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without geometric conditions. We then study the energy decay rate by distinguishing two
cases. The first one is when the waves propagate at the same speed. In this case, under
appropriate geometric conditions, we establish an exponential energy decay estimate for
usual initial data. For the other case, we first show that our system is not uniformly stable.
Next, under the same geometric conditions, we establish a polynomial energy decay of
type % for smooth initial data. Finally, in one space dimension, using the real part of the
asymptotic expansion of eigenvalues of the system, we prove that the obtained polynomial
decay rate is optimal.
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RESUME

Nous nous intéressons a la stabilisation d'un systéme multidimensionnel de deux équations
d’ondes couplées par les termes de vitesse, et dont I'une seulement est localement amortie.
La principale nouveauté contenue dans cette note est que les ondes ne se propagent pas
forcément a la méme vitesse et que le coefficient de couplage n’est pas supposé étre
positif et petit. Nous supposons que la zone de couplage et la zone d’amortissement
s'intersectent. D'abord, nous montrons que notre systéme est fortement stable sans
conditions géométriques. Puis nous étudions le taux de décroissance de I'énergie en
distinguant deux cas. Dans le premier cas, nous supposons que les ondes se propagent
a la méme vitesse ; nous établissons alors, sous certaines conditions géométriques, un taux
de décroissance exponentiel de I'énergie du systéme pour des données initiales usuelles.
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Dans le second cas, nous montrons d’'abord que I'énergie ne décroit pas exponentiellement
vers 0. Ensuite, sous les mémes conditions géométriques, nous établissons un taux de
décroissance polynomial de type % pour des données initiales réguliéres. Finalement, dans
le cas particulier ot la dimension de I'espace est égale a 1, en utilisant la partie réelle du
développement asymptotique des valeurs propres de systéme, nous montrons, de plus, que
le taux polynomial obtenu est optimal.

© 2019 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let Q be a nonempty bounded open set of RN having a boundary I' of class C2. In [8], F. Alabau-Boussouira et al.
considered the energy decay of a system of two wave equations coupled by velocities:

Uy —aAu+bX)yr + p(x,ur) =0 in @ x R%, (1.1)
Ve — Ay —bX)us =0 in @ xR, (1.2)
u=y=0 on I' x R%, (1.3)

with the following initial data:

u(x,0)=ug, y(x,0)=yo, ur(x,0)=uqand y(x,0) =y, xeQ

where a > 0 is a constant and b € C°(2; R) is a non-zero function. The damping term p is applied to the first equation and
the second equation is indirectly damped through the coupling between the two equations. In [8], using an approach based
on multiplier techniques, weighted nonlinear inequalities and the optimal-weight convexity method (developed in [5]), the
authors established an explicit energy decay formula in terms of the behavior of the nonlinear feedback close to the origin.
Their results are obtained in the case when the following three conditions are satisfied: the waves propagate at the same
speed (a = 1), the coupling coefficient b(x) is small positive (0 < b(x) < bg, bg € (0, b*] where b* is a constant depending on
© and on the control region), and both the coupling and the damping regions satisfy an appropriated geometric conditions
named Piecewise Multipliers Geometric Conditions (introduced in [23], used in [5] and denoted by PMGC, in short). Then
the stabilization of the system (1.1)-(1.3) in the case where the waves are not assumed to propagate with equal speeds
(a is not necessarily equal to 1) and/or when the coupling coefficient b(x) is not assumed to be positive and small has been
left an open problem even when the damping term p is linear with respect to the second variable. In this note, we are
interested to answer this open question and to provide a stability analysis for the system (1.1)-(1.3) when the damping term
p is linear with respect to the second variable ie. p(x, u;) = c(x)u; where c € C°(Q2; R ). So, we consider the stability of
the following system:

Uy —aAU+bX)ye +c(x)ur =0 in @ x R%, (1.4)
Ve — Ay —bX)uy =0 in @ xR, (1.5)
u=y=0 on I' x R%, (1.6)

with the following initial data:

ux,0) =ug, y(x,0)=yo, us(x,0)=ujand y¢(x,0)=y, xeQ.

The notion of indirect damping mechanisms has been introduced by D.L. Russell in [29], and since then, it attracted
the attention of many authors. In particular, the stabilization of systems of two second-order equations coupled through
displacements when only one equation is effectively damped by internal or boundary feedback has been initiated and
studied in [1-3], and further studied by many authors, for instance [6,24,17]. Recalling that the exponential or polynomial
energy decay rate occurs in many control problems, we quote [13,30] for the Timoshenko system in bounded or unbounded
domains. Here, we focus our attention only on the literature of the indirect internal stability of coupled wave equations.
In [16], B. Kapitonov studied the stabilization of a system of two coupled hyperbolic equations involving (1.4)-(1.6). He
established an exponential energy decay rate for usual initial data in the case where the waves propagated at the same
speed (a =1) and the damping and coupling coefficients have the same support. For the other cases, when a # 1 and/or
support of b does not coincide with that of ¢, no energy decay rate has been discussed. In [2], F. Alabau et al. studied the
indirect stabilization of a system of two evolution equations coupled through displacements where the damping is effective
in the whole domain. Using the method of higher-order energies initiated in [1], they established a polynomial energy decay
depending on the smoothness of the initial data. These results have been generalized by F. Alabau and M. Léautaud in [6]
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to the case when the coupling and the damping coefficients are localized in © and both satisfy the PMGC conditions. In
addition, without geometric conditions, using an interpolation inequality for elliptic system (see Proposition 5.1 in [18])
together with the resolvent estimates of G. Lebeau in [19], the authors proved that the energy decay of smooth initial data
is at least logarithmic when the coupling and the damping regions intersect in a nonempty sub-domain w C 2. However,
when w = ¢}, the question of the stability or the null controllability of the system is still an open problem. Indeed, F. Alabau
and M. Léautaud in [7] solved partially this problem by proving that the system is null controllable provided that both the
coupling and the damping regions satisfy the optimal geometric condition named Geometric Control Condition introduced
by Bardos et al. in [11]. Finally, we refer to [1,2,4,10,12,32,30,31,27,16,25,9] for the indirect stabilization and the indirect
exact controllability of distributed systems with different kinds of damping.

In this note, we study the stability of the system (1.4)-(1.6) when the coupling and damping regions intersect in w C .
First, we establish the strong stability without geometric conditions. We then study the energy decay rate of our system
by distinguishing two cases. The first one is when the waves propagate at same speed, i.e. a = 1. In this case, under the
hypothesis that w satisfies the geometric conditions PMGC (see below), we establish an exponential energy decay rate
for usual initial data. Next, in the general case, when a # 1, we prove the non-uniform (exponential) stability and, under
the same geometric conditions, we establish a polynomial energy decay rate of type % for smooth initial data. Finally, in
one space dimension, using the real part of the asymptotic expansion of the eigenvalues of the system, we show that the
obtained polynomial decay is optimal.

2. Well-posedness and strong stability

In this section, we will study the strong stability of the system (1.4)-(1.6) without additional geometric conditions. First,
we will study the existence, uniqueness, and regularity of the solution to our system.

2.1. Well-posedness of the problem

Let U = (u, u¢, y, y¢) be a regular solution to (1.4)-(1.6), its associated energy is defined by

1
EO =5 [ (1l +aiVui + 1y + 19y 1)
Q

So, a direct computation gives

%E(t):—/c(x)lutlzdxfo. (2.2)
Q

Consequently, the system (1.4)-(1.6) is dissipative in the sense that its energy is non-increasing.
First, we define the energy space H = (H}(Q) x L?(22))? equipped, for all U = (u, v, y,2), U= (U,V,¥,7) € H, by the
scalar product:

(U,ﬁ)Hza/(Vu-Vﬁ)dx+fv7dx+/(Vy-V§7)dx +/z?dx.
Q Q Q Q
Next, we define the unbounded linear operator A : D(A) — H by:

D(A) = (H*(Q) NH)(Q) x H}(2)*, AU = (v,aAu —bz—cv, z, Ay +bv).

Note that, using the fact that c(x) > 0, then A is m-dissipative and generates a Co semi-group of contractions e* on the
energy space H. As the system (1.4)-(1.6) is equivalent to
U=AUinH, t>0, UQO)=Uyg (2.3)

with U = (u, ut, ¥, yt), we deduce its well-posed character. So, we have the following existence results:

Theorem 2.1. Let Uy € H then, problem (2.3) admits a unique weak solution U satisfying
U e C®(RY, H).
Moreover, if Uy € D(A) then, problem (2.3) admits a unique strong solution U satisfying

U@ eC' (R, H) NCOR™, D(A)).

Secondly, we will study the strong stability of our system.
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2.2. Strong stability

In this subsection, we study the asymptotic behavior of E(t). For this aim, we assume that there exists a nonempty open
wc, C 2 satisfying the following condition:

{xeQ:c(x) >0} Doy, (LH1)

On the other side, as b(x) is a non-zero continuous function, then there exists a nonempty open wp, U wy_ C 2 such that

{(xeQ:b(x) >0} Dwp, and {xeQ:b(x) <0}Dwy_ (LH2)

Our main result in this part is the following.

Theorem 2.2 (Strong stability). Assume that a > 0, that condition (LH1) holds and that w = wc, Nwp, # ¥ or we, Nwp_ # @. Then
the semi group of contractions e™ is strongly stable on the energy space H, i.e., for any Uy € H, we have

lim [|e™ U]l =0. (2.4)
t—+400

In [6], the authors considered the stabilization of a system of two wave equations coupled in displacements with one
localized internal damping. They showed that, under the assumption that the damping region and the coupling region
have a non-empty intersection in €, ie. @ =wc, Nwp, # ¥ (or we, Nwy_ #P), the energy of smooth solutions decays
logarithmically to zero as t goes to infinity. This result still holds in the case where the two wave equations are coupled
through the velocities. Indeed, following the method introduced by G. Lebeau and L. Robbiano in [20], M. Léautaud in [18]
established an interpolation inequality for the associated elliptic system. This interpolation inequality implies the resolvent
estimates of G. Lebeau in [19] (see also [21]) that provide the logarithmic energy decay rate for smooth initial data. So,
using the density of D(A) in # and the contraction property of the Co semigroup e, we deduce that the energy of the
system (1.4)-(1.6) decays asymptotically to zero as t goes to infinity for all usual initial data.

Then we are interested, in this paper, to study the energy decay rate by distinguishing two cases.

3. Exponential stability, the case a =1

This section is devoted to the study of the exponential stability of system (1.4)-(1.6) in case the waves propagate at the
same speed (in the case a = 1) and under appropriated geometric conditions. For that purpose, we will use a frequency
domain approach combined with a piecewise multiplier technique.

Before presenting our main result of this section, we recall the piecewise multiplier geometric condition introduced by
K. Liu in [23].

Definition 3.1. We say that w satisfies the piecewise multiplier geometric condition (PMGC in short) if there exist ; C Q
having Lipschitz boundary I'j = 92; and x; € RN, j=1, ..., J such that QjNQ; =y for j#iand w contains a neighborhood
in © of the set Uleyj (xj)u (Q \ Ujllej) where yj(xj) ={x € T'j: (x—x;) - vj(x) > 0} and v; is the outward unit normal
vector to I'j.

Remark 3.2. The PMGC is the generalization of the multipliers geometric condition (MGC in short) introduced by Lions in
[22], saying that @ contains a neighborhood in Q of the set {x € I': (x — xp) - v(x) > 0}, for some xg € RN, where v is the
outward unit normal vector to I' = 9Q.

Now, we are in a position to present the main result of this section.

Theorem 3.3 (Exponential decay rate). Let a = 1. Assume that condition (LH1) holds. Assume also that the nonempty open set w =
we, Nwp, (0r w = wc, Nwy_) satisfies the geometric conditions PMGC and that b, c € W1.2°(Q). Then there exist positive constants
M > 1, 0 > 0 such that, for all initial data (uo, uq, Yo, y1) € H, the energy of the system (1.4)-(1.6) satisfies the following decay rate:

E(t)<Me %E©0), Vt>o0. (31)

Remark 3.4. Note that in Theorem 3.3, we have no restriction on the upper bound and the sign of the function b. This
theorem is then a generalization in the linear case of the result of [8] where the coupling coefficient considered has to
satisfy 0 < b(x) < bg, bg € (0,b*] where b* is a constant depending on 2 and on the control region. Nevertheless, the
problem is still open in the nonlinear case.
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In order to prove the above theorem, we apply a result of EL. Huang [15] and ]. Pruss [28]: a Co-semigroup of contraction
(efA)t>0 in a Hilbert space H is uniformly stable if and only if

iR C p(A) (H1)
and
sup || GBI — A7 || < 400 (H2)
BeR
hold.

Since the resolvent of A is compact and 0 € p(A), then from Theorem 2.2, we deduce that condition (H1) is satisfied.
We now prove that condition (H2) holds, using an argument of contradiction. To this aim, we suppose that there exist a
real sequence B, with B, — +oo and a sequence U, = (Uuy, Vp, Yn, Zn) € D(A) such that

Il (wn, v, ¥n, zn) Ix=1, (3.2)
and

lim || (iBa] — A)Un [4=0. (3.3)

n—oo

Now, detailing Eq. (3.3), we get

iBon —vn=f) = 0 in  H}Q), (3.4)
iBnVn — Aup +b(X)zn +c()vp=g! = 0 in L[*(Q), (3.5)
iBnyn—zn=f2 — 0 in HNQ), (3.6)
iBnzn — Ayn —bX)vp=g> — 0 in L[*(Q). (3.7)

Eliminating v, and z, from the previous system, we obtain the following reduced system
Bt + Atp — ifabX)Yn — BaCX)un = — g4 —b(0) f2 — ipnfy — c(X) ;. (3.8)
Bryn+ Ayn +iBab(Oun = —ifn f7 +bX) f} — ga. (3.9)

On the other side, using Eq. (3.2) we deduce that z, and v, are uniformly bounded in L?(). It follows, from Egs. (3.4) and
(3.6), that

o) 2 o)
lyn|?dx = and /|un| dx = . (3.10)
S[ g 52

Lemma 3.5. The solution (uy, Vn, Yn, Zn) € D(A) to the system (3.4)-(3.7) satisfies the following estimation

/ | Butin|* dx = 0(1). (311)

Wc,
Proof. First, since U, is uniformly bounded in #, then from (3.3), we get

Re {ifn Il Un 1> (AU Un)| =/c(x>|vn|2dx=o<1>. (312)
Q
Under condition (LH1), it follows that

/ [val? dx = 0(1). (3.13)

wcy

So, using Egs. (3.12) and (3.4), we get

f c(®)|Bntn|* dx = 0(1). (314)
Q

Consequently, we have
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f |Bntin|? dx = 0(1).

@c,

The proof is thus complete. O

Now, the subset w satisfies the PMGC. Hence, denoting by €2; and xj, j=1,..., J the sets and the points given by the
PMGC, we have w D N (Ujj.zlyj (xj)u <Q \ UJ]-=1Qj>> N €. In this expression, NV (O) = {x € RN : d(x, ©) < &} with d(-, O)

is the usual Euclidean distance to the subset © of RN and yj(xj) ={xeTj:(x—xj) vj(x) >0} where v; is the outward
unit normal vector to I'; = 3€2;. Let the reals 0 < &1 < & < £3 < ¢ and define

Vi=Ns (Vs () U (2 UL, 9)), i=1.2.3.
Since (Q2\ V3) NV, =, then we may define the function n € C3°(RN) by
nx)y=0 ifxeQ\Vs, 0<nx) <1, nx)=1 if xeV,.

Lemma 3.6. The solution (up, vy, ¥n, Zn) € D(A) to the system (3.4)-(3.7) satisfies the following estimation

/n(x)qun|2 dx=o0(1) and / |Vup|? dx = o(1). (3.15)
Q VN2

Proof. Multiplying Eq. (3.8) by nu, and using Green’s formula and the fact that u, =0 on TI", we obtain

/n<x>|ﬂnun|2dx—/n(x)|wn |2dx—/ﬁn<w-Vun)dx—iﬂn/b<x>nynﬂndx

Q Q Q Q
(3.16)

—iBn / c(x)N)|up|* dx = /(—gé —bX) f2 —iBnf] — cx) fHntn dx.
Q

Q

As f, and f2 converge to zero in H} (), g} converges to zero in L?(R2), the sequences (Bqun), (Bayn), (V) are uniformly
bounded in L2($2) and || u, ||=0(1), we get

/n(x)wnunﬂdx—fn(xnwn 1 dx=o0(1). (317)

Q Q

By using the definition of 7 and Egs. (3.11) and (3.17), we deduce

/n(x)|Vun |>dx=0(1) and / | Vuy |2 dx=0(1).

Q VaNQ

The proof is thus complete. O

Lemma 3.7. The solution (uy, Vn, Yn, zn) € D(A) to the system (3.4)-(3.7) satisfies the following estimation

/n(x)|Vyn|2dx=o(1) and /lVyn|2dx=o(1). (3.18)
Q VoNQ

Proof. The proof contains three points.

(i) Notice that, from equation (3.9), ﬂl—n

Green’s formula and the fact that u, =y, = fn] =0on I', we get

Ayy is uniformly bounded in L?(2). So, multiplying Eq. (3.8) by f}—nnAj/n. Using
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- / Batl (VT - Vity) dx — f Buttn(V1) - VF,) dx + / ﬁino«mnAundx
Q Q Q "

+i/b(X)n(X) | Vyn |? dX+i/n(X)yn(Vb-V?n)dXJrifb(X)yn(Vn-Wn)dx

Q Q Q
+i [ e (Tun - VI dxri [ cooun(Tn- VT e+ [ neouve: V3, dx = (319)
Q Q Q

1
+ [ (=8}~ b0} = 0O F)(GM00ATy) e+ / NV ) - V) dx
Q Q

+i /f,} (V- Vy,)dx.
Q

First, since fnl. fn2 converge to zero in Hé(Q), g,ll converges to zero in L2(€2) and (Vyy), (f}—”Ayn) are uniformly bounded in
L2(2), then we have

1
/ (—gy —bfy — Cfn])(ﬁ—nA?n)deri / NV fy - V) dx
Q " Q
(3.20)
+iff,}(vn - Vy,)dx=0(1).
Q

Next, using the definition of n, the Egs. (3.11), (3.15), and the fact that || u, [|[=0(1), || ¥n l=0(1) and (Vyy) is uniformly
bounded L?($2), we get

- / Buttn (V) - VF) dx + i / 1) Yn (Vb - V3, dx
Q Q

+i/b(X)yn(V77 : V?n)deri/C(X)n(X)(Vun~V?n)dx (3.21)
Q Q

+i/c(x)un(Vn-V?n)dx+i/n(x)un(Vc-Vyn)dx=o(l).
Q Q

Finally, inserting (3.20) and (3.21) into (3.19), we get

_ 1 _ .

—/ﬂnn(Vyn . Vun)dx—i—/ ﬁ—nAynAun dx + 1/bn | Vyn |? dx=0(1). (3.22)
Q a Q

(ii) Multiplying (3.9) by the bounded sequence ér)Aﬂn, integrating over 2 and using the fact that u, =y, = f2=0on T,

we get

—/ﬁnn(X)(Vyn-Vﬁn)dX—ﬂnfyn(Vn-Vﬁn)dXJr/ ﬁln(X)AJ/nAﬁndx
Q Q Q "

—i/n(x)un(Vb-Vﬁn)dx—i/n(x)b(x)qunlzdx—i/b(x)un(Vﬁn-Vn) dx = (3.23)
Q Q Q

i / (n(x) (Vf,f : van) + f2 (V- van)) dx+/ (b(x)fn1 - gg) ﬁln(x)Aﬁn dx.

Q Q
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First, since f!, f2 converge to zero in H} (), g2 converges to zero in L*(Q) and Vuy, ﬁl—nAun are uniformly bounded in
L%(Q), then we have

i / (n(x) (anz : van) + f2(Vn- van)) dx+/ (b(x)f,} - g,%) ﬂln(x)mn dx = o(1). (3.24)

Q Q

Next, using Eq. (3.15) and the fact that || u, |=o0(1) and (B, y») is uniformly bounded in L2(S2), we deduce that

—Bn fQ Yn(Vn - Vup)dx —i / nX)up(Vb - Vup) dx

Q
(3.25)
—i/ r](X)b(X)qunl2 dx —i/b(x)un(VHn -Vn)dx=o0(1).
Q Q
Finally, inserting (3.24) and (3.25) into (3.23), we get
_ 1 _
_/ﬂnn(x)(VYn'vun)dx+/ ﬂ—n(x)AynAun dx=o0(1). (3.26)
Q a
(iii) Summing the imaginary parts of Egs. (3.22) and (3.26), we obtain
/b(x)r](x)lVyn|2dx:o(1). (3.27)
Q
Using the definition of the function 1 and condition (LH2), we deduce that
/n(x)|Vyn|2 dx=0(1) and / |Vynl?dx=0(1).
Q VoNQ
The proof is thus complete. O
Lemma 3.8. The solution (up, vy, ¥n, Zn) € D(A) to the system (3.4)-(3.7) satisfies the following estimation
/ N(X)|Bynl*dx=0(1) and / |Buynl® dx=0(1). (3.28)

Q VonQ

Proof. Multiplying Eq. (3.9) by ny, and integrating over 2. Then, using Green’s formula and the fact that || y, ||[=0(1) and
yn=0on T, we get

f N Pnynl® dx — / Va(Vyn - Vi) dx

Q Q
(3.29)

—/n(X) | Vyn [* dx + iﬂn/b(x)n(X)ynﬁn dx=o(1).
Q Q
Combining Egs. (3.11), (3.18) and (3.29) and using the fact that || y, ||=0(1), we get

/n(x)|ﬂnyn|2dx=o(1) and f|ﬁnyn|2dx=o<1>.

Q VoNQ

The proof is thus complete. O

Now, since (€2 \ V2) NV; =@, we can define the function y; € C°(RN) by:

Yix) =0 ifxeV;, 0<y;<1, yj®=1 ifxeQ;\ s

For m;(x) = (x — x;), we define hj(x) = ¥/;(x)m;(x).
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Lemma 3.9. The solution (uy, Vn, Yn, Zn) € D(A) to the system (3.4)-(3.7) satisfies the following estimation

N / |Bntin|2 dx 4+ (2 — N) / [Vun|® dx

Q\(WV2NQ) Q\(OV2NQ)

3.30
; (3.30)

+2Re{i ) ﬁnb(x)yn(mj~VHn)dx} <o(1).

jlej\(VzﬂQj)
Proof. Multiplying Eq. (3.8) by 2(h; - Vi) and integrating over €2, we obtain
Zﬂ,f/un(hj . Vﬁn)dx—i-Z/ Aup(h; - Vig) dx — Zi/ﬁnb(x)yn(hj -Viu,)dx =

Q; Q; 2

(3.31)

2[(—g}, — b 2 —c(0) fHh;j- Vi) dx — Zi/ﬂnf; (hj - Viip) dx.
Qj Q2
(i) Estimation of the second member of (3.31). First, using Green’s formula, the fact that u, =0 on (I'; \ ;) N T and that

hj=0 on y;, we get

—21/,3nf,3(hj.van)dxzzi/fsnan(h,--Vfg)dx+2ifﬂnanf,} (divh;) dx. (3.32)
Qj Qj Qj

It follows, from the convergence of f; to zero in H(l)(Q) and the uniformly boundedness in L2(2) of Byun, that

—2i/ﬂnf,3<hj-van)dx=o<1>. (333)

Qj

Next, as f], f2 converge to zero in H}(Q), g} converges to zero in L?(Q2) and (Vuy) is uniformly bounded in L?(S2), we
deduce that

2 f(—gﬁ — b f2 —c(0) fH(hj- Vi) dx=0(1). (3.34)
Qj

Finally, we deduce that the second member of Eq. (3.31) is o(1).
(ii) Estimation of the first integral of Eq. (3.31). Using Green’s formula, we get

Re{zfﬂgun(h,--van)dx} :—/(divhj)lﬁnunlzdx+/(hj-vj)lﬂnunlzdr‘j. (3.35)
Qj Qj j

Since ¥; =0 on y; and u;, =0 on (I'; \ ¥;) NT, then we have

Re{zfﬂgun(hj . Vﬁn)dx} =— /(divhj)lﬁnunlz dx. (3.36)
Q2 2
(iii) Estimation of the second integral of Eq. (3.31). Using Green’s formula, we get
N
Re{Z/ Aty (hj - van)} =— ZRe{ > /8ih’]‘.8iunakﬁndx} + /(divhj)|Vun|2 dx (3.37)
i bh=lg, Qj

- f(hj V)| Vuy|*dr; +2Re{ /(avjun)(hj : van)drj’.
L L

According to the choice of ¥;, only the boundary terms over (I'; \ ;) NT" are non-vanishing in (3.37). But on this part of
the boundary, u, =0, and consequently Vu, = (dyuy) - v = (0v;un)Vj. Then, we have
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—f(hj-vj)|Vun|2dFj+2Re{/(8vjun)(hj-Vﬁn)dr‘j}= / (¥jmj - vj)]|dy;un|*dI'; < 0. (3.38)
Lj [; (Cj\ypHNT

Inserting (3.38) in (3.37), we get

N
Re{Z/Aun(hj~VUn)} 5—2Re{ > /Bih’]‘-aiunakﬂndx} +/(divhj)|vun|2 dx. (3.39)
Q; bk=lg, 2

(iv) The main estimation. Inserting Eqgs. (3.33), (3.34), (3.36), and (3.39) in (3.31) and using the fact that v/; =0 on Vi, we
get

N
div(yjm)(Bntnl® — |Vu|*) dx + 2Re > (W jm)djun dylindx
Q\(VinQ;)) Q\Wing;) k=1
(3.40)
+2iRe / Bnb () yn(¥jmj - Vi) dx < o(1).
Qj\(V]ﬂQj)
Thus, summing over j and using the fact that ¥/j =1 on Q_j\ Va, we get
J
N / |Bntn|? dx + (2 — N) / |Vun|? dx + 2Re{iz Bnb(X)yn(m; - Vﬁn)dx}
2\(V2N9) 2\(V2NQ) =g 0nne)
J N
<= / [div(w,-m DBattnl® = [Vup[*) dx+2 ) a,-(w,-m’;oa,-unakun}dx (3.41)
=1y, ik=1
J
—2iy° / Bubyn(¥jmj - Vily) dx + o(1).
j:]VzﬂQj
Using Egs. (3.11), (3.15), and (3.28), we deduce
J N
-3 / [div(w,-m DBnttnl® = [Vup[*) dx +2 ) aiw,-m?)aiunakun]dx
j=1 . i,k=1
]jzﬂQJ (342)
—2iy " / Bub(X)yn(Wjm; - Vity) dx = 0(1).
jz]VzﬂQj
Finally, inserting (3.42) into (3.41), we obtain the desired Eq. (3.30) and the proof is thus complete. O
Lemma 3.10. The solution (un, vy, ¥n, zn) € D(A) to the system (3.4)-(3.7) satisfies the following estimation
v satare-n [ ke
Q\V2NQ Q\V,nQ
343
; (3.43)
+2Re{iz / Bub(X) ¥, (m; - Vun)dx} <o(1).
=loavng;
Proof. Multiplying Eq. (3.9) by 2(h; - Vy,), we obtain
262 [ yathy- T a2 [ Ayathy - V5 it 21 [ Bubounth; - V5, dx =
Q; Qj Q;
(3.44)

—Zi/ﬂnf,f(hj : Wn)dx+2/(b(x)f,} — g2)(hj - Vy,)dx.
Qj Qj
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(i) Estimation of the second member in (3.44). Using Green’s formula and the fact that y, =0 on (I'; \ ;) NI and hj =0
on yj NI, we obtain

2i [ Buf2(hj - V) dx=2i / BuFn(hj -V f2) dx+2i / BuTn £2 (divh)) dx.
Qj Qj Qj

It follows, since f2 converges to zero in H}(S2) and Bayn is uniformly bounded in L?(2), that

—2i/ﬂnf,$(hj -Vy)dx=o0(1). (3.45)
Q;j
As f1 converges to zero in H} (), g2 converges to zero in L*() and (Vyy) is uniformly bounded in L?(S2), we deduce

that

zf(b(x)fn1 —g2)(hj-Vy,) dx=0(1). (3.46)
Qj

So, combining (3.45) and (3.46) with (3.44), we get

2ﬁ,f/yn(hj~V?n)dx+2/Ay,,(hj~Vyn)dx+2i/ﬂnb(x)un(hj-V?n)dx=o(1). (3.47)
Qj Qj Qj

(ii) Estimation of first member of (3.44). Using Green’s formula in (3.47) and following the same technique used in
Lemma 3.9, we get

N / Bayn2dx+ 2 — N) / IV yal? dx
Q\V>2NQ Q\WVLNQ

} (3.48)

_2Re{iz / ﬂnb(x)u,,(mj.vyn)dx}<0(1).
=lgavne;

(iii) Estimation of the third integral of (3.48). Integrating by parts and using the fact that u; = y, =0 0on 3(Q;\V>2NQ;) CT,
we obtain

J J
2y [ puboountm; Vi de=-2iY" [ pubTacm; - Vun)d
jzljlj\Vzmj ; =lajvng; (3.49)
—2iy° / Bultn Yo (mj - Vb)dx — 2y / b(x) div(m ) BntinYpdx.
j=]Qj\V2ﬂQj jlej\VzﬂQj
Using the fact that B,u, is uniformly bounded in L2(€2) and | y ||=o0(1) in the right-hand side of (3.49), we deduce
J J
20y f Bub(Oun(m; - Vy,) dx=—2i) / Bub(X)Yn(mj - Vuy) dx + o(1). (3.50)

I=lgpvng; I=lopvng;

(iii) The main estimation. Combining Eqgs. (3.48) and (3.50), we obtain

N / |Baynl® dx 4+ (2 — N) / |V ynl? dx
Q\VNQ Q\VNQ
J
+2Re{i2 / ﬁnb(x)yn(mj.wn)dx}go(1).
=g\ v,ng;

The proof is thus complete. O
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Lemma 3.11. The solution (up, Vn, ¥n, Zn) € D(A) to the system (3.4)-(3.7) satisfies the following estimation

(IVun|® + |Batinl? + [Vynl? + | Baynl?) dx = o(1). (3.51)
Q\(V2NQ)

Proof. By combining Egs. (3.30) and (3.43), we conclude that

N[ (1Bl ) et @8 [ (19 195R) de <o, (352)
Q\(WNQ) Q\(OV2NQ)

Now, multiplying (3.8) by (1 — N)u,, integrating on €2, using Green’s formula and the fact that (8,uy) is uniformly bounded
in L2(Q), || un |=0(1) and || yn |=0(1), we obtain

a —N)/|,3nun|2dx—(l —N)/|Vun|2dx=o(l). (3.53)
Q Q
Using (3.11) and (3.15) in (3.53), we deduce
(1—N) / |Bntn]? dx — (1 = N) f |Vup|? dx = o(1). (3.54)
Q\(WV,NQ) Q\(WV,NQ)

Similarly, multiplying (3.9) by (1 — N)y,,, integrating on €2, using Green’s formula, the fact that (8,yy) is uniformly bounded
in L%(Q), || un |=0(1), and || yn |=0(1), we obtain

(1 —N>f|ﬂnyn|2dx—<1 —N)/|Vyn|2dx=o(1). (3.55)
Q Q
Using (3.18) and (3.28) in (3.55), we deduce
(1-N) / |Baynl?dx — (1 —N) / [Vyn|? dx =0(1). (3.56)
Q\(V2,NQ) Q\(V,NQ)

Finally, combining (3.52), (3.54) and (3.56), we obtain

(IVunl® + | Batnl?® + [Vynl? + |Baynl?) dx=0(1). O
Q\(WVLNQ)

Remark 3.12. It is easy to see that the condition a =1 is only used in the proof of estimation (3.18) in Lemma 3.7. So, if one
may get this estimation in the case a # 1, then the results of Lemmas 3.8, 3.9, 3.10, and 3.11 are still also true for a # 1.

Proof of Theorem (3.1). It follows, from (3.11), (3.15), (3.18), (3.28) and (3.51), that || U, ||%=0(1), which is a contradiction
with (3.2). Consequently, condition (H2) holds and the energy of the system (1.4)-(1.6) decays exponentially to zero as t
goes to infinity. The proof has been completed. O

4. Non-uniform stability in the case a # 1

The aim of this section is to show that the system (1.4)-(1.6) is not uniformly (i.e. not exponentially) stable when the
waves propagate with different speeds (i.e. a # 1), since it is already the case when ¢ and b are constants in the whole
domain, as shown below. Our result is the following.

Theorem 4.1. Assume that ¢ = cg > 0, b = by # 0 in Q and that a # 1. Then the energy of the system (1.4)-(1.6) does not decrease
exponentially to zero as t goes to infinity.

Proof. We will show that the resolvent of the operator .4 is not uniformly bounded on the imaginary axis, i.e. condition
(H2) does not hold. So, to prove the non-uniform stability, it suffices to construct a sequence B, € R and a sequence
Un = (U, Vn, Yn, Zn) € D(A) such that
Bn — +00, (4.1)
| Un llx— +o0 (4.2)
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and

I ABnl — A)Un 3= C < +o0. (4.3)

For this aim, let ,u,% > 0 be an eigenvalue of the Laplacian with Dirichlet boundary condition and ¢, its associated eigen-
function:

— 2 i
[ty 0% 0
Set fn = pn and Up = (Un, Vi, Yn, Zn) = (bn@n, iBnbn@n, Gnn, iBnanen), where
ay = % + bzl;n + b,lan and b, = IM% (4.5)
This implies that U, = (uy, Vn, ¥n, zn) € D(A) and
Vp — ifbnlin =0, (4.6)
aAuy —bzy — cvy — itnVn = @n, (4.7)
Zn —iftnyn =0, (4.8)
AYn +bvy —iftnzn = ¢n. (4.9)
It follows that U, is a solution to the equation
AUy —ipgUy = Vi, (4.10)

where V, = (0, ¢4, 0, @) € H.
Finally, from (4.10), we deduce that
ligtnUn — AU 13,=11 (O, @1, 0, @) [15,= 2. (411)

On the other side, we have

a—1)>?
e (412)

Consequently, the sequences S, = wn and Uy = (bn@n, iBabn®n, an@n, iBnaney) satisfy the conditions (4.1)-(4.3). So, using
the results of Huang [15] and Pruss [28], the system (1.4)-(1.6) is not uniformly stable in the energy space 7. The proof is
thus complete. O

Il Un 113,=2(lan|? + [bn®)p2 ~

5. Polynomial stability in the case a # 1

The condition of equal speed is then a necessary and sufficient condition for the exponential stability of our system.
Therefore, we look for a polynomial energy decay rate. Our second main result when the waves propagate at different
speeds (a # 1) can be stated as follows.

Theorem 5.1 (Polynomial decay rate). Let a # 1. Assume that all assumptions of Theorem 3.3 are satisfied. Then there exists a positive
constant C > 0 independent of Uy such that, for all initial data Uy = (uo, U1, yo, y1) € D(A), the energy of the system (1.4)-(1.6)
satisfies the following decay rate:

1
E(t)sC?HU(O)HZD(A), vt > 0. (5.1)

According to Theorem 2.4 of Borichev-Tomilov in [14], a C°-semigroup of contractions efA

(5.1) if the following conditions

on a Hilbert space H verifies

iR C p(A) (H1)

and
1
sup — || (iBI — (A) ™" [|< +o0 (H3)
1B1=1 B

hold. As condition (H1) was already checked in Theorem 2.2, we now prove that condition (H3) holds, using an argument
of contradiction. For this aim, we suppose that there exist a real sequence (8;), with 8, — +00, and a sequence U, =
(Un, Vn, ¥n, zn) € D(A) such that
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I Un llz=1 (5.2)
and

lim || B2(iBnl — AU [ %=0. (5.3)

n—oo

Next, by detailing Eq. (5.3), we obtain

iB2up — Biva=fl - 0 in  HL(Q), (5.4)
iB3vn —aBi Aty + b(X)Bizn +c(OBiva =gy — 0 in  L}(Q), (55)
iB3yn—Biza=f2 - 0 in  H\(Q), (5.6)
8320 — B2AYn —bX)B2va=g2 — 0 in L[*(Q). (5.7)
Eliminating v, and z, from (5.4)-(5.7), we get
_ol _pF2_ig. f1 _ cfl
B2y + Aty — iBab(0)yn — ifac(y = — 50— ﬁzﬂ nfy —cho (5.8)
n
. —ifn 3 + bf} — g3
Beyn+ Ayn +ifab(ouy = ——1 =11 (5.9)
B
In addition, from Egs. (5.2), (5.4), and (5.6), we deduce that
0(1) 0(1)
lunllp=—— and [ ynlp2@=—F""- (5.10)
Bn Bn
Lemma 5.2. The solution (up, vy, Yn, zn) € D(A) to the system (5.4)-(5.7) satisfies the following estimations
1
/|un|2dx=o(4). (5.11)
B
ey
Proof. Multiplying equation (5.3) by U, in H, we get
23 2 p2 _ g2 2 qy —
Re{lﬂn Il Un ll _.Bn(AUnaUn)} =B, /C(X)|Vn| dx=o(1). (512)
Q
Under condition (LH1), it follows
1
/ val? dx = 0(2). (5.13)
Bi
ey
So, using Egs. (5.4) and (5.12), we get
1
/c(x)|un|2dx = 0(4). (5.14)
Bn
Q
This yields
1
/ |Un|2dX: 0(4).
Bn
Wc,
Lemma 5.3. The solution (up, vy, Yn, Zn) € D(A) to the system (5.4)-(5.7) satisfies the following estimation:
/n|ﬂnVun|2dx:o(1) and / |BnVun|? dx = o(1). (5.15)

Q VonQ
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Proof. First, we multiply Eq. (5.8) by ﬁ,f Ny Later, using Green’s formula, (5.10), (5.11), and the fact that the sequences f!,
f2, g} converge to zero, respectively, in H}(Q), H}(2) and L?(), we get

/mﬂ,funﬁdx—aﬁg/n | Vuy, |? dx—ﬁﬁ/aﬁn(vn - V) dx — iﬂﬁ/nbynﬁndxzoa). (5.16)
Q Q Q Q
Using (5.11) and the fact that the sequences (8,yn) and (Vuy) are uniformly bounded in L2(2), we deduce from (5.16) that

/nlﬂnVun |>dx=0(1) and / | BnVun 2 dx=0(1). O

Q VoNQ
Lemma 5.4. The solution (up, Vn, Yn, Zn) € D(A) to the system (5.4)-(5.7) satisfies the following estimation

/n|ﬁnyn|2dx=o(1) and /|ﬁnyn|2dx=o(1>. (517)

Q VonQ2

Proof. Multiplying Eq. (5.8) by Snnyn. Using Green’s formula and the fact that y, =0 on I', we obtain
[ g2nvncx—a [ puncTun - V5 dx—a [ g Tun - Ve
Q Q Q

(518)

—i [o bX)N|Brynl? dx — iB? f c)nuny,dx =o(1).
Q

Using (5.10), (5.11), (5.15), and the fact that the sequences (8,y») and (Vy,) are uniformly bounded in L%(Q) in (5.18), we
deduce

/b<x>n|ﬂnyn|2dx=o<1). (5.19)
Q

Using the definition of function n and condition (LH2), we deduce

/n|ﬂnyn|2dx=o(1) and / Baynl2dx=0(1). O

Q VoNQ
Lemma 5.5. The solution (up, vy, ¥n, Zn) € D(A) of the system (5.4)-(5.7) satisfies the following estimation:

fn|Vyn > dx=0(1) and / | Vyn |? dx=0(1). (5.20)
Q VoNQ

Proof. We multiply Eq. (5.9) by 1y,. Then, using Green’s formula and the condition y, =0 on I', we get

/n|ﬁnyn|2dx—/n|wn|2dx—f(vn-Vyn)yndx+i,3n/bunnyn=o(1) (5.21)
Q Q Q Q
Using (5.10) and the fact that (8,y,) and (Vyy) are bounded in L2(2) in (5.21), we get

[ ity ax= [ 019y dx=oc). (522)
Q Q
Finally, from (5.17), we deduce

/n|Vyn|2dx=o(l) and / | Vyn P dx=0(1). O
Q VoNQ

Proof of Theorem 5.1. As we mention in Remark 3.12, using Lemmas 5.2, 5.3, 5.4 and 5.5, we deduce that the estimation
(3.51) is also true in the case a # 1. It follows, from the estimations (5.11), (5.15), (5.17), (5.20), and (3.51) that || Uy || =
o(1), which is a contradiction with (5.2). Consequently, the condition (H3) holds and the energy of the smooth solution to
the system (1.4)-(1.6) decays polynomially to zero as t goes to infinity. O
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Remark 5.6. Note that our results in Theorem 5.1 might be more general because the waves are not assumed to propagate
with the same speed. So, this theorem generalizes the results of [8] and [16].

6. Optimality of the polynomial energy decay rate
We study here the optimality of the polynomial decay rate obtained for the N-dimensional coupled wave system in

Theorem 5.1. To this aim, we will study the asymptotic behavior of the eigenvalues of the operator A in the one-dimensional
case for b and c being constants. Indeed, we consider the 1-dimensional version of the system (1.4)-(1.6):

Ugr — AUy + by + cuy =0, in (0,1) x (0, 400), (6.1)
Yit — Yxx — bur =0, in (0,1) x (0, 4+00), (6.2)
u0,t)=u(1,t) =y(0,t) =y(1,t) =0, in (0, +00) (6.3)

with the following initial data:

u(x,0) =ug, y(x,0)=yo, us(x,0)=uqsand y¢(x,0)=y1, xe(0,1)

where 1 #a >0, ¢ >0 and b € R*. From subsection 2.1, we express the system (6.1)-(6.3) as an evolution equation
of type (2.3) with H = (H}(0,1) x L?(0, 1))2 and A: (H?(0,1)NH(0, 1) x H)(0, 1))2 — H, defined by A(u,v,y,z) =
(v, auxx — bz — cv, z, yxx + bv). The aim of this section is to obtain the following result.

Theorem 6.1. Assume that N=1,a# 1, b =bg # 0 and c = cg > 0. The energy decay rate (5.1) is optimal in the sense that, for any

& > 0, we can not expect the decay rate tllﬂ for all initial data Ug € D(A).

For the proof of the Theorem 6.1, we first study the asymptotic behavior of the eigenvalues of the operator .A. Since A
is dissipative, we fix og > 0 small enough and we study the asymptotic behavior of the eigenvalues A of A in the strip

S={LeC:—ap<Re()) <0}.

So, let & € C* be an eigenvalue of A with its associated eigenvector U = (u, v, y, z) € D(A). Then AU = AU and equivalently

V=AU,

Quyy — bz —cv =Av,

z=2\y, (6.4)
Yxx +bv =2z,

u0) =u(l)=y(0)=y@1)=0.
Eliminating v and z from (6.4), we get

auyy — A(A +c)u —bry = 0,

42 _
Yax — A%y +biu =0, (6.5)
u(0) =u(1) = 0,
y(0)=y() = 0.
From the second equation of (6.5), we have
1
u= A%y = yxd. (6.6)
Substituting (6.6) in the first equation of (6.5), we get
Yo — M2 @+ 1) + cAlysw + 2202 + e+ b%)y = 0,
y(0)=y(1) =0, (6.7)

Yxx(0) = yxx(1) = 0.
The characteristic equation associated with the system (6.7) is given by
Q(r):==ar* — M@+ 1) +crlr? + 2202 + e +b?) =0.

In order to proceed, we set the following notation. Here and below, in the case where z is a non-zero non-real number, we
define (and denote) by +/z the square root of z; ie. the unique complex number with positive real part whose square is
equal to z.



510 C. Kassem et al. / C. R. Acad. Sci. Paris, Ser. 1 357 (2019) 494-512

The general solution to the first equation of (6.7) is given by

4
Y =) e,

i=1

where
rl(x)=\/%\/x [k(a+l)+c+\/(a—1)2A2—2c(a—l)k—4ab2+cz], ra(A) = —r1 (L), (6.8)
r3(A) = \/%\/x [A(a+1)+c—/(a—1)2A2—2c(a—1)x—4ab2+c2], ra(A) = —r3(0). (6.9)

For simplicity, here and below, we denote r;(1) by r;.
Hence, the general solution is given by

y(x) = Aq sinh(r1x) + Az cosh(r1x) + As sinh(r3x) + A4 cosh(rsx).
Using the boundary condition y(0) = yxx(0) =0, we get

{ Ay +Ay =0,

AzT% + A4T§ =0, (6.10)

which implies A, = A4 =0, since r2 — 12 0.
Therefore,
y(x) = Aq sinh(r1x) + A3 sinh(r3x).

The boundary conditions y(1) = yxx(1) =0 may be written as the following system

MOYCO) = (sinh(ﬁ) sinh(r3) ) <A1 > _o. (611)

risinh(r;) r3sinh(r3) ) \ As

So, set F(\) =det(M())). We have the following results.

Proposition 6.1. Assume that N =1, a # 1, b = bg # 0 and ¢ = co > 0. Then, there exist ng € N sufficiently large and two sequences
(A,(.,O)) and ()»,(11)) of simple roots of F (which are also simple eigenvalues of A) satisfying the following asymptotic behavior

A9 —ing ib? L o(L). vipr=n (612)
no= 2@—1nn  2(a—1)2n2n2 n3 )’ =0 '

and

WO =in'ny/a - % +0 <%) Vi >no. (6.13)
Proof. It is easy to see that the system (6.11) has a non-trivial solution (A1, A2) # (0, 0) if and only if A is solution to the
following equation:

F(1) = (r? — r})sinh(ry) sinh(r3) = 0.
Since r3 —r? 0, then sinh(ry) = 0 or sinh(r3) = 0. Thus

ri=innt or r3=in'n, n,n’ €Z.

It follows from the asymptotic expansion in (6.8) and (6.9) that

i o )i

2(a— DA 2(@—1)2x2 23 ’
or

A c 1 .

%—l—m—l—O(X):mn

Hence, since n ~n’ ~ A, we obtain two branches X,ﬁo) and AS) of eigenvalues of the operator A that satisfy the asymptotic
behaviors (6.12) and (6.13). The proof is thus complete. O
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Remark 6.2. The operator .4 has two branches of eigenvalues. The energy corresponding to the first branch A,ﬂo) decays
polynomially, while the energy corresponding to the second branch of eigenvalues AS) decays exponentially.

A €
Proof of Theorem 6.1. Let € > 0 and set [ = Tie First, let A,(.,O) , with n > ng, be the sequence of eigenvalues of the operator

€
A described in Proposition 6.1, and let U, € D(A) be the associated normalized eigenfunction. Moreover, we introduce the
following sequence

B =30"). Vn=no.
Next, using (6.12), we have
(iBal — AUy = o (1)\u, vasn
n n= 2(a — 1)2112752 3 ns = Ho,
and therefore
cb? 1
X
@-1%m? " f

BE 2 (iBal — A)Unllz ~ 5 ., Vn=no.

Thus, we deduce that

lim 272 (il — A)Upll3 = 0.
n——4oo

Thanks to Theorem 2.4 in Borichev-Tomilov [14], we deduce that for Uy € D(A), ||etAU0||H decays more slowly than —;
t2-2
as time t — +o0. The proof is thus complete. O

Remark 6.3. We can use Theorem 3.4.1 in [26] and Eq. (6.12), to deduce the optimality of the polynomial energy decay rate
(5.1) in the case N =1.
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