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equations driven by an additive Gaussian Volterra process. We assume weak regularity 
conditions on the drift. Several examples of Gaussian Volterra noises are discussed.
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r é s u m é

En utilisant une méthode simple basée sur l’intégration fractionnelle par parties, nous 
prouvons l’existence et la régularité de Besov de la densité des solutions des équations 
différentielles stochastiques dirigées par un bruit additif gaussien de type Volterra. Nous 
supposons des conditions de faible régularité sur le coefficient de dérive. Plusieurs 
exemples de bruits gaussiens de Volterra sont discutés.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

A new and simple method has been introduced in [2], [3] in order to obtain the absolute continuity of the law of 
random variables. In particular, this method, based on fractional integration by parts, allows us to obtain the existence of 
the density of solutions to stochastic differential equations (SDEs in the sequel), together with its Besov regularity, under 
low regularity assumptions on the coefficients of the equation. These new techniques avoid the use of the Malliavin calculus, 
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which usually requires strong regularity of the coefficients of the SDE. We refer, among others, to [1], [2], [3], [8], [9], [10]
for several applications of the fractional integration by parts methodology to concrete examples.

Here, our purpose is to employ this recent method beyond the case of the standard Wiener noise, i.e. to treat the case 
of SDE with additive Gaussian Volterra noise. Actually, we consider the following SDE in Rd

Xt = x +
t∫

0

b(s, Xs)ds + Bt (1)

with x ∈ Rd, b ∈ L∞([0, T ], Cβ

b (Rd)) and (Bt)t∈[0,T ] a d-dimensional Gaussian Volterra process that can be expressed as 
a Wiener integral with respect to the Wiener process under the form (2). Although our toy example is when B is a 
d-dimensional fractional Brownian motion (fBm), we will show that many other examples of Volterra noises can be consid-
ered.

We will show that any strong solution to (1), when it exists, admits a density with respect to the Lebesque measure. 
Moreover, we give the Besov regularity of the density of the solution, i.e. we find the Besov space to which the density 
belongs. Our main results are obtained under rather general conditions on the noise (the class of examples includes the 
fractional Brownian motion and the Ornstein–Uhlenbeck process, among others), and under a non-Lipschitz conditions on 
the drift b, i.e. b ∈ L∞([0, T ], Cβ

b (Rd)) with 0 < β ≤ 1. We will show that the method can be also applied to a more 
general situation, i.e. to prove the existence and to find the Besov regularity of the density for solutions to a certain class of 
path-dependent SDEs.

We organized our paper as follows. In Section 2, we describe our context and our main assumptions. In Section 3, we 
prove the existence and the Besov regularity of the density of the solution to the stochastic differential equation (1), while 
in Section 4 we extend our result to the path-dependent case. Section 5 contains several examples of Gaussian Volterra 
noises that fit our assumptions.

Finally, concerning the notation used throughout the paper, we denote by | · | the Euclidean norm in Rd , Cα
b denotes the 

set of bounded Hölder continuous functions of order α, while C denotes throughout the paper a generic strictly positive 
constant that may change from line to line.

2. Preliminaries

Let us start by introducing the basic definitions and assumptions.

2.1. The context

Let (Wt)t∈[0,T ] =
(

W (1)
t , ..., W (d)

t

)
t∈[0,T ] be a d-dimensional Wiener process on the probability space (�, F , P ). Denote 

by (Ft)t∈[0,T ] the filtration generated by W and consider a Gaussian Volterra process (Bt)t∈[0,T ] =
(

B(1)
t , ..., B(d)

t

)
t∈[0,T ] that 

can be expressed as

Bt =
t∫

0

K (t, s)dW s (2)

i.e. B(i)
t = ∫ t

0 K (t, s) dW (i)
s for every i = 1, ..., d. We assume in the sequel that K is a deterministic kernel such that ∫ T

0 K 2(t, s) ds < ∞. In particular, the kernel K may have singularities, for example K (t, s) may behave as |t − s|α with 
α > 1

2 on the diagonal (see also the examples from Section 5). We will consider the following SDE in Rd

dXt = b(t, Xt)dt + Bt (3)

with initial condition x = (x1, ..., xd) ∈ Rd , where (Bt)t≥0 is a Gaussian Volterra process of the form (2), i.e. for every 
i = 1, ..., d,

X (i)
t = xi +

t∫
0

bi(s, Xs)ds + B(i)
t

where bi are the components of the function b. We will assume that the drift coefficient in (3) satisfies

b ∈ L∞ (
[0, T ], Cβ

b (Rd,Rd)
)

with 0 < β ≤ 1. (4)

Notice that there is not a general result on the existence and uniqueness of the solution to (3) under the assumption (4)
for a general Volterra noise of the form (2). In the sequel, we will work under the assumption that there exists a strong 
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solution to (3). Nevertheless, as we will comment in the last section, there are concrete situations when there exists a 
unique strong solution to (3) under the assumptions (4) (for instance, this happens at least when the noise is a Wiener 
process or a fractional Brownian motion).

If we assume stronger assumptions on b (for instance, if the drift is Lipschitz continuous and satisfies a linear growth 
condition), then we can easily get the existence and uniqueness of a strong solution to (3) for a rather general Volterra 
noise B . In this case, the existence of the density of the solution to (3) can be also obtained by different techniques (i.e. via 
Malliavin’s calculus). Even in this case, the method employed below has the advantage that it allows us to find the Besov 
regularity of the density.

2.2. Besov spaces

We refer to [11] for a complete exposition on Besov spaces. Here we only recall the definition of a particular Besov 
space, namely the space Bs

1,∞ with s > 0.

Consider a function f : Rd → R and, for every x, h ∈ Rd , put (�1
h f )(x) = f (x + h) − f (x) and, for n ≥ 1 integer, define 

the n-th increment of the function f at lag h by

(�n
h f )(x) = �1

h

(
�n−1

h f
)
)(x) =

n∑
j=0

(−1)n− j f (x + jh).

For 0 < s < n we define the norm

‖ f ‖Bs
1,∞ = ‖ f ‖L1(Rd) + sup

|h|≤1
|h|−s‖�n

h f ‖L1(Rd). (5)

It can be shown that, for any n, m > s, the norms obtained in (5) using n, m are equivalent. Therefore, one can define the 
Besov space Bs

1,∞ as the set of functions f ∈ L1(Rd) such that ‖ f ‖Bs
1,∞ < ∞.

2.3. Fractional integration by parts

Our main tool to get the existence and the regularity of the density of the solution to (3) is the following smoothing 
lemma from [8].

Lemma 1. Let X be a Rd-valued random variable. If there exist an integer m ≥ 1, two real numbers s > 0, α > 0, with α < s < m, and 
a constant K > 0 such that, for every φ ∈ Cα

b (Rd) and h ∈Rd, with |h| ≤ 1,∣∣E [
�m

h φ(X)
]∣∣ ≤ K |h|s‖φ‖Cα

b
,

then X has density f X with respect to Lebesgue measure on Rd. Moreover, f X ∈ Bs−α
1,∞ and ‖ f ‖Bs−α

1,∞
≤ C(1 + K ).

3. The existence and the Besov regularity of the density

We consider the setup from Section 2: the SDE (3) with Volterra noise of the form (2) and with drift coefficient satisfying 
(4). We assume that there exists a strong solution to (3).

Fix a deterministic function ϕ ∈ Cα
b (Rd) with α ∈ (0, 1) to be chosen later. We need to estimate the quantity E 

[
�m

h ϕ(Xt)
]

for h > 0 and m ≥ 1 integer.
The core idea is to use the auxiliary process

Y ε
s =

{
Xs, s ≤ t − ε

Xt−ε + ∫ s
t−ε b(r, Xt−ε)dr + (Bs − Bt−ε), s ≥ t − ε .

(6)

In order to estimate the quantity E 
[
�m

h ϕ(Xt)
]
, we will decompose it as follows

E
[
�m

h ϕ(Xt)
] = (Pe)m,h,ε,t + (Ae)m,h,ε,t

where the probability estimate (Pe)m,h,ε,t is given by

(Pe)m,h,ε,t = E
[
�m

h ϕ(Y ε
t )

]
(7)

and the approximation error (Ae)m,h,ε,t is

(Ae)m,h,ε,t = E
[
�m

h ϕ(Xt)
] − E

[
�m

h ϕ(Y ε
t )

]
. (8)

We will deal separately with the summands (Pe)m,h,ε,t and (Ae)m,h,ε,t , by using the ideas from [8] and the properties of 
the Volterra noise B .
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3.1. The probabilistic estimate

To get a suitable estimate for (Pe)m,h,ε,t , we will express it in terms of two independent random variables. First notice 
that from (6),

Y ε
t = Xt−ε +

t∫
t−ε

b(u, Xt−ε)du + Bt − Bt−ε

and by writting Bt − Bt−ε = ∫ t−ε
0 (K (t, s) − K (t − ε, s)) dW s + ∫ t

t−ε K (t, s) dW s , we obtain

Y ε
t = Xt−ε +

t∫
t−ε

b(u, Xt−ε)du +
t−ε∫
0

(K (t, s) − K (t − ε, s)) dW s +
t∫

t−ε

K (t, s)dW s

= Zε
t + Iεt (9)

where

Zε
t = Xt−ε +

t∫
t−ε

b(u, Xt−ε)du +
t−ε∫
0

(K (t, s) − K (t − ε, s)) dW s (10)

and I i,ε
t = (I1,ε

t , ..., Id,ε
t ) with

I i,ε
t =

t∫
t−ε

K (t, s)dW i,s for every i = 1, ...,d. (11)

The key observation is that Zε
t is a Ft−ε measurable random variable in Rd while Iεt is a centered Gaussian random variable 

independent of Ft−ε . Using the above decomposition (9), we obtain the following estimate for the probabilistic estimate.

Proposition 1. Assume (4) and suppose that, for every 0 < ε < t,

Var(Iεt ) ≥ Cε2Ac(ε, t) with some A ∈ (0,1) (12)

where c(ε, t) is a strictly positive constant that may depend on ε, t and satisfies c(ε, t) ≤ C for every 0 < ε < t. Then for every real 
h > 0 and for every integer m ≥ 1

∣∣(Pe)m,h,ε,t
∣∣ ≤ C‖ϕ‖∞

( |h|
εA

)m

.

Proof. From the decomposition (9), with ϕ ∈ Cα
b (Rd),

(Pe)m,h,ε,t = E
[
�m

h ϕ(Y ε
t )

] = E
[
�m

h ϕ(Zε
t + Iεt )

]
= E

[
E

[
�m

h ϕ(Zε
t + Iεt )/Ft−ε

]] = E f (Zε
t ) (13)

with f (y) = E 
[
�m

h ϕ(y + Iεt )
]
. Denote by gt,ε the density of the Gaussian random variable Iεt , i.e.

gt,ε(x) = 1√
2π Var(Iεt )

d
e
− |x|2

2 Var(Iεt ) . (14)

We compute f (y) via a trivial change of variables

| f (y)| =

∣∣∣∣∣∣∣
∫
Rd

�m
h ϕ(y + x)gt,ε(x)dx

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫
Rd

ϕ(y + x)
(
�m

−h gt,ε(x)
)

dx

∣∣∣∣∣∣∣
≤ ‖ϕ‖∞‖�m

−h gt,ε(x)‖L1(Rd).

It follows from [8] (see page 5, two lines after (2.7)) that assumption (12) implies that
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‖�m
−h gt,ε(x)‖L1(Rd) ≤ C

(
|h|√
VarIεt

)m

≤ C

( |h|
εA

)m

(15)

for every h > 0 and for any integer m ≥ 1. Then the conclusion is obtained from (13) and (15). �
We will see in the last section that (12) is satisfied for many Gaussian processes, including the fractional Brownian 

motion.

3.2. The approximation error

In order to handle the term (Ae)m,h,ε,t given by (8), we need the following hypothesis on the Gaussian noise B: there 
exists C > 0 such that

E |Bt − Bs|2 ≤ C |t − s|2H with some H ∈ (0,1). (16)

Remark 1. In particular, assumption (16) implies that the process B has Hölder continuous paths of order δ for every 
δ ∈ (0, H).

We have the following result for the approximation error (Ae)m,h,ε,t .

Proposition 2. Assume (4) and (16). Then for every 0 < ε < t, h > 0, m ≥ 1

∣∣(Ae)m,h,ε,t
∣∣ ≤ C‖ϕ‖Cα

b
ε(βH+1)α. (17)

Proof. Since ϕ is α-Hölder continuous, clearly

(Ae)m,h,ε,t = E
[
�m

h ϕ(Xt)
] − E

[
�m

h ϕ(Y ε
t )

] ≤ C‖ϕ‖Cα
b

E
∣∣Xt − Y ε

t

∣∣α .

Now, the difference Xt − Y ε
t can be written as Xt − Y ε

t = ∫ t
t−ε (b(u, Xu) − b(u, Xt−ε)) du. Thus

E
∣∣Xt − Y ε

t

∣∣α = E

∣∣∣∣∣∣
t∫

t−ε

(b(u, Xu) − b(u, Xt−ε)) du

∣∣∣∣∣∣
α

≤ C

∣∣∣∣∣∣
t∫

t−ε

E |Xu − Xt−ε|β du

∣∣∣∣∣∣
α

. (18)

Using (16), for every u > t − ε

E |Xu − Xt−ε|β = E

∣∣∣∣∣∣
u∫

t−ε

b(v, Xv)dv + Bu − Bt−ε

∣∣∣∣∣∣
β

≤ C
(
(u − t + ε)β + (u − t + ε)βH

)
.

So, by plugging the above inequality into (18),

E
∣∣Xt − Y ε

t

∣∣α ≤ C

∣∣∣∣∣∣
t∫

t−ε

(
(u − t + ε)β + (u − t + ε)βH

)
du

∣∣∣∣∣∣
α

≤ Cε(βH+1)α

and this implies (17). �
3.3. The density of the solution

We are now ready to apply the smoothing Lemma 1. From Proposition 1 and 2 we obtain the following theorem.

Theorem 1. Assume (4), (12) and (16). Let (Xt)t∈[0,T ] be a strong solution to (3). Then, for every t ∈ [0, T ], the random variable Xt

admits a density ρt with respect to the Lebesque measure. Moreover,

ρt ∈ Bη
1,∞ for any η <

1 − A + βH

A
.
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Proof. From Propositions 1 and 2, for h > 0, m ≥ 1,

∣∣E�m
h ϕ(Xt)

∣∣ ≤ ∣∣(Pe)m,h,ε,t
∣∣ + ∣∣(Ae)m,h,ε,t

∣∣ ≤ C‖ϕ‖Cα
b

(( |h|
εA

)m

+ ε(βH+1)α

)
.

Let us choose ε = h
m

α(βH+1)+Am . Then we get∣∣E�m
h ϕ(Xt)

∣∣ ≤ C‖ϕ‖Cα
b
|h|s

with s = mα(1+βH)
α(1+βH)+Am .

Note that, for m large enough, the exponent of |h| is about α(1+βH)
A . Therefore, by Lemma 1, for every t ∈ [0, T ], the 

random variable Xt has a density ρt belonging to the Besov space Bη
1,∞ , with η < s −α = α(1+βH)

A −α. Since we can choose 
α to be arbitrary close to 1, we obtain the conclusion. �

Let us finish this section but some comments around Theorem 1.

Remark 2.

• In the case of the Wiener noise (i.e. K (t, s) = 1[0,t](s) for every s, t ∈ [0, T ], conditions (12) and (16) hold with A =
H = 1

2 . On the other hand, a unique strong solution to (3) exists under (4). Indeed, the existence and uniqueness of the 
strong solution is assured for every measurable function b ∈ L∞([0, T ] × Rd) (see [13] for d = 1 and [12] for general 
dimensional d ≥ 1). It follows from Theorem 1, that the solution to (3) admits a density in the Besov space Bη

1,∞ for 
every η < 1 + β . We retrieve a result in Section 2 of [8].

• We notice that both the noise in (3) and the variance of Iεt affect the regularity of the density. The more regular are the 
paths of the noise B (i.e. H increases), the more regular is the density of solution (i.e. η increases). Also, as the variance 
of Iεt increases, then A decreases and therefore the regularity of the solution increases.

4. The path-dependent case

The argument from the previous section can be easily adapted to treat the path-dependent case. By “path-dependent”, 
we mean that a new process V is introduced in the expression on the drift b (and not that b depends on the whole 
trajectory of X as in, e.g., [8], Section 7.1). As before, we will consider (Wt)t∈[0,T ] a d-dimensional Ft -Brownian motion on 
the probability space (�, F , P ), where (Ft) t≥0 is a filtration that satisfies the usual conditions. Let (Bt)t∈[0,T ] be a Volterra 
process of the form (2). We consider the SDE

Xt(x) = x +
t∫

0

b (r, Vr, Xr) dr + Bt (19)

with t ∈ [0, T ], x ∈Rd . In this section, the drift b is assumed to satisfy

b ∈ L∞ (
[0, T ], Cβ

b

(
Rd ×Rd,Rd

))
, 0 < β ≤ 1, (20)

while (Vt)t∈[0,T ] is a Ft -adapted process such that

E|Vt − V s|β ≤ C |t − s|δ for some δ > 0. (21)

We assume, as before, that there exists a strong solution to (19). For ε > 0, we define the auxiliary process Y ε
t by

Y ε
s =

{
Xs, s ≤ t − ε

Xt−ε + ∫ s
t−ε b (r, Vt−ε, Xt−ε) dr + (Bs − Bt−ε) , s ≥ t − ε .

(22)

We decompose again the quantity E[�m
h ϕ(Xt)] into two terms, the approximation error

(Ae)m,h,ε,t = E
[
�m

h ϕ(Xt)] − E[�m
h ϕ(Y ε

t )
]

(23)

and the probabilistic estimate

(Pe)m,h,ε,t = E
[
�m

h ϕ(Y ε
t )

]
. (24)

Concerning the summand (Pe)m,h,ε,t , we have the following estimate:
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Lemma 2. Assume (20) and (12). Then we have

∣∣(Pe)m,h,ε,t
∣∣ = ∣∣E [

�m
h ϕ(Y ε

t )
]∣∣ ≤ C‖ϕ‖∞

( |h|
εA

)m

. (25)

Proof. From (22), we can write (Pe)m,h,ε,t = Zε
t + Iεt , where Iεt is given by (11) and

Zε
t = Xt−ε +

t∫
t−ε

b (r, Vt−ε, Xt−ε)ds +
t−ε∫
0

(K (t, s) − K (t − ε, s)) dW s,

since Zε
t is Ft−ε measurable and Iεt is independent by Ft−ε , we can write

E[�m
h ϕ(Y ε

t )] = E[�m
h ϕ(Zε

t + Iεt )] = E
[
E

[
�m

h ϕ(y + Iεt )
]

y=Zε

]
,

and using the inequality (15) and the assumption (12), we get (recall that gt,ε is given by (14))

∣∣E [
�m

h ϕ(y + Iεt )
]∣∣ =

∣∣∣∣∣∣∣
∫
Rd

ϕ(y + x)�m
−h gt,ε(x)dx

∣∣∣∣∣∣∣
≤ ‖ϕ‖∞‖�m

−h gt,ε(x)‖L1(Rd) ≤ C‖ϕ‖∞(
|h|
ε A

)m. �
For the approximation error term (Ae)m,h,ε,t , we have the next result.

Proposition 3. Assume (20), (21), and (16). Then, with μ = min(βH, δ),∣∣(Ae)m,h,ε,t
∣∣ ≤ C H‖ϕ‖αεα(μ+1). (26)

Proof. We write as in the proof of Proposition 2∣∣(Ae)m,h,ε,t
∣∣ = ∣∣E [

�m
h ϕ(Xt)

] − E
[
�m

h ϕ(Y ε
t )

]∣∣
≤ C‖ϕ‖Cα

b
E

∣∣∣∣∣∣
t∫

t−ε

(b(r, Vr, Xr) − b(r, Vt−ε, Xt−ε)) dr

∣∣∣∣∣∣
α

≤ C‖ϕ‖αE|
t∫

t−ε

|b (r, Vr, Xr) − b (r, Vr, Xt−ε)| + |b(r, Vr, Xt−ε) − b(r, Vt−ε, Xt−ε) dr|α

≤ C‖ϕ‖α

(
E

t∫
t−ε

|Xr − Xt−ε |β + |Vr − Vt−ε |β dr
)α

. (27)

By inserting the following two bounds

E |Xr − Xt−ε |β ≤ ‖b‖L∞ (r − t + ε)β + (r − t + ε)βH

and E |Vr − Vt−ε |β ≤ C (r − t + ε)δ into (27), we get

∣∣(Ae)m,h,ε,t
∣∣ ≤ C‖ϕ‖α

( t∫
t−ε

(r − t + ε)β + (r − t + ε)βH + (r − t + ε)δ dr
)α ≤ C H‖ϕ‖αεα(μ+1)

where μ = min(βH, δ). �
We obtain the following results concerning the density of the solution to (19).

Theorem 2. We assume the conditions (12), (16), (20) and (21). Then the law of Xt has a density ρt,x respect to the Lebesgue measure 
and ρ ∈ Bη with η <

μ+1−A , where μ = min(δ, Hβ).
1,∞ A
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Proof. From the estimates (26) and (25) we get for h > 0 and m ≥ 1

∣∣E [
�m

h (Xt)
]∣∣ ≤ C H‖ϕ‖αεα(μ+1) + C H‖ϕ‖α

( |h|
ε A

)m

Now, choosing ε = h
m

α(μ+1)+Am and proceeding as in the proof of Theorem 1, we obtain the desired conclusion. �
Remark 3. Notice that the Besov regularity of the density is affected by the regularity of the process V since the exponent 
δ from (21) appears in the above result. By taking a regular process V with δ > Hβ , we retrieve the result in Theorem 1, 
but for a process V such that δ < Hβ , the Besov regularity of the density will change.

5. Examples

We discuss several examples where our main results stated in Theorems 1 and 2 apply.

5.1. Fractional Brownian motion

Let (Bt)t∈[0,T ] be a fractional Brownian motion with Hurst index H ∈ (0, 1). Recall that B is a centered Gaussian process 
with covariance

EBt Bs = 1

2

(
t2H + s2H − |t − s|2H

)
for every s, t ∈ [0, T ].

The fBm admits the following integral representation

Bt =
t∫

0

K H (t, s)dW s (28)

where (Wt)t∈[0,T ] is a Wiener process, and K H (t, s) is the kernel

K H (t, s) = dH (t − s)H− 1
2 + sH− 1

2 F1

(
t

s

)
, (29)

dH being a constant and F1 (z) = dH
( 1

2 − H
) ∫ z−1

0 θ H− 3
2

(
1 − (θ + 1)H− 1

2

)
dθ . If H > 1

2 , the kernel K H has the simpler 
expression

K H (t, s) = cH s
1
2 −H

t∫
s

(u − s)H− 3
2 uH− 1

2 du (30)

where t > s and cH =
(

H(H−1)

β(2−2H,H− 1
2 )

) 1
2

.

The SDE (3) with fBm noise has been treated in [6], [7], [4], among others. The following facts have been proven (for 
d = 1):

• if H > 1
2 , then there exists a unique strong solution to (3) if the drift b is Hölder continuous in time of order γ > H − 1

2
and it is Hölder continuous in space of order α > 1 − 1

2H , i.e.

|b(t, x) − b(s, y)| ≤ C(|x − y|α + |t − s|γ )

with α > 1 − 1
2H and γ > H − 1

2 ;
• if H < 1

2 , then there exists a unique strong solution to (3) if b satisfies the linear growth condition

|b(t, x)| ≤ C(1 + |x|) (31)

for every t ∈ [0, T ], x ∈R;
• If H = 1

2 , see Remark 2.

Notice that the assumption (4) clearly implies the linear growth condition (31), thus we always have existence and 
uniqueness of the solution to (3) under (4). When H > 1

2 , we need to assume β ≥ 1 − 1
2H in (4) and also

|b(t, x) − b(s, x)| ≤ C |t − s|γ
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with γ > H − 1
2 for every s, t ∈ [0, T ], x ∈R.

In order to apply Theorems 1 and 2, we need to check (12) and (16). Assumption (16) clearly holds for every H ∈ (0, 1). 
To check (12), we notice that this condition is obviously satisfied when H = 1

2 and we discuss separately the cases H > 1
2

and H < 1
2 .

The case H > 1
2 . We claim that Iεt = ∫ t

t−ε K H (t, s) dBs is Gaussian with expectation equal to zero and variance bigger than 
cHε2H . We have:

Var(Iεt ) = E|
t∫

t−ε

K H (t, s)dBs|2 =
t∫

t−ε

|K H (t, s)|2 ds

and from formula (30), since for H − 1
2 > 0 we have 

( u
s

)H− 1
2 ≥ 1, we can write

K H (t, s) ≥ cH

t∫
s

(u − s)H− 3
2 du = C H (t − s)H− 1

2 .

Then

t∫
t−ε

|K H (t, s)|2 ds ≥ C2
H

t∫
t−ε

(t − s)2H−1 ds = C Hε2H

so (12) holds with A = H and c(ε, t) = C H .

The case H < 1
2 . From Proposition 5.12 in [5], we have K H (t, s) ≥ C H ( t

s )
H− 1

2 (t − s)H− 1
2 . Hence,

t∫
t−ε

|K H (t, s)|2 ds ≥ C Ht2H−1

t∫
t−ε

s1−2H (t − s)2H−1 ds

≥ C Ht2H−1(t − ε)1−2H

t∫
t−ε

(t − s)2H−1 ds = C Ht2H−1(t − ε)1−2Hε2H

= C Ht2H−1(1 − ε

t
)1−2Hε2H .

Consequently, (12) holds with A = H and c(ε, t) = t2H−1(1 − ε
t )1−2H , which is larger than a constant for 0 < ε < t .

5.2. The Riemann–Liouville process

The Riemann-Liouville process is defined as

Bt =
t∫

0

(t − s)H− 1
2 dW s, for every t ∈ [0, T ] (32)

with H ∈ (0, 1). It shares many properties with the fBm (it is self-similar of index H , its paths are Hölder continuous of 
order δ ∈ (0, H)), but it has no stationary increments. Notice that

Var(Iεt ) =
t∫

t−ε

(t − s)2H−1 ds = 1

2H
ε2H

and it is well known that

E |Bt − Bs|2 ≤ C |t − s|2H .

Therefore assumptions (12) and (16) are fulfilled with A = H and c(t, ε) = 1.
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5.3. The Ornstein–Uhlenbeck process

The Ornstein-Uhlenbeck process (Bt)t∈[0,T ] can be expressed as

Bt =
t∫

0

e−(t−s) dW s.

It represents the unique solution to the SDE dBt = −Bt dt + dWt with vanishing initial condition. It is well known that 
E |Bt − Bs|2 ≤ C |t − s|, so (16) is satisfied with H = 1

2 . On the other hand, if Iεt is given by (11),

Var(Iεt ) = Var

⎛
⎝ t∫

t−ε

e−(t−s) dW s

⎞
⎠ =

t∫
t−ε

e−2(t−s) ds = 1

2
(1 − e−2ε) ≥ cε

so (12) holds with A = 1
2 and c(ε, t) = 1.
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