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This paper deals with the chemotaxis-growth system: u; = Au — V - (uVv) + pu(l —u),
Vi=AvV—Vv+w, Tw; + 8w =u in a smooth bounded domain Q@ c R3 with zero-flux
boundary conditions, where u, §, and T are given positive parameters. It is shown that the
solution (u, v, w) exponentially stabilizes to the constant stationary solution (1, % %) in
the norm of L>°(2) as t — oo provided that u > 0 and any given nonnegative and suitably
smooth initial data (ug, vo, wo) fulfills ug # 0, which extends the condition u > % in [8].
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RESUME

Cette Note traite du systéme de croissance chimiotaxique : uy = Au — V(uVv) + uu(l —u),
Ve =Av—v+w, Tw; 48w = u dans un domaine borné lisse & c R? avec une condition de
flux zéro au bord et ol u, § et T sont des paramétres positifs donnés. Nous montrons que
la solution (u, v, w) se stabilise exponentiellement vers la solution constante stationnaire
(1,1/8,1/8) en norme L*°(R2) lorsque t tend vers l'infini, pourvu que © > 0 et que toute
donnée initiale positive ou nulle suffisamment lisse satisfasse ugp # 0. Ces hypothéses
relaxent la condition > 1/88% de [8].
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1. Introduction

This paper deals with the chemotaxis-growth system with indirect signal production

Ur=Au—V.-Wwvv)+ pu(l —u), xeQ, t>0,

Vi=Av—v+w, xe, t>0,

TWe + 8w =u, xeQ, t>0, (1.1)
u _ v _

v =1gv =0, XedQ, t>0,

ux,0)=ugx), v 0)=vokx), TWkX 0 =TWo(X) X

which was proposed [15] to model the spread and aggregative behavior of the Mountain Pine Beetle (MPB) in forest habitat.
Q c R" (n < 3) is a smooth bounded domain with zero-flux boundary conditions. The parameters i, §, and T are positive.
Here u = u(x,t) denotes the density of flying MPBs, which can bias their movement in response to MPB pheromone with
concentration w = w(x, t), the latter being secreted only by those nesting MPB, mathematically represented through its
density v = v(x,t). In addition to random dispersal, chemotaxis movement, the flying MPBs are assumed to undergo birth
and death following a standard logistic law. The nesting MPBs increase through transition from the flying to the nesting
state, and they decrease due to death measured by parameter §.
Eq. (1.1) originates in, but essentially differs from the celebrated chemotaxis model with logistic source

Uur=Au—xV-uvv)+pul—-u), xeQ, t>0,

Vi=AvV —vV+u, xe, t>0,

u v XedQ, t>0 (12)
v — v — ’ ’

ux,0)=up(x), v(x,0) =vok), x e,

which was proposed as a first model about chemotaxis by Keller and Segel [9] to describe the aggregation phase in the slime
mold formation of Dictyostelium discoideum in response to the chemical cyclic adenosine monophosphate (cAMP). Chemo-
taxis as a significant mechanism of directional migration of cells is the movement of cells in response to concentration
gradients of a chemical signal emitted by the cells themselves in many biological processes. During the past four decades, a
main issue of the investigation was whether the solutions are bounded or blow up (see, e.g., [1,2,4,3,5,7,6,10-14,16,20,21,23,
24,22,25-27,29] and references therein for detailed results). For example, if u =0, a striking feature of system (1.2) is that
some of its solutions blow up in finite time for n > 2, where n represents the spatial dimension (see [2,3,6,12,22,25,29]).
If n > 2, solutions to (1.2) without the logistic term (i.e. # =0) may blow up in finite time (see [4,11]); however, if n =2
and p > 0 is arbitrarily small, the authors [13] investigated that all of the solutions to (1.2) are global and bounded. In the
case n > 3, the unbounded solution can be excluded for the appropriately large @ which is compared with the chemotactic
coefficient x (see [24]). Recently, it is worth mentioning that if the term wpu(1 — u) was replaced by the term u — pu’ in
(1.2), where © > 0 and r > 2, Lin et al. [10] investigated that the solution of (1.2) is global in time and bounded under the
explicit condition on the parameters x, w and r. Furthermore, Lin et al. [10] also established the solution (u, v) of system
(1.2) converges to the steady state (1,1) as t — oo for n =2, 3.

In drastic contrast to the corresponding three-dimensional chemotaxis-growth system (1.2), in which the global existence
or blow-up of classical solutions largely remains open if @ > 0 is small, it is worth mentioning that the authors [8] found
out that an arbitrarily small quadratic degradation term w > 0 is sufficient to suppress any blow-up phenomenon in (1.1)
when n =3 and that the solutions to (1.1) exponentially stabilize to the constant stationary solution (1, % %) in the norm
of L%°(2) as time tends to infinity, provided that u > 81? by using the methods in [17,18]. More results about the Cauchy
problem (1.1) were obtained (see [19]).

The purpose of this paper is to extend the condition y > s}? in [8] to u > 0. Throughout the paper, we assume that the
initial data (ug, v, wo) satisfies

ug € C%(Q), vo € C1(Q), wo € C1(R),up >0, vo >0, wo >0 and ug 0. (1.3)

The following solutions to system (1.1) have been known. The first two are on the local existence and global boundedness
of solutions to the model (1.1) by B. Hu and Y. Tao [8].

Lemma 1.1. (Lemma 2.1 in [8]) Let u > 0, § > 0 and T > 0, and suppose that (ug, vo, wo) fulfills (1.3). Then there exist Trax € (0, o]
and a unique triple of (u, v, w) nonnegative functions
u e C(2x [0, Tmax)) N C31(Q2 x (0, Tmax)),
v e C(Q x [0, Tmax)) N C*1(Q x (0, Tmax)) N L (10, Tmax); W9(Q)), (14)
w e CO1(Q x [0, Tmax))
that solves (1.1) classically in  x (0, Tmax) and that are such that, if Tmax < 0o, then

t_l)i%ﬂ [uC, D)o@y =00 ast 7 Tmax. (1.5)
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Lemma 1.2. (see [8]) Letn =3, u > 0, 8§ > 0 and T > 0, and suppose that (1.3) holds. Then there exists Tmax € (0, 00] such that the
problem (1.1) possesses a unique classical solution (u, v, w), uniformly bounded, i.e. Tmax = oo and there exists a constant C > 0 such
that

ux,t) <C,v(x,t) <C and w(x,t) <C forallxe Qandt > 0. (1.6)
Moreover, there exist ¢ € (0, 1) and K > 0 such that

lull, +1IvIl, Wl 20014 g gy < Ko £2 80> 0. (17)

LA LA
20147 (@[t t4+1]) 20147 @[t t4+1]) [t,t4+1])

Now we state the main result of the present paper.

Theorem 1.1. Letn =3, u > 0, § > 0 and T > 0, assume that (1.3) holds. Then any global classical solution to (1.1) constructed in
Lemma 1.2 has the exponential convergence property

1 1 _
Hu(, t) — 1oy + V(- 1) — glle(Q) + 1w, t) — EHLOC(Q) <Ce™™ (1.8)

forallt > 0, with some C > 0 and o > 0.
2. Proof of Theorem 1.1

For any p > 0, Lemma 1.2 asserts the global existence and boundedness of classical solutions to (1.1). In this section, we
shall obtain that the solution (u, v, w) will exponentially stabilize to the constant stationary solution (1, %, %) forany u >0

based on some known smooth estimates for the heat semigroup (e?®);>o under Neumann boundary conditions [2,23].

Lemma 2.1. Let (e'®)>¢ be the Neumann heat semigroup in 2, and let A1 > 0 denote the first nonzero eigenvalue of — A in Q under
Neumann boundary conditions. Then there exist positive constants 11, 12, 13, and 14 depending on 2 only, which have the following
properties.

(i)If1<q < p < oo, then

n

1_1 _
e pllnie) <m(1+¢ 292 e ™ ) |g)|1a(q) forall t>0 (2.1)

holds for all ¢ € L1(R) satisfying [, ¢ = 0.
(i) If1 <q < p < oo, then

1

1_n,1
IVepllinie) < m2(1+¢727 2@ ) e ™| |1a() forallt >0 (2.2)
is true for each ¢ € L9(Q).
(iii) If2 < q < p < o0, then
1 _n/1 1
IVepllinie) < n3(1+¢7 272 )) e ™|V |1a(q) forallt >0 (23)

is valid for all ¢ € W19(Q).
(iv)If1 <q < p < o0, then

1 1_1 _
eV - Bllrie) < na(1+t7 272972 e ™ 16| |1a(q) forallt >0 (24)

holds for all ¢ € (C§°(£2))", where A1 > 0 denotes the first nonzero eigenvalue of — A in © under Neumann boundary conditions.

Lemma 2.2. et y € (0, 1). Then, for any positive parameters x, 8, T, and w, and for each solution to (1.1) with initial data fulfilling
(1.3), one can find « € (0, min {1, y, 5 }) and C > 0 such that

u(,t) — 1) <Ce (2.5)
and
1 —at
[lv(, t) — Ellmm <Ce (2.6)
as well as
1 _
[lw(,t) — g||L°0(sz) <Ce ™ (2.7)

hold for all t > 0.
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Proof. Since u is bounded in L*° (2 x (0, 00)) asserted by Lemma 1.2, we can pick some large constants C; >0 (i=1,2,3)
such that

u(-,6) — IHLOO(Q) <Cy, |lve, b — 1HW1’°°(Q) <Cyand ||w(.,t)HLOC(Q) <C3 (2.8)

for all t > 0, which implies that the set
T :=sup [To > to‘||u(-, £) — 1|1y < C1 e~ forall ¢ € [to, To]] (2.9)

is not empty (see [28] for details). In particular, T is well defined and, in order to prove the lemma, it is sufﬁcient to make
sure that actually T = oco. Next we abbreviate U(-, t) :=u(-,t)—1, V(-,t) ;== v(-, t) — and W(E, ) :=w(,t)— ; the system
(1.1) becomes

U=AU-V.-@VV)—puU—pulU?, xe, t=>0,
Vi=AV -V +W, xeQ, t>0, (2.10)
TW,+8W=U, xeQ, t=>0.

The equality TW; + W = U and (2.9) imply that

t
_z 1 -z z
WDl iy =€ [ Wollmigy + 5 €5 [ eF UG gy
0

t

C
= ei%t‘ ’WOHLOO(Q) + ?] ei%t/e%seiy(sit())ds (211)
0
€1 o~y (t=to) z.
e , Y <=
It T8y 8
<o ol | e
@7 jagerveit yzg
for all t € [tg, T]. Along with (2.8), this implies that
[IW (-, D)o@y < Cqe™ MRl 510-10) (2.12)

for all t € [tg, T] with some constants C4 > 0. Applying the variation-of-constants formula with respect to U and V, we can
find that

t
U(, 1) =eA W0y (- ) — / eIV (u(, 5)VV (- 5)) ds

to

. (213)
_ u/e<A*M><f*S>U2(.,s) ds
to
and
t
V(- t) =e®" D0y (. 1)) +/e<A—”<f—S>W(.,s) ds. (214)

to

Then by means of the variation-of-constants representation for V and applying Lemma 2.1 and (2.12), we can estimate

IVV D)
t

/Ve“—S)(A—”W(., s)ds

to

<||veETVY (. 1) |+

LP(Q)
t

< e O[T DY (1) gy + 12 [ (14 €= 9 I W) g
to

<e 7). G5||[VV (-, to)] (2.15)

|LP Q)
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t

+n2|Q|% /(1 +(f—S)_%)e_<f—5)||w(~,s)||LOO(Q)dS
to
t

1 : T
< e—(t=to) Cs5-Cy+ 12|27 Cy - / (1 +(t— s)f%)ef(t—s) . e~ min{y, 5}(s—to) 4

to
t

< CaC5- e Q7 Cy - (/ (14 p~2)e~(-minty.5hp dp) = min(y. §}t—to)
to

for all t € (tg, T). Furthermore, we note that, since @ € (0, min {,u, Y, %}) y €(0,1) and % + % < 1, the numbers

0
Ce:= / (l + p_%)e_(l_mm{%%})p dp
0

and

3

oo
C7:= / (1 +p*%*2p)e—(u—a)ﬂ dp
0

are finite. Now using (2.15) and (2.16), and recalling that « € (0, min {u, y, £}) and y € (0, 1), we obtain that

l — —
[IVVED] g = <C5C2 +n2|gz|pc4c6> )
for all t € (tg, T). In order to show T = co, we need to obtain that

u(-, £) — 1||=(@) < Coe 1) forall t € (to, T)
with some Cy < Cq1. Employing the variation-of-constants formula for U, we see that
UG O]y = e [TORUC 00|
t
+/e—“<f—5>||e(f—S>Av.(u(-,s)VV(.,s))||Lm(Q) ds

to
t

[ e B
to

for all t € (tg, T). Next the maximum principle, together with (2.8), (2.9), and the fact that o < p yields that

—u(t—to) | |alt—to) A —(t—to)
€ 0 ||e 0 U("tO)HLO@(Q) =e 0 HU("tO)HLw(Q)
< Cge™@t=t) forall t >ty
with some constants Cg > 0. Moreover, combining (2.9), (2.15), and (2.18) yields

t
/e*Mf*S)He(f*S)AV (-, )VV(-,9)] ymm ds

fo

t
3

< 774[ (1+- 5)7%7” )e_M(t_S)‘|u("s)||L°°(Q)HVV("S)HLP(Q) ds

to
t

< C1774/ (1+ (f—S)7%7

to

3

1
Z <C4C2 + 772|9|5C4C5> e ¥ gg
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(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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3

t
< C1n4 . <C4C2 +7’]2|Q|%C4C5> . (/ (‘l +p_%_2p)e_(l/«—0l)/) dp) .e—a(t—fo)

0

1
<C1C7n4- <C4C2 + n2|Q|EC4C5> et

< Cg . e—lx(t—fo)

for all t € (tg, T) with some Cg = Cq(p, |2]) > 0. Furthermore, we can find some constants C1p > 0 to estimate
t t
/ e D) |eCIBY2(. )| d5 < CF / e (t=5) o=V (5—t0) 4
to to (2.23)
< Cqpe~ min{u,y Hi—to)
< Coe @t

for all t € (to, T) again because o € (0, min {x, y, §}). Thus if suitably enlarging C; such that Cg + Cg + C1o < Cy, then the
continuity of the function ¢t — |[[u(-,t) — 1||.~(q) implies that indeed T cannot be finite. This yields that T = oo and hence
prove (2.5). Thus we can make use of (2.5) and (2.11) to obtain (2.7) for all t > tq.

According to (2.7), we can apply the maximum principle and (2.10) to obtain that

t
||V(" t)HLOO(Q) = ei(t7t0)||e(t7t0mv0| |L°°(Q) + / ei(tis)He(tiS)AW(" 5)| |L°°(Q) ds

¢ ! (2.24)
—(t—to) —(t—s)
se ||v0||[_0<>(9)+/e HW(-,S)HLm(Q)ds forall ¢t > 0.
to
We abbreviate C13 :=[|Vgl|1=(g) to obtain that
t
||V("t)HL0°(Q) < Cue‘““o) +Cq /e—(t—s)e—a(s—to) ds

to (2.25)

C
— Cppe -t ¢ T (g-alt=to) _ o=(t=t0)) fora]] > 0.

This yields (2.6); then we can obtain the desired results in the light of the definition of U, V and W. O
Now, we are in a position to prove Theorem 1.1.
Proof of Theorem 1.1. With the aid of Lemma 2.2, we can obtain the desired result (Theorem 1.1). O
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