Algebraic geometry

Brian Lawrence
University of Chicago, Department of Mathematics, 5734 S University Ave, Chicago, IL, 60637, United States

A R T I C L E I N F O

Article history:
Received 11 March 2019
Accepted 12 March 2019
Available online 17 May 2019

Since publishing [2], I have learned that the main result (Theorem 2.1) of that paper has appeared multiple times in the literature, with different proofs.

The result is Theorem 5 of [1]; additionally, Bogatyrev’s paper gives a very explicit geometric description of the moduli space of real hyperelliptic curves and the solutions to Abel’s equations.

The result is also proved as Theorem 2.1 of [4], with an application to bounding derivatives of polynomials.

Bogatyrev and Totik give independent proofs that the Jacobian of Lemma 4.1 of [2] is surjective at every point of the moduli space. This is stronger than the result of [2], where it is merely shown that the Jacobian is generically surjective.

Additionally, the result appears as the main result of [3], in the following form: any finite union E of real disjoint intervals can be approximated by a set of the form $E' = T^{-1}([-1, 1])$, with T a polynomial. The set E' is obtained constructively by continuous deformation of a minimal polynomial.

I would like to thank Andrey Bogatyrev for bringing these results to my attention.

References

DOI of original article: https://doi.org/10.1016/j.crma.2016.10.014.
E-mail address: brianrl@uchicago.edu.