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In this note, we classify smooth equivariant compactifications of Gn
a that are Fano 

manifolds with index ≥ n − 2.
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r é s u m é

Dans cette note, nous classifions les compactifications équivariantes lisses de Gn
a qui sont 

des variétés de Fano d’indice ≥ n − 2.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Gn
a be the complex vector group of dimension n, i.e. Cn equipped with the additive group structure. A smooth 

equivariant compactification of Gn
a (SEC in abbreviation) is a Gn

a -action A : Gn
a × X → X on a projective manifold X of 

dimension n with an open orbit O  ⊂ X . Since Gn
a contains no nontrivial finite subgroup, the open orbit O is isomorphic to 

Cn . When our interest is on the underlying manifold X , we say that X is a SEC.
The study of SEC is started from [15], where a classification in dimension 3 and of Picard number one is obtained. 

Recently, a full classification of Fano 3-folds that are SEC is obtained in [16], while it seems difficult to pursue further in 
higher dimension. In [11], the first author and J.-M. Hwang introduced the notion of Euler-symmetric projective varieties, 
namely nondegenerate projective varieties admitting many C∗-actions of Euler type. It is shown in [11] that they are 
equivariant compactifications of vector groups and they are classified by certain algebraic data (called symbol systems), 
while it remains the problem to translate the smoothness in terms of these algebraic data.

Recall that, for a Fano manifold X of dimension n, its index i X is the greatest integer such that −K X = i X H for some 
divisor H on X . It is well known that i X ≤ n + 1. By a series of works by Fujita ([12], [13], [14]), Mella ([21]), Mukai ([22]), 
and Wiśniewski ([24]), the classification of Fano n-folds with index i X ≥ n − 2 is known. Based on this, we will give a 
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classification of SEC n-folds with index ≥ n − 2. In the case of a prime Fano variety, that is, of a Fano variety with Picard 
number one, our result reads as follows (Theorem 1.1).

Theorem 1.1. Let X be an n-dimensional SEC with Picard number one. Assume that i X ≥ n − 2. Then X is isomorphic to one of the 
following:

(1) 6 homogeneous varieties of algebraic groups: Pn, Qn, Gr(2, 5), Gr(2, 6), S5 , Lag(6).
(2) 5 non-homogeneous varieties:

(2-a) smooth linear sections of Gr(2, 5) of codimension 1 or 2.
(2-b) P 4-general1 linear sections of S5 of codimension 1, 2 or 3.

Here S5 and Lag(6) denote the 10-dimensional spinor variety and the 6-dimensional Lagrangian Grassmannian, respec-
tively. As a corollary of Theorem 1.1, we obtain the following corollary.

Corollary 1.2. Let X be a SEC n-fold of Picard number one. Assume that the VMRT at a general point of X is smooth (e.g., X is covered 
by lines) and n ≤ 5. Then X is isomorphic to one of the following:

Pn,Qn, smooth linear sections of codimension 1 or 2 of Gr(2,5).

It is expected that for a SEC of Picard number one, its VMRT at a general point is always smooth ([11]).
To complete the classification of smooth equivariant compactifications of Gn

a that are Fano manifolds with index ≥ n − 2, 
it remains to consider Fano n-folds with index ≥ n − 2 and Picard number ρ ≥ 2. The main difficulty lies on Mukai fourfolds 
with ρ ≥ 2, which were classified by Wiśniewski in [24]. In the last section, we will go through this list and finally classify 
those that can be SEC (Proposition 3.4). By our results in the present paper, to classify Fano 4-folds which are SEC, the only 
remaining case is Fano 4-folds of index 1 and with Picard number at least 2.

2. Picard number one case

Let X be a uniruled projective manifold. An irreducible component K of the space of rational curves RatCurvesn(X) on 
X (see [19, Chap. II, Definition 2.11]) is called a minimal rational component if the subvariety Kx of K parameterizing curves 
passing through a general point x ∈ X is non-empty and proper. Curves parameterized by K will be called minimal rational 
curves. Let ρ : U → K be the universal family and μ : U → X the evaluation map. The tangent map τ : U ��� P T (X) is 
defined by τ (u) = [Tμ(u)(μ(ρ−1ρ(u)))] ∈ P Tμ(u)(X). The closure C ⊂ P T (X) of its image is the VMRT structure on X . The 
natural projection C → X is a proper surjective morphism and a general fiber Cx ⊂ P Tx(X) is called the variety of minimal 
rational tangents (VMRT for short) at the point x ∈ X . It is well known that dimCx = −K X · � − 2, where � ∈ K is a general 
minimal rational curve through x ∈ X .

Example 1. An irreducible Hermitian symmetric space of compact type (I.H.S.S. for short) is a homogeneous space M = G/P
with a simple Lie group G and a maximal parabolic subgroup P such that the isotropy representation of P on Tx(M) at a 
base point x ∈ M is irreducible. The highest-weight orbit of the isotropy action on P Tx(M) is exactly the VMRT at x. The 
following table (e.g., [9, Section 3.1]) collects basic information on these varieties. By [1], these are all SEC among rational 
homogeneous manifolds G/P of Picard number one.

Type I.H.S.S. M VMRT S S ⊂P Tx(M)

I Gr(a,a + b) Pa−1 ×Pb−1 Segre
II Sn Gr(2,n) Plücker
III Lag(2n) Pn−1 Veronese
IV Qn Qn−2 Hyperquadric
V OP 2 S5 Spinor
VI E7/(E6 × U (1)) OP 2 Severi

Example 2. Fix two integers k ≥ 2, m ≥ 1. Let � be an (m + 2k)-dimensional vector space endowed with a skew-symmetric 
2-form ω of maximal rank. The symplectic Grassmannian M = Grω(k, �) is the variety of all k-dimensional isotropic sub-
spaces of �, which is not homogeneous if m is odd. Let W and Q be vector spaces of dimensions k ≥ 2 and m respectively. 
Let t be the tautological line bundle over PW . The VMRT Cx ⊂P Tx(M) of Grω(k, �) at a general point is isomorphic to the 
projective bundle P ((Q ⊗ t) ⊕ t⊗2) over PW with the projective embedding given by the complete linear system

1 See [10, Definition 2.5].
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H0(PW , (Q ⊗ t∗) ⊕ (t∗)⊗2) = (W ⊗ Q )∗ ⊕ Sym2W ∗.

Alternatively, Cx is isomorphic to the blowup of P (m+k−1) along some linear space, hence it is a SEC.

Recall that a subvariety X ⊂P V is called conic-connected if through two general points there passes an irreducible conic.

Proposition 2.1 (J.-M. Hwang). Let X ⊂ P V be a conic-connected smooth subvariety. Then X is a SEC if and only if X ⊂ P V is 
isomorphic to one of the following or their biregular projections:

(1) the VMRT of an irreducible Hermitian symmetric space of compact type;
(2) the VMRT of a symplectic Grassmannian Grω(k, 2k + m) for 1 ≤ m, 2 ≤ k;
(3) a nonsingular linear section of Gr(2, 5) ⊂P 9 of codimension ≤ 2;
(4) a P 4-general linear section of S5 ⊂P 15 of codimension ≤ 3.

Proof. Assume first that X is not prime Fano, then by [17, Theorem 2.2], X ⊂ P V is projectively equivalent to one of the 
following or their biregular projections:

(a1) the second Veronese embedding of Pn;
(a2) the Segre embedding of Pa ×Pn−a for 1 ≤ a ≤ n − 1;
(a3) the VMRT of the symplectic Grassmannian Grω(k, 2k + m) for 1 ≤ m, 2 ≤ k;
(a4) A hyperplane section of the Segre embedding Pa ×Pn+1−a with 2 ≤ min{a, n + 1 − a}.

The case (a4) is not a SEC by the proof of [9, Proposition 6.3].
Now assume that X is a prime Fano manifold. Then it is an Euler symmetric variety by [11, Corollary 5.6]. Let r be 

the rank of X . By [11, Theorem 3.7], the r-th fundamental form at a general point x ∈ X is non-zero. This implies that 
there exists a hyperplane section H such that multx(H) = r. Hence, for any curve C 
⊂ H lying on X through x, we have 
H · C ≥ r. By our assumption, X is conic-connected, hence the conics through x cover X . Let C be a general such conic, then 
we get 2 = H · C ≥ r. This implies that r = 2, hence X ⊂ P V is quadratically symmetric. Our claim follows then from [10, 
Proposition 7.11, Theorem 7.13].

Recall that for a Fano manifold X of dimension n, its index i X is the greatest integer such that −K X = i X H for some 
divisor H on X . By Kobayashi–Ochiai’s theorem, we have i X ≥ n if and only if X is either Pn or Qn . A Fano manifold X is 
called del Pezzo (resp. Mukai) if i X = n − 1 (resp. i X = n − 2).

Proposition 2.2. Let X be a SEC of ρX = 1. Assume that dim X ≥ 2 and that the VMRT at a general point of X is smooth. Then i X ≥ 3.

Proof. Let D ⊂ X be the boundary divisor, which is irreducible since ρX = 1. By [15, Theorem 2.5], we have Pic(X) = ZD , 
hence −K X = i X D . By [15, Theorem 2.7], we have i X ≥ 2. Let � be a minimal rational curve through a general point. Then 
we have � · D = 1 by [11, Proposition 5.4 (v)]. This implies that i X = −K X · �. Assume that i X = 2. Then one has −K X · � = 2. 
Hence, there exists only finitely many minimal rational curves passing through a general point, that is, the VMRT Cx consists 
of finitely many points for x ∈ X general. By [11, Proposition 5.4 (ii)], Cx is irreducible and linearly non-degenerate, which 
yields a contradiction. This gives i X ≥ 3.

Remark 1. It is expected that the assumption on the smoothness of the VMRT at a general point of X in Corollary 1.2 and 
Proposition 2.2 is always fulfilled. See [11, Conjecture 5.7].

Proposition 2.3. Let X be an n-dimensional del Pezzo manifold of Picard number one. Then X is a SEC if and only if X is a smooth 
linear section of Gr(2, 5) of codimension ≤ 2.

Proof. As ρX = 1, X is isomorphic to one of the following by Fujita’s classification ([12], [13], [14]),

(1) cubic hypersurface in Pn+1;
(2) complete intersection of 2 quadrics in Pn+2;
(3) a hypersurface of degree 4 in P (2, 1, . . . , 1);
(4) a hypersurface of degree 6 in P (3, 2, 1, . . . , 1);
(5) smooth linear sections of Gr(2, 5).

It’s well-known that for X in (1) and (2), the group Aut◦(X) is trivial, hence X is not a SEC. In case (3), it is a double 
cover of Pn ramified along a smooth hypersurface of degree 4, hence its automorphism group is finite by [20, Theorem 4.5]. 
In case (4), the linear system of the ample generator of Pic(X) gives a rational map X ��� Pn−1 by [14], which is not 
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birational, hence it is not a SEC by [11, Proposition 5.4 (vi)]. In case (5), any smooth linear section of X of codimension ≤ 2
is a SEC by [10, Proposition 2.11] since it is Euler symmetric. By Proposition 2.2, we have i X = n − 1 ≥ 3, hence n ≥ 4. This 
shows that the smooth linear sections of Gr(2, 5) of codimension 3 and 4 are not SEC.

Lemma 2.4 ([8, Satz 8.11]). Let X be a smooth variety of dimension n, which is a complete intersection in a weighted projective space. 
Then H p(X, �q

X (t)) = 0 if p + q < n and t < q − p.

Corollary 2.5. Let X be a Mukai manifold of ρX = 1. Assume that X is a complete intersection in a weighted projective space. Then 
Aut(X) is discrete.

Proof. By assumption, we have −K X =OX (n −2). As T X � �n−1
X ⊗ K ∗

X = �n−1
X (n −2), we have H0(X, T X ) = 0 by Lemma 2.4.

The following lemma is well known for general sections, but we need it for any (smooth) section.

Lemma 2.6. Any linear section of codimension ≤ 5 (resp. ≤ 3) of S5 ⊂P 15 (resp. Gr(2, 6) ⊂P 14) is conic-connected.

Proof. By [26, Chap. III, Proposition 2.19], any two points of S5 ⊂ P15 can be joined by a smooth quadric of dimension 
6 contained in S5, which implies the first assertion. Consider the Severi variety X = Gr(2, 6) ⊂ P 14. By [26, Chap. IV, 
Theorem 2.4 (b)] any two points x, y ∈ X such that the line xy is not on X are joined by a smooth quadric in X of 
dimension 4. Take any linear section X ′ of X of codimension ≤ 3. If for two general points x′, y′ ∈ X ′ , the line x′ y′ is 
not on X , then x′ , y′ are joined by a Q4 on X , and therefore they are joined by a conic on X ′ , which implies that X ′ is 
conic-connected. Now assume that for x′, y′ ∈ X ′ general, the line x′ y′ is on X , then it is also contained in X ′ as X ′ is a 
linear section of X . This implies that X ′ is a projective space of dimension at least 5, which is not possible since X does not 
contain any P 5. This concludes the proof.

Proposition 2.7. Let X be an n-dimensional Mukai variety with ρX = 1. Then X is a SEC if and only if X is one of the following

(i) a P 4-general linear section of the 10-dimensional spinor variety S5 of codimension ≤ 3;
(ii) the 8-dimensional Grassmannian Gr(2, 6);
(iii) the 6-dimensional Lagrangian Grassmannian Lag(6).

Proof. When n = 3, then X is isomorphic to P 3 or Q3 by [15]. Now assume n ≥ 4. By Mukai’s classification [22], X is either 
a complete intersection in a weighted projective space, or a smooth linear section of one of the following varieties:

(a) a quadric section of the cone over Gr(2, 5) ⊂P 9;
(b) the 5-dimensional Fano contact manifold G2/P2 ⊂P 13;
(c) the 6-dimensional Lagrangian Grassmannian Lag(6) ⊂P 13;
(d) the 10-dimensional spinor variety S5 ⊂P 15;
(e) the 8-dimensional Grassmannian Gr(2, 6) ⊂P 14.

By Corollary 2.5, we only need to consider cases (a)–(e). In case (a), the smooth linear sections of X are called Gushel–
Mukai varieties. By [7, Proposition 3.19 (c)], they have finite automorphism groups, hence they are not SEC.

For the remaining cases, X is covered by lines, so it has smooth VMRT at general points. By Proposition 2.2, we have 
i X = n − 2 ≥ 3, hence n ≥ 5.

In case (b), its VMRT at a general point is linearly degenerate, hence it cannot be a SEC by [11, Proposition 5.4 (ii)].
In case (c), a smooth hyperplane section X of Lag(6) is a compactification of a symmetric variety with Aut◦ = SL3 by [23, 

Theorem 3]. As SL3 does not contain any subgroup isomorphic to G5
a , the variety X is not a SEC. Hence only Lag(6) itself is 

a SEC.
In cases (d) and (e), X is conic-connected by Lemma 2.6, hence by Proposition 2.1, X is as in (i) and (ii).

This concludes the proof of Theorem 1.1. Now Corollary 1.2 follows by virtue of Proposition 2.2.

3. Higher-Picard-number case

Proposition 3.1. Let X be a Fano manifold of dimension n with index i X ≥ (n + 1)/2. If ρX ≥ 2, then X is a SEC if and only if it is one 
of the following:

(∗) P
n
2 × P

n
2 , P

n−1
2 ×Q

n+1
2 , P

P
n+1

2
(O(1) ⊕O

n−1
2 ).
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Proof. By [25], a Fano manifold with i X ≥ (n + 1)/2 and ρX ≥ 2 is one of the varieties in the list (∗) or the homoge-
neous variety P T

P
n+1

2
, while the latter is not a SEC by [1]. The first two varieties in (∗) are SEC. The projective bundle 

P
P

n+1
2

(O(1) ⊕O n−1
2 ) is isomorphic to the blowup of Pn along a linear P

n−3
2 , which is a SEC.

As immediate corollaries, we have the two following ones.

Corollary 3.2. Let X be a del Pezzo manifold with ρX ≥ 2, then X is a SEC if and only if X is one of the following:

(a) blowup of P 2 at 1 or 2 points;
(b) P 2 ×P 2;
(c) blowup of P 3 at 1 point;
(d) P 1 ×P 1 ×P1 .

Corollary 3.3. Let X be a Mukai manifold with ρX ≥ 2. Assume that dim X ≥ 5, then X is a SEC if and only if X is one of the following:

(a) P 3 ×P 3;
(b) P 2 ×Q3;
(c) blowup of P 4 at a point.

Notice that the Fano SEC in dimension 3 are fully classified in [16], while the Mukai fourfolds are classified by Wiśniewski 
[24]. To complete the picture, it remains to determine which Fano fourfolds in the list of [24] are SEC.

Proposition 3.4. Let X be a Mukai fourfold with ρX ≥ 2. Then X is a SEC if and only if X is one of the following:

(a) P 1 ×P 3;
(b) P 1 ×PP2 (O(1) ⊕O);
(c) P 1 ×P 1 ×P1 ×P 1;
(d) blowup of Q4 along a line;
(e) PQ3 (O(−1) ⊕O);
(f) PP3 (O(−1) ⊕O(1)).

Proof. By Wiśniewski’s classification [24] (see [18, Table 12.7]), X is isomorphic to one of the following varieties,

(1) P 1 × V , where V ∼=P TP2 or V ∼= Vd is a del Pezzo threefold of degree d with 1 ≤ d ≤ 5 and ρVd = 1;
(2) P 1 × V , where V is either P 3, or PP2(O(1) ⊕O) (the blowup of P 3 at a point), or P 1 ×P 1 ×P1;
(3) a Verra fourfold, that is, a double cover of P 2 ×P 2 whose branch locus is a divisor of bidegree (2, 2);
(4) a divisor on P 2 ×P 3 of bidegree (1, 2);
(5) an intersection of two divisors of bidegree (1, 1) on P 3 ×P 3;
(6) a divisor on P 2 ×Q3 of bidegree (1, 1);
(7) the blowup of Q4 along a conic which is not contained in a plane lying on Q4;
(8) PP3 (N ), where N is the null-correlation bundle on P 3;
(9) the blowup of Q4 along a line;

(10) PQ3 (O(−1) ⊕O);
(11) PP3 (O(−1) ⊕O(1)).

In case (1), it follows from Blanchard’s lemma [5, Theorem 7.2.1] that an effective action of G4
a on X ∼= P 1 × V descends 

in a unique way to an action of G4
a on V making the second projection an equivariant morphism. The image of the latter 

action is isomorphic to G3
a making V a SEC, while by [15, Theorem 6.1] the only SEC threefolds with Picard number one 

are P 3 and Q3. We conclude therefore that the variety X is not a SEC. In case (2), the listed varieties are clearly SEC.
In case (3), an effective action of G4

a on X induces the inclusions G4 ⊆ AutL(B) ⊆ Aut(P 2 ×P 2), where AutL(B) stands 
for the group of automorphisms of the branch locus B induced by automorphisms of P 2 ×P 2. Indeed, this follows verbatim 
from the proof of [20, Lemma 4.1, Lemma 4.2, Proposition 4.3] replacing Pn by Pn ×Pn . In particular, we obtain in this way 
an effective action of G4

a on P 2 ×P2 that fixes the branch locus B . We know on the other hand, after Hassett and Tschinkel 
[15, Proposition 3.2], that the boundary divisors for the possible effective actions of G4

a on P 2 ×P 2 are of bidegree (1, 0)

and (0, 1), hence X cannot be a SEC.
In cases (4), (5) and (6), the variety X is isomorphic to the projectivization PY (B) of a reflexive non-locally free sheaf 

B on a smooth variety Y . Such sheaves are called Bǎnicǎ sheaves in [4, Section 2], where it is shown that the canonical 
map X → Y is a Mori contraction with connected but not equidimensional fibers. The general strategy to prove that none 
of these cases give rise to a SEC will be to analyze the points where the dimension of the fibers of X → Y jumps.
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It follows from [4, Theorem 6.8] that, for X as in case (4), we have Y ∼= P3 and the canonical fibration X → P 3 has 
eight fibers isomorphic to P 2. By Blanchard’s lemma, an effective action of G4

a on X induces a unique action on P 3 for 
which X → P 3 is equivariant. As before, there is an induced effective action of G3

a making P 3 a SEC. On the one hand, 
we notice that the eight points p1, . . . , p8 ∈P 3 having 2-dimensional fibers are fixed and hence contained in the boundary 
hyperplane divisor H ∼=P 2 ⊂P 3. On the other hand, if we write

X =
{

2∑
i=0

xiqi(y0, y1, y2, y3) = 0

}
⊂ P 2

x × P 3
y ,

where the qi are quadratic forms, we have that X →P 3 is induced by the second projection and hence it has 2-dimensional 
fibers over the set S = {q0(y) = q1(y) = q2(y) = 0} = {p1, . . . , p8}. We claim that S is not contained in a hyperplane H and 
hence X is not a SEC. Indeed, if we assume that S ⊂ H and we denote by Q i the hyperquadric {qi(y) = 0}, then Li = Q i ∩ H
is a (possibly reducible) curve of degree 2 in H and Li j = Q i ∩ Q j is a curve of degree 4 in P 3 for i 
= j. Since S ⊂ Li j ∩ H , 
and S is a 0-dimensional scheme of length 8, it follows that Li j has a common component, say Nij , contained in H and 
thus Li and L j have a common component for i 
= j. Since each of the Li is a curve of degree 2, we have that if L0 ∩ L1 ∩ L2
is 0-dimensional, then each Li is reducible and given by the union of two lines in H . We can easily verify that L0 ∩ L1 ∩ L2
is of length 3 and contains S , which is absurd. We conclude therefore that Q 0 ∩ Q 1 ∩ Q 3 have a common component. 
However, this is not possible as X is irreducible. The cases (5) and (6) are similar but easier: in the former case, we have 
Y ∼= P 3 and the canonical fibration X → P 3 has four fibers isomorphic to P 2 by [4, Theorem 6.8]. More precisely, for each 
p1, . . . , p4 ∈P 3 having 2-dimensional fiber, the fiber is given by the dual hyperplane H pi in (P 3)∨ determined by pi . Since 
each of the points pi is fixed, we deduce that each H pi is invariant under the induced action of G3

a in (P 3)∨ . Thus, we get 
four different invariant divisors, a contradiction. In the latter case, we have Y ∼= Q3, and the canonical fibration X → Q3

has two fibers isomorphic to P 2. Hence, the result follows from the fact [15, Theorem 6.1] that there is a unique effective 
action of G3

a making Q3 a SEC with a unique fixed point.
In cases (7) and (9), the variety X is isomorphic to the blowup of Q4 along a smooth curve C ⊂ Q4. By Blanchard’s 

lemma, X is a SEC if and only if C is invariant under the unique effective action of G4
a on Q4. A simple computation in 

coordinates shows that the only invariant smooth curves on Q4 are lines. Thus in case (7) X is not a SEC, while in case (9) 
it is.

In case (8), it follows from [6, Theorem 3.1] that X ∼=PP3 (N ) is isomorphic a homogeneous space G/P . Hence it follows 
from [1] that X is not a SEC.

In cases (10) and (11), there is a blowdown X → Z sending the divisor corresponding to a section of the P 1-bundle 
structure of X to a point z ∈ Z , where Z ∼=Q4

0 is the cone over Q3 in P 5 and Z ∼=P (1, 1, 1, 1, 2), respectively, and z ∈ Z is 
the only singular point of each of these varieties. In both cases, Z is a SEC (cf. [2, Section 6], [3, Proposition 2]) and z ∈ Z is 
a fixed point under the respective actions, since it is the only singular point. We conclude therefore that in both cases (10) 
and (11) X is a SEC.
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[24] J.A. Wiśniewski, Fano 4-folds of index 2 with b2 ≥ 2. A contribution to Mukai classification, Bull. Pol. Acad. Sci., Math. 38 (1–12) (1990) 173–184.
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