitoyeorgos, K. Mori, and Y. Sakane constructed non-naturally reductive Einstein metrics on compact Lie 
groups SO(n) (n ≥ 11), Sp(n) (n ≥ 3), E6, E7, and E8. In [3], Z. Chen and K. Liang found three naturally reductive and 
one non-naturally reductive Einstein metric on the compact Lie group F4, and I. Chrysikos and Y. Sakane obtained lots of 
non-naturally reductive Einstein metrics on exceptional Lie groups [4]. Moreover, based on the classification of standard 
homogeneous Einstein manifolds, Z. Yan and S. Deng found many non-naturally reductive Einstein metrics on compact 
simple Lie groups [8]. Besides, the authors constructed non-naturally reductive Einstein–Randers metrics on Sp(n) [7].
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However, there are only few examples of left-invariant Einstein metrics that are not geodesic orbit. In [6], Y. Nikonorov 
proved that there exists a left-invariant Einstein metric on compact simple Lie group G2 that is not a geodesic orbit metric. 
The following problem is posed in [6].

Problem 1.1. Is there any other compact simple Lie group admitting a left-invariant Einstein metric that is not geodesic 
orbit?

In [2], H. Chen, Z. Chen and S. Deng obtained some left-invariant and not geodesic-orbit Einstein metrics on compact 
simple Lie groups that are arising from three locally symmetric spaces. They proved that the compact simple Lie groups 
SU(n) for n ≥ 6, SO(n) for n ≥ 7, Sp(n) for n ≥ 3, E6, E7, E8, and F4 admit left-invariant Einstein metrics that are not 
geodesic orbit.

In this short article, we construct new metrics that are distinct from the metrics with the same property obtained in [2], 
and we prove the following.

Theorem 1.1. The compact simple Lie groups SO(n) (n > 12) admits at least two left-invariant Einstein metrics, which are not geodesic 
orbit.

2. Preliminaries

In this section, we will recall some basic facts and the Ricci tensor for reductive homogeneous spaces.

Lemma 2.1. ([5]) Let M be a homogeneous Riemannian manifold and G the identity component of the full group of isometries. Write 
M = G/H, where H is the isotropic subgroup of G at x ∈ M, and suppose the Lie algebra of G has a reductive decomposition g = h +m, 
where g = Lie(G), h = Lie(H), and m is the orthogonal complement subspace of h in g with respect to an Ad(H)-invariant inner 
product on g. Then M is a geodesic orbit space if and only if, for any X ∈ m, there exists Z ∈ h such that ([X + Z , Y ]m, X) = 0 for all 
Y ∈m.

Let G be a compact simple Lie group, consider the following inner product on the Lie algebra g ,

〈, 〉 = u1(−B)|p1 + u2(−B)|p2 + · · · + us(−B)|ps , (2.1)

where B is the Killing form of g, u1, . . . , us are pairwise distinct, and u j > 0, j = 1, 2, . . . , s. A Lie subalgebra k of g is 
called adapted for (2.1), if k is the direct sum of its ideals k ∩ pi, i = 1, 2, · · · , s, (some of these ideals could be trivial) and 
the B−orthogonal complement to k ∩ pi in pi is ad(k)-invariant for every i = 1, 2, . . . , s. It is clear that there is a maximal 
by-inclusion-adapted subalgebra among all subalgebras adapted for (2.1).

Now, we recall a sufficient and necessary condition for a left-invariant Riemannian metric on a compact simple Lie group 
to be a geodesic orbit metric.

Theorem 2.1. ([6]) The inner product (2.1) generates a geodesic orbit left-invariant Riemannian metric on compact simple Lie group G
if and only if there is a maximal by-inclusion-adapted Lie subalgebra k such that, for any X ∈ g, there exists W ∈ k such that, for any 
Y ∈ g, the equality ([X + W , Y ], X) = 0 holds or, equivalently, [A(X), X + W ] = 0, where A : g → g is a metric endomorphism.

The following theorem will be useful in the proof of our main theorem.

Theorem 2.2. ([6]) Suppose that the inner product (2.1) generates a geodesic orbit left-invariant Riemannian metric on compact 
simple Lie group G, ki = k ∩ pi , and that ni is the B-orthogonal complement to ki in pi . Then there is a maximal by-inclusion-adapted 
Lie subalgebra k such that one of the following assertions holds:

(1) there is no more than one index i such that ki �= pi ; in this case (2.1) generates a naturally reductive left-invariant Riemannian 
metric on G;

(2) rank(k) ≥ 2, and [ni, n j] ⊂ ni ⊕ n j for i �= j;
(3) there is only one non-zero ki = k ∩ pi , hence, ki = k; moreover, rank(k) = 1 and either [ni, n j] ⊂ ni or [ni, n j] ⊂ n j for i �= j.

Next, we recall some definitions and fundamental results for a G-invariant Riemannian metric on a reductive homoge-
neous space, whose isotropy representation is decomposed into the sum of non-equivalent irreducible summands. Let G be 
a compact semisimple Lie group, K a connected closed subgroup of G , and let g and k be the corresponding Lie algebras. 
The Killing form B of g is negative definite, so we can define an Ad(G)-invariant inner product B on g. Let g = k ⊕ m

be a reductive decomposition of g with respect to B , such that [k, m] ⊂ m and m ∼= T0(G/K ). We assume that m admits a 
decomposition into mutually non-equivalent irreducible Ad(K )-modules as follows:
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m = m1 ⊕ · · · ⊕mq. (2.2)

Then any G-invariant metric on G/K can be expressed as

〈, 〉 = x1(−B)|m1 + · · · + xq(−B)|mq , (2.3)

for positive real numbers (x1, ..., xq) ∈Rq
+ .

The Ricci tensor r of a G-invariant Riemannian metric on G/K is of the same form as (2.3), that is

r = y1(−B)|m1 + · · · + yq(−B)|mq , (2.4)

for some real numbers y1, ..., yq .
Let eα be a (−B)-orthonormal basis adapted to the decomposition of m, i.e. eα ∈ mi for some i, and α < β if i < j. 

We put Aγ
αβ = B([eα, eβ ], eγ ) such that [eα, eβ ]m = ∑

γ
Aγ

αβeγ , and set 
[

k
i j

]
= ∑

(Aγ
αβ)2, where the sum is taken over all 

indices α, β , γ with eα ∈ mi , eβ ∈ m j , eγ ∈ mk , and [, ]m denotes the m-component. Then the positive numbers 
[

k
i j

]
are 

independent of the B-orthonormal bases chosen for mi , m j , mk , and 
[

k
i j

]
=

[
k
ji

]
=

[
j

ki

]
, because of the operation law of 

bracket and Killing form.

3. Non-geodesic orbit Einstein metrics on the compact lie groups SO(n)

For G = SO(k1 + k2 + k3 + k4), K = diag(SO(k1) × SO(k2) × SO(k3) × SO(k4)), we take into account the diffeomorphism:

G/e ∼= (G × SO(k1) × SO(k2) × SO(k3) × SO(k4))/diag(SO(k1) × SO(k2) × SO(k3) × SO(k4)),

where G × K acts on G by (g, k)y = gyk−1. We denote so(k1) as m1, so(k2) as m2, so(k3) as m3, so(k4) as m4. We denote 
by M(p, q) the set of all p × q matrices,

m12 = {

⎛
⎜⎜⎝

0 A12 0 0
−A′

12 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ |A12 ∈ M(k1,k2)}, m13 = {

⎛
⎜⎜⎝

0 0 A13 0
0 0 0 0

−A′
13 0 0 0

0 0 0 0

⎞
⎟⎟⎠ |A13 ∈ M(k1,k3)},

m14 = {

⎛
⎜⎜⎝

0 0 0 A14
0 0 0 0
0 0 0 0

−A′
14 0 0 0

⎞
⎟⎟⎠ |A14 ∈ M(k1,k4)}, m23 = {

⎛
⎜⎜⎝

0 0 0 0
0 0 A23 0
0 −A′

23 0 0
0 0 0 0

⎞
⎟⎟⎠ |A23 ∈ M(k2,k3)},

m24 = {

⎛
⎜⎜⎝

0 0 0 0
0 0 0 A24
0 0 0 0
0 −A′

24 0 0

⎞
⎟⎟⎠ |A24 ∈ M(k2,k4)}, m34 = {

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 A34
0 0 −A′

34 0

⎞
⎟⎟⎠ |A34 ∈ M(k3,k4)},

where A′
i j denotes the transposed matrix of the matrix Aij, 1 ≤ i, j ≤ 4. Note that the action of Ad(k) (k ∈ K ) on m is given 

by

Ad(k)

⎛
⎜⎜⎜⎝

0 A12 A13 A14

−A′
12 0 A23 A24

−A′
13 −A′

23 0 A34

−A′
14 −A′

24 −A′
34 0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

0 h′
1 A12h2 h′

1 A13h3 h′
1 A14h4

−h′
2 A′

12h1 0 h′
2 A23h3 h′

2 A24h4

−h′
3 A′

13h1 −h′
3 A′

23h2 0 h′
3 A34h4

−h′
4 A′

14h1 −h′
4 A′

24h2 −h′
4 A′

34h3 0

⎞
⎟⎟⎟⎠ ,

where 

⎛
⎜⎜⎝

h1 0 0 0
0 h2 0 0
0 0 h3 0
0 0 0 h4

⎞
⎟⎟⎠ ∈ K , hence the subspaces m12, m13, m23, m24, m34 are irreducible Ad(K )-submodules.

We know that g admits a decomposition into mutually non-equivalent irreducible Ad(K )-modules as follows:

g = m1 +m2 +m3 +m4 +m12 +m13 +m14 +m23 +m24 +m34 (3.1)

and consider left-invariant metrics on G that are determined by the Ad(SO(k1) × SO(k2) × SO(k3) × SO(k4))-invariant scalar 
products on so(k1 + k2 + k3 + k4) given by
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〈, 〉 =x1(−B)|so(k1) + x2(−B)|so(k2) + x3(−B)|so(k3) + x4(−B)|so(k4) + x12(−B)|m12

+ x13(−B)|m13 + x14(−B)|m14 + x23(−B)|m23 + x24(−B)|m24 + x34(−B)|m34 .
(3.2)

Proposition 3.1. The submodules in the decomposition (3.1) satisfy the following bracket relations:

[m1,m1] = m1, [m2,m2] =m2, [m3,m3] = m3, [m4,m4] = m4,

[m1,m12] = m12, [m2,m12] = m12, [m3,m13] = m13, [m4,m14] = m14,

[m1,m13] = m13, [m2,m23] = m23, [m3,m23] = m23, [m4,m24] = m24,

[m1,m14] = m14, [m2,m24] = m24, [m3,m34] = m34, [m4,m34] = m34,

[m12,m23] ⊂ m13, [m12,m24] ⊂ m14, [m13,m34] ⊂m14, [m13,m23] ⊂ m12,

[m14,m24] ⊂ m12, [m14,m34] ⊂ m13, [m12,m13] ⊂m23, [m23,m34] ⊂ m24,

[m23,m24] ⊂ m34, [m24,m34] ⊂ m23, [m12,m12] ⊂m1 +m2, [m13,m13] ⊂ m1 +m3,

[m14,m14] ⊂ m1 +m4, [m23,m23] ⊂ m2 +m3, [m24,m24] ⊂m2 +m4, [m34,m34] ⊂ m3 +m4,

and all the other pairs of subspaces not appearing in the above list are all multiply commutative.

From [9], we know that the compact simple Lie group SO(n) (n > 12) admits at least two left-invariant non-naturally 
reductive Einstein metrics ρi, i = 1, 2, which both correspond to the coefficients of the metric (3.2) satisfying the conditions

x12 = x13 = x14 = 1, x24 = x34 = x23, x2 = x3 = x4, x2 �= x23, x23 �= 1.

Moreover, it is easy to see that x1, x2, x23, x12 are pairwise distinct ([9]).
Set p1 = m1, p2 = m2 +m3 +m4, p3 = m12 +m13 +m14, p4 =m23 +m24 +m34. Then the metric (3.2) reduces to

〈, 〉 = x1(−B)(, )|p1 + x2(−B)|p2 + x12(−B)|p3 + x23(−B)|p4 . (3.3)

Now we can give the proof of the main result of this paper.

Proof of Theorem 1.1. Let us consider Lie group SO(n) (n > 12) supplied with two left-invariant non-naturally reductive 
Einstein metrics ρi, i = 1, 2, generated with the inner product (3.3) (see [9]), now we show that the Riemannian manifolds 
(SO(n) (n > 12), ρi) are not geodesic orbit.

Choose any maximal by-inclusion subalgebra k adapted to (3.3); by the definition of ki = k ∩ pi , i = 1, 2, 3, 4, we have 
[ki, ki] ⊂ ki and [ki, ni] ⊂ [k, ni] ⊂ ni , where ni is the orthogonal complement to ki in pi . On the other hand, [p3, p3] ⊂
p1 ⊕ p2 ⊕ p4 and [p4, p4] ⊂ p2 ⊕ p4. So [k3, p3] = 0, notice [k3, k3] ⊂ k3; it is easy to get k3 = 0. From [k4, k4] ⊂ k4 and 
[k4, n4] ⊂ n4, by Proposition 3.1, it is easy to get k4 = 0. Thus, k3 and k4 are trivial and k ⊂ p1 ⊕ p2.

Suppose that the inner product (3.3) generates a geodesic orbit left-invariant Riemannian metric, take X13 ∈ m13 and 
X23 ∈ m23 such that [X13, X23] �= 0. By Theorem 2.1, for X13 + X23 ∈ m13 + m23, there exists W ∈ k ⊂ p1 ⊕ p2, such that 
[A(X13 + X23), X13 + X23 + W ] = 0, it is easy to see that A(X13 + X23) = x12 X13 + x23 X23. Then, we have

(x12 − x23)[X13, X23] + [x12 X13 + x23 X23, W ] = 0.

Since [m13, m23] ⊂m12, and m13, m23 is ad(p1 ⊕ p2)-invariant submodules, we have x12 = x23, which is impossible.
Thus, the Riemannian manifolds (SO(n) (n > 12), ρi), i = 1, 2 are not geodesic orbit. This completes the proof.
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