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In this Note, we propose a natural two-dimensional model of “Koiter’s type” for a general 
linearly elastic shell confined in a half space. This model is governed by a set of variational 
inequalities posed over a non-empty closed and convex subset of the function space used 
for modeling the corresponding “unconstrained” Koiter’s model. To study the limit behavior 
of the proposed model as the thickness of the shell, regarded as a small parameter, 
approaches zero, we perform a rigorous asymptotic analysis, distinguishing the cases where 
the shell is either an elliptic membrane shell, a generalized membrane shell of the first 
kind, or a flexural shell. Moreover, in the case where the shell is an elliptic membrane 
shell, we show that the limit model obtained via the asymptotic analysis of our proposed 
two-dimensional Koiter’s model coincides with the limit model obtained via a rigorous 
asymptotic analysis of the corresponding three-dimensional “constrained” model.
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r é s u m é

Dans cette Note, on propose un modèle naturel « de type de Koiter » pour une coque 
linéairement élastique générale confinée dans un demi-espace. Ce modèle est gouverné 
par un système d’inégalités variationnelles posées sur un sous-ensemble non vide convexe 
et fermé de l’espace fonctionnel utilisé dans la modélisation du modèle correspondant 
de Koiter « sans contrainte ». Afin d’étudier le comportement limite du modèle proposé 
lorsque l’épaisseur de la coque, considérée comme un petit paramètre, tend vers zéro, 
nous effectuons une analyse asymptotique rigoureuse, en distinguant les cas où la coque 
est elliptique membranaire, ou membranaire généralisée du premier type, ou en flexion. 
De plus, dans le cas où la coque est elliptique membranaire, nous montrons que le modèle 
limite obtenu par l’analyse asymptotique du modèle bidimensionnel de Koiter que nous 
proposons coïncide avec le modèle limite obtenu par une analyse asymptotique rigoureuse 
du modèle correspondant tri-dimensionnel « avec contrainte ».

© 2019 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
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1. Preliminaries

For definitions, notations and other preliminaries, we refer the reader to [11]. The complete proofs of the results pre-
sented in this Note will be found in [12].

2. A natural Koiter’s model for a general shell subjected to a confinement condition

Let ω be a domain in R2 with boundary γ and let γ0 be a non-empty relatively open subset of γ . For each ε > 0, we 
define the sets

�ε := ω × ]−ε, ε[ and �ε
0 := γ0 × [−ε, ε] ;

we let xε = (xε
i ) designate a generic point in the set �ε , and we let ∂ε

i := ∂/∂xε
i .

In all that follows, we are given an immersion θ ∈ C3(ω; E3) and ε > 0, and we consider a shell with middle surface θ(ω)

and with constant thickness 2ε. The reference configuration of the shell is the set �(�ε), where the mapping � : �ε → E
3 is 

defined by

�(xε) := θ(y) + xε
3a3(y) at each point xε = (y, xε

3) ∈ �ε.

One can then show (cf. Theorem 3.1-1 of [4] or Theorem 4.1-1 of [5]) that, if the thickness ε > 0 is small enough, such 
a mapping � ∈ C2(�ε; E3) is a C2-diffeomorphism from �ε onto �(�ε). The three vectors

gε
i (xε) := ∂ε

i �(xε)

are linearly independent at each point xε ∈ �ε; these vectors then constitute the covariant basis at the point �(xε), while 
the three vectors g j,ε(xε) defined by the relations

g j,ε(xε) · gε
i (xε) = δ

j
i ,

constitute the contravariant basis at the same point.
It will be implicitly assumed in what follows that the immersion θ ∈ C3(ω; E3) is injective and that ε > 0 is small enough

so that � : �ε → E
3 is a C2-diffeomorphism onto its image.

We also assume that the shell is made of a homogeneous and isotropic linearly elastic material characterized by its two 
Lamé constants λ ≥ 0 and μ > 0, that its reference configuration is a natural state and that it is subjected to applied body forces
whose density per unit volume is defined by means of its contravariant components f i,ε ∈ L2(�ε) and to a homogeneous 
boundary condition of place along the portion �ε

0 of its lateral face.
A commonly used two-dimensional set of equations for modeling such a shell (“two-dimensional” in the sense that the 

equations are posed over ω instead of �ε) was proposed in 1970 by W.T. Koiter in the seminal paper [14]. We now describe 
the modern formulation of this model.

Define the space

V K (ω) := {η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω);ηi = ∂νη3 = 0 on γ0},
where the symbol ∂ν denotes the outer unit normal derivative operator along γ , and define the norm ‖ · ‖V K (ω) by

‖η‖V K (ω) :=
{∑

α

‖ηα‖2
1,ω + ‖η3‖2

2,ω

}1/2

for each η = (ηi) ∈ V K (ω).

We then define the bilinear forms B M(·, ·) and B F (·, ·) by

B M(ξ ,η) :=
∫
ω

aαβστ γστ (ξ)γαβ(η)
√

a dy,

B F (ξ ,η) := 1

3

∫
ω

aαβστ ρστ (ξ)ραβ(η)
√

a dy,

for each ξ ∈ V K (ω) and each η ∈ V K (ω), where

aαβστ := 4λμ

λ + 2μ
aαβaστ + 2μ

(
aασ aβτ + aατ aβσ

)
denote the contravariant components of the two-dimensional elasticity tensor of the shell, which is uniformly positive-definite,
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γαβ(η) := 1

2
(aα · ∂β η̃ + ∂αη̃ · aβ),

ραβ(η) := (∂αβ η̃ − �σ
αβ∂σ η̃) · a3,

respectively denote for each η = (ηi) the linearized change of metric, and linearized change of curvature, tensors associated with 
an admissible displacement field η̃ = ηiai of the middle surface θ(ω) of the shell. We also define the linear form �ε by

�ε(η) :=
∫
ω

pi,εηi
√

a dy, for each η = (ηi) ∈ V K (ω),

where pi,ε(y) := ∫ ε
−ε f i,ε(y, xε

3) dxε
3 at each y ∈ ω.

Then the total energy of the shell is the quadratic functional J : V K (ω) →R defined by

J (η) := ε

2
B M(η,η) + ε3

2
B F (η,η) − �ε(η) for each η ∈ V K (ω).

We assume that the shell is subjected to the following confinement condition: the unknown displacement field ζ ε
i,K ai of 

the middle surface of the shell must be such that the corresponding “deformed” middle surface remains in a given half-space, of 
the form

H := {x ∈ E
3;ox · p ≥ 0},

where p ∈ E
3 is a given non-zero vector. It will be of course assumed that the “undeformed” middle surface satisfies this 

confinement condition, i.e. that θ(ω) ⊂ H.
These assumptions lead to the following definition of a problem, denoted Pε

K (ω) in the next theorem, which constitutes 
our proposed Koiter’s model for a shell subjected to a confinement condition.

Theorem 2.1. The minimization problem: find

ζ ε
K ∈ U K (ω) := {η = (ηi) ∈ V K (ω); (θ(y) + ηi(y)ai(y)) · p ≥ 0 for a.a. y ∈ ω}

such that

J (ζ ε
K ) = inf

η∈U K (ω)
J (η)

has one and only one solution.
Besides, this solution is also the unique solution to problem Pε

K (ω): find ζ ε
K ∈ U K (ω) that satisfies the following variational in-

equalities:

εB M(ζ ε
K ,η − ζ ε

K ) + ε3 B F (ζ ε
K ,η − ζ ε

K ) ≥ �ε(η − ζ ε
K ) for all η ∈ U K (ω).

Proof. The bilinear forms B M : V K (ω) × V K (ω) → R and B F : V K (ω) × V K (ω) → R and the linear form �ε : V K (ω) → R

are clearly continuous. Since the two-dimensional elasticity tensor (aαβστ ) is uniformly positive-definite, the bilinear form

(ξ ,η) ∈ V K (ω) × V K (ω) → εB M(ξ ,η) + ε3 B F (ξ ,η) ∈R

is V K (ω)-elliptic, thanks to the Korn’s inequality on a general surface recalled in Theorem 5.1 below (note that this inequality 
holds in particular because dγ -meas γ0 > 0), on the one hand.

On the other hand, it is easily seen that U K (ω) is a non-empty, closed, and convex subset of the space V K (ω).
Hence, the above minimization problem, or equivalently problem Pε

K (ω), has one and only one solution. �
Depending on the type of shell under consideration and on the assumptions on the data, we study in what follows the 

behavior of the solution to problem Pε
K (ω) as ε → 0.

3. Koiter’s model for an elliptic membrane shell subjected to a confinement condition

Consider a linearly elastic elliptic membrane shell in the sense of Section 4.1 of [4]. The space V K (ω) introduced in Section 2
now reduces to

V K (ω) = H1
0(ω) × H1

0(ω) × H2
0(ω).

To begin with, we recall a Korn inequality on an elliptic surface, which is due to [7] and [13] (see also [4, Theorem 2.7-3]).
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Theorem 3.1. Let ω be a domain in R2 and let θ ∈ C3(ω; E3) be an immersion such that θ(ω) is an elliptic surface. Define the space

V M(ω) := H1
0(ω) × H1

0(ω) × L2(ω),

and the norm ‖ · ‖V M (ω) by

‖η‖V M (ω) :=
{∑

α

‖ηα‖2
1,ω + ‖η3‖2

0,ω

}1/2

for each η = (ηi) ∈ V M(ω).

Then there exists a constant c > 0 such that

‖η‖V M (ω) ≤ c

{∑
α,β

‖γαβ(η)‖2
0,ω

}1/2

for all η ∈ V M(ω).

The forthcoming analysis resorts to an argument similar to that in Theorem 7.2-1 of [4] (itself based on various ideas 
found in [6], [15], [3] and, especially, on Theorem 2.1 in [8]), and constitutes the first convergence result of this Note. The set 
U K (ω) appearing in the next theorem is defined in Theorem 2.1.

Theorem 3.2. Let ω be a domain in R2 and let θ ∈ C3(ω; E3) be an immersion. Consider a family of elliptic membrane shells with 
thickness 2ε approaching zero and with each having the same middle surface θ(ω), and assume that there exist functions f i ∈ L2(�)

independent of ε such that

f i,ε(xε) = f i(x) at each xε ∈ �ε for each ε > 0.

Define the set

U M(ω) := {η = (ηi) ∈ V M(ω);
(
θ(y) + ηi(y)ai(y)

)
· p ≥ 0 for a.a. y ∈ ω},

and assume that the following “density property” holds:

U K (ω) is dense in U M(ω) with respect to the norm ‖ · ‖V M (ω).

For each ε > 0, let ζ ε
K denote the solution to problem Pε

K (ω) (Theorem 2.1). Then the following convergences hold:

ζ ε
α,K aα → ζαaα in H 1(ω) as ε → 0,

ζ ε
3,K a3 → ζ3a3 in L2(ω) as ε → 0,

where ζ is the unique solution to the following problem P(ω): find

ζ ∈ U M(ω) = {η = (ηi) ∈ V M(ω);
(
θ(y) + ηi(y)ai(y)

)
· p ≥ 0 for a.a. y ∈ ω}

that satisfies the following variational inequalities:∫
ω

aαβστ γστ (ζ )γαβ(η − ζ )
√

a dy ≥
∫
ω

pi(ηi − ζi)
√

a dy for all η = (ηi) ∈ U M(ω),

where

pi :=
1∫

−1

f i dx3 ∈ L2(ω).

Sketch of proof. In what follows, strong and weak convergences are respectively denoted → and ⇀.
Combining the V M(ω)-ellipticity of the continuous bilinear form B M(·, ·), the Korn’s inequality of Theorem 3.1, the 

observation that U M(ω) is a non-empty closed and convex subset of V M(ω), and the continuity of the linear form �

defined by

�(η) :=
∫

piηi
√

a dy for all η = (ηi) ∈ V M(ω),
ω
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we infer that problem PM(ω) has one and only one solution.
Thanks to the uniform positive-definiteness of the tensor (aαβστ ) and to Theorem 3.1, there exists a constant C1 > 0

such that

‖ζ ε
K ‖2

V M (ω) ≤ C1 B M(ζ ε
K , ζ ε

K ).

Besides, the continuity of the bilinear forms B M (·, ·) and B F (·, ·) and the continuity of the linear form � imply that there 
exists a constant C2 > 0 such that

B M(ζ ε
K ,η) + ε2 B F (ζ ε

K ,η) − �(η − ζ ε
K )

≤ C2(‖ζ ε
K ‖V M (ω)‖η‖V M (ω) + ε2‖ζ ε

K ‖V M (ω)‖η‖V M (ω) + ‖ζ ε
K ‖V M (ω) + ‖η‖V M (ω)),

for all η ∈ U K (ω). Letting η = 0 thus gives

‖ζ ε
K ‖V M (ω) ≤ C1 C2 for all ε > 0.

Therefore, there exists a subsequence, still denoted (ζ ε
K )ε>0, a vector field ζ ∗ ∈ V M(ω), and functions ρ−1

αβ ∈ L2(ω), such 
that:

ζ ε
K ⇀ ζ ∗ in V M(ω) as ε → 0,

εραβ(ζ ε
K ) ⇀ ρ−1

αβ in L2(ω) as ε → 0,

the second convergence being a consequence of the uniform positive-definiteness of the tensor (aαβστ ). Then ζ ∗ ∈ U M(ω), 
since the set U M(ω) is non-empty closed and convex.

Simple computations yield

B M(ζ ∗,η − ζ ∗) ≥ �(η − ζ ∗) for all η ∈ U K (ω).

Furthermore, the assumed “density property” gives

B M(ζ ∗,η − ζ ∗) ≥ �(η − ζ ∗) for all η ∈ U M(ω),

which implies that ζ = ζ ∗ and that the whole family (ζ ε
K )ε>0 weakly converges to ζ in V M(ω) as ε → 0.

The V K (ω)-ellipticity of the bilinear form B M(·, ·) and the assumed “density property” together give

0 ≤ 1

C1
‖ζ ε

K − ζ‖2
V M (ω) ≤ B M(ζ ε

K ,η) + ε2 B F (ζ ε
K ,η) − �(η − ζ ε

K ) − 2B M(ζ ε
K , ζ ) + B M(ζ , ζ ),

for all η ∈ U M(ω). Hence, letting η = ζ and letting ε → 0 gives

ζ ε
K → ζ in V M(ω) as ε → 0. �

Note that realistic sufficient conditions insuring that the “density property” holds are given in [10] (see also [11]).

4. Koiter’s model for a generalized membrane of the “first kind” subjected to a confinement condition

Consider a linearly elastic generalized membrane shell “of the first kind” subjected to “admissible” applied forces, in the sense 
of Section 5.1 of [4]. The forthcoming analysis resorts to an argument similar to that in Theorem 7.2-2 of [4] (itself based 
on [3] and, especially, Theorems 6.1 and 6.2 of [9]) and constitutes the second convergence result of this Note.

Theorem 4.1. Let ω be a domain in R2 and let θ ∈ C3(ω; E3) be an immersion. Consider a family of generalized membrane shells “of 
the first kind” with thickness 2ε approaching zero and with each having the same middle surface θ(ω), and assume that each shell is 
subject to a boundary condition of place along a portion of its lateral face, whose middle curve is the set θ(γ0). Define the spaces

V (ω) := {η = (ηi) ∈ H 1(ω);η = 0 on γ0},
V �

M(ω) := completion of V (ω) with respect to |·|M
ω .

For each ε > 0, let ζ ε
K denote the solution to problem Pε

K (ω) (Theorem 2.1). Then the following convergence holds:

ζ ε
K → ζ in V �

M(ω) as ε → 0,

where ζ denotes the unique solution to problem P�
M(ω): find

ζ ∈ U �(ω) := closure of U K (ω) with respect to |·|M
ω
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that satisfies the following variational inequalities:

B�
M(ζ ,η − ζ ) ≥ L�

M(η − ζ ) for all η = (ηi) ∈ U �(ω),

where B�
M(·, ·) and L�

M designate the unique continuous linear extensions from V (ω) to V �
M(ω) of the bilinear form B M(·, ·), and of 

the linear form LM defined by

LM(η) :=
∫
ω

ϕαβγαβ(η)
√

a dy for all η = (ηi) ∈ V (ω),

where ϕαβ = ϕβα ∈ L2(ω) are the functions entering the definition of admissible applied forces.

Sketch of proof. Following [3] (see also Theorem 7.2-2 of [4]), we first observe that the space V �
M(ω) is also the completion 

of the space V K (ω) with respect to the norm |·|M
ω . Clearly, problem P�

M(ω) admits a unique solution, since the bilinear 
form B�

M(·, ·) is continuous and V �
M(ω)-elliptic (recall that the tensor (aαβστ ) is uniformly positive-definite), the set U �(ω)

is non-empty, closed with respect to |·|M
ω , and convex, and the linear form L�

M is continuous.
Because the applied body forces are admissible, the variational inequalities appearing in problem Pε

K (ω) read

B M(ζ ε
K ,η − ζ ε

K ) + ε2 B F (ζ ε
K ,η − ζ ε

K ) ≥ LM(η − ζ ε
K ) for all η ∈ U K (ω).

By virtue of the continuity of the linear form LM with respect to the norm |·|M
ω , there exists a constant C1 > 0 such that

B M(ζ ε
K , ζ ε

K ) + ε2 B F (ζ ε
K , ζ ε

K ) ≤ B M(ζ ε
K ,η) + ε2 B F (ζ ε

K ,η) + C1|η − ζ ε
K |M

ω for all η ∈ U K (ω).

Thanks to the uniform positive-definiteness of the tensor (aαβστ ), there exists a constant C2 > 0 such that

(|ζ ε
K |M

ω )2 ≤ C2 B M(ζ ε
K , ζ ε

K ) and
∑
α,β

|εραβ(ζ ε
K )|20,ω ≤ C2ε

2 B F (ζ ε
K , ζ ε

K ).

Hence, letting η = 0 gives

(|ζ ε
K |M

ω )2 + 1

3

∑
α,β

|εραβ(ζ ε
K )|20,ω ≤ C1 C2 |ζ ε

K |M
ω .

Therefore, there exist a subsequence, still denoted (ζ ε
K )ε>0, a vector field ζ � ∈ V �

M(ω), and functions ρ−1
αβ ∈ L2(ω), such 

that

ζ ε
K ⇀ ζ � in V �

M(ω) as ε → 0,

εραβ(ζ ε
K ) ⇀ ρ−1

αβ in L2(ω) as ε → 0.

Clearly, the vector field ζ � belongs to the set U �(ω). Simple computations yield

B�
M(ζ �,η − ζ �) ≥ L�

M(η − ζ �) for all η ∈ U �(ω),

which implies that ζ � = ζ and that the whole family (ζ ε
K )ε>0 weakly converges to ζ in V �

M(ω) as ε → 0.
The positive definiteness of the two-dimensional fourth-order elasticity tensor of the shell together with the definition 

of the norm |·|M
ω and of the bilinear form B M(·, ·) and its extension B�

M(·, ·) show that establishing the announced strong 
convergence is thus equivalent to establishing the convergence

B�
M(ζ ε

K − ζ , ζ ε
K − ζ ) → 0 as ε → 0.

Noting that the weak convergence ζ ε
K ⇀ ζ in V �

M(ω) as ε → 0 gives

lim sup
ε→0

B�
M(ζ ε

K − ζ , ζ ε
K − ζ ) = 0

we infer that the strong convergence

ζ ε
K → ζ in V �

M(ω) as ε → 0

holds. �
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5. Koiter’s model for a flexural shell subjected to a confinement condition

Consider a linearly elastic flexural shell in the sense of Section 6.1 of [4]. To begin with, we recall an example of a Korn’s 
inequality on a general surface, which is due to [1] and was later on improved by [2] (see also [4, Theorem 2.6-4]).

Theorem 5.1. Let ω be a domain in R2 and let θ ∈ C3(ω; E3) be an immersion. Let γ0 be a non-empty relatively open subset of γ . 
Define the space

V K (ω) := {η = (ηi) ∈ H1(ω) × H1(ω) × H2(ω);ηi = ∂νη3 = 0 on γ0}.
Then there exists a constant c > 0 such that{∑

α

‖ηα‖2
1,ω + ‖η3‖2

2,ω

}1/2

≤ c

{∑
α,β

‖γαβ(η)‖2
0,ω +

∑
α,β

‖ραβ(η)‖2
0,ω

}1/2

for all η = (ηi) ∈ V K (ω).

The forthcoming analysis resorts to an argument similar to that used in Theorem 7.2-3 of [4] (itself based on [15] and, 
especially, on Theorem 2.2 of [8]), and constitutes the third convergence result of this Note.

Theorem 5.2. Let ω be a domain in R2 and let θ ∈ C3(ω; E3) be an immersion. Consider a family of flexural shells with thickness 2ε

approaching zero and with each having the same middle surface θ(ω). Let γ0 be a non-empty relatively open subset of γ , and assume 
that each shell is subject to a boundary condition of place along a portion of its lateral face, whose middle curve is the set θ(γ0). Finally, 
assume that there exist functions f i ∈ L2(�) independent of ε such that:

f i,ε(xε) = ε2 f i(x) at each xε ∈ �ε for each ε > 0.

For each ε > 0, let ζ ε
K denote the solution to problem Pε

K (ω) (Theorem 2.1). Then the following convergence holds:

ζ ε
K → ζ in V K (ω) as ε → 0,

where ζ denotes the solution to problem PF (ω): find

ζ ∈ U F (ω) := {η = (ηi) ∈ V F (ω);
(
θ(y) + ηi(y)ai(y)

)
· p ≥ 0 for a.a. y ∈ ω}

that satisfies the following variational inequalities:

1

3

∫
ω

aαβστ ρστ (ζ )ραβ(η − ζ )
√

a dy ≥
∫
ω

pi(ηi − ζi)
√

a dy for all η = (ηi) ∈ U F (ω),

where

pi :=
1∫

−1

f i dx3 ∈ L2(ω).

Sketch of proof. Since the bilinear form B F (·, ·) is continuous and V F (ω)-elliptic, the set U F (ω) is a non-empty, closed, 
and convex, subset of V F (ω), and the linear form defined by

�(η) :=
∫
ω

piηi
√

a dy for all η = (ηi) ∈ V F (ω)

is continuous over V F (ω), problem PF (ω) admits a unique solution.
By virtue of the assumption on the applied body forces, the variational inequalities in problem Pε

K (ω) read

1

ε2
B M(ζ ε

K ,η − ζ ε
K ) + B F (ζ ε

K ,η − ζ ε
K ) ≥ �(η − ζ ε

K ) for all η ∈ U K (ω).

By the continuity of the linear form �, there exists a constant C1 > 0 such that

1
2

B M(ζ ε
K , ζ ε

K ) + B F (ζ ε
K , ζ ε

K ) ≤ 1
2

B M(ζ ε
K ,η) + B F (ζ ε

K ,η) + C1‖η − ζ ε
K ‖V K (ω) for all η ∈ U K (ω).
ε ε
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Thanks to the uniform positive-definiteness of the tensor (aαβστ ) and the Korn’s inequality on a general surface (Theo-
rem 5.1), there exists a constant C2 > 0 such that

‖ζ ε
K ‖2

V K (ω) ≤ C2

(
1

ε2
B M(ζ ε

K , ζ ε
K ) + B F (ζ ε

K , ζ ε
K )

)
for all 0 < ε ≤ 1.

Hence, combining the two inequalities above and letting η = 0 gives

‖ζ ε
K ‖V K (ω) ≤ C1 C2.

Therefore, there exist a subfamily, still denoted (ζ ε
K )ε>0, a vector field ζ ∗ ∈ V K (ω), and functions γ −1

αβ ∈ L2(ω), such that

ζ ε
K ⇀ ζ ∗ in V K (ω) as ε → 0,

1

ε
γαβ(ζ ε

K ) ⇀ γ −1
αβ in L2(ω) as ε → 0,

the second weak convergence being a consequence of the uniform positive-definiteness of the tensor (aαβστ ). The same 
weak convergence in turn implies that

γαβ(ζ ε
K ) → 0 in L2(ω) as ε → 0

on the one hand. On the other hand, the weak convergence ζ ε
K ⇀ ζ ∗ in V K (ω) as ε → 0 clearly implies that

γαβ(ζ ε
K ) ⇀ γαβ(ζ ∗) as ε → 0.

Hence, the uniqueness of the weak limit shows that

γαβ(ζ ∗) = 0.

In conclusion, ζ ∗ belongs to U F (ω). Simple computations give

B F (ζ ∗,η − ζ ∗) ≥ �(η − ζ ∗) for all η ∈ U F (ω).

Hence we conclude that ζ = ζ ∗ and that the whole family (ζ ε
K )ε>0 weakly converges to ζ in V K (ω) as ε → 0.

Combining the Korn’s inequality on a general surface (Theorem 5.1), the strong convergence γαβ(ζ ε
K ) → γαβ(ζ ) = 0 in 

L2(ω), and the uniform positive-definiteness of the tensor (aαβστ ), establishing the strong convergence ζ ε
K → ζ in V K (ω)

amounts to establishing that B F (ζ ε
K − ζ , ζ ε

K − ζ ) → 0 as ε → 0.
Noting that we have

0 ≤ B F (ζ ε
K − ζ , ζ ε

K − ζ ) = B F (ζ ε
K , ζ ε

K ) − 2B F (ζ ε
K , ζ ) + B F (ζ , ζ )

≤ B F (ζ ε
K , ζ ) − �(ζ − ζ ε

K ) − 2B F (ζ ε
K , ζ ) + B F (ζ , ζ ),

since ζ ∈ U F (ω), we thus conclude that

ζ ε
K → ζ in V K (ω) as ε → 0. �

6. Justification of the proposed model for elliptic membrane shells

Consider the following obstacle problem for a “general” shell whose reference configuration is the set �(�ε); cf. Section 2. 
We assume that the shell is subjected to a confinement condition, expressing that any admissible displacement vector field vε

i g i,ε

must be such that the corresponding deformed configuration remains in the same half-space as in Section 2, i.e.

H := {x ∈ E
3; ox · p ≥ 0}.

In other words, the covariant components vε
i of the admissible three-dimensional displacement field vε

i g i,ε of the reference 
configuration must satisfy the following “constraint”:(

�(xε) + vε
i (xε)g i,ε(xε)

)
· p ≥ 0 for all xε ∈ �ε,

or possibly only almost everywhere in �ε .
We of course assume that the reference configuration satisfies the confinement condition, i.e. that

�(�ε) ⊂ H.
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The unknown of the considered problem, which is the vector field uε = (uε
i ), where the functions uε

i are the covariant 
components of the unknown displacement field uε

i g i,ε of the reference configuration, should minimize the energy J ε :
H 1(�ε) →R defined by

Jε(vε) := 1

2

∫
�ε

Aijk�,εeε
k‖�(vε)eε

i‖ j(vε)
√

gε dxε −
∫
�ε

f i,ε vε
i

√
gε dxε,

when vε = (vε
i ) varies over the following set:

U (�ε) := {vε = (vε
i ) ∈ H 1(�ε); vε = 0 on �ε

0,
(
�(xε) + vε

i (xε)g i,ε(xε))
)

· p ≥ 0 for a.a. xε ∈ �ε}.
The solution to this minimization problem exists and is unique, and it can be also characterized as the unique solution to 

a set of appropriate variational inequalities as shown in the next theorem.

Theorem 6.1. The quadratic minimization problem: Find a vector field uε ∈ U (�ε) such that

Jε(uε) = inf
vε∈U (�ε)

Jε(vε)

has one and only one solution, which is also the unique solution to the variational problem P(�ε): find

uε ∈ U (�ε)

which satisfies the following variational inequalities:∫
�ε

Aijk�,εeε
k‖�(uε)

(
eε

i‖ j(vε) − eε
i‖ j(uε)

)√
gε dxε ≥

∫
�ε

f i,ε(vε
i − uε

i )
√

gε dxε

for all vε = (vε
i ) ∈ U (�ε).

Proof. Define the space

V (�ε) := {vε = (vε
i ) ∈ H 1(�ε); vε = 0 on �ε

0}.
Then, thanks to the uniform positive-definiteness of the elasticity tensor (Aijk�,ε), to the three-dimensional Korn inequality in 
curvilinear coordinates (cf. Theorem 3.8-3 in [5]), and to the boundary condition of place satisfied on �ε

0 = γ × [−ε, ε], the 
continuous and symmetric bilinear form

(vε, wε) ∈ H 1(�ε) × H 1(�ε) 
→
∫
�ε

Aijk�,εeε
k‖�(vε)eε

i‖ j(wε)
√

gε dxε

is V (�ε)-elliptic; besides, the linear form

vε = (vε
i ) ∈ H 1(�ε) 
→

∫
�ε

f i,ε vε
i

√
gε dxε

is clearly continuous. It is easily seen that the set U (�ε) is a non-empty, closed, and convex subset of the space V (�ε). 
The existence and uniqueness of the solution to the minimization problem and its characterization by means of variational 
inequalities is then classical. �

Then one can establish the following result; cf. [10, Theorem 4.2].

Theorem 6.2. Let ω be a domain in R2 and let θ ∈ C3(ω; E3) be an immersion. Consider a family of elliptic membrane shells with 
thickness 2ε approaching zero and with each having the same middle surface S = θ(ω), and assume that there exist functions f i ∈
L2(�) independent of ε such that the following assumption on the applied body force density holds:

f i,ε(xε) = f i(x) at each xε ∈ �ε for each ε > 0.

Finally, assume that the following “density property” holds (the same as in Theorem 3.2):

U K (ω) is dense in U M(ω) with respect to the norm ‖ · ‖H1(ω)×H1(ω)×L2(ω).

Let ζ ∈ U M(ω) denote the solution to problem PM(ω) (Theorem 3.2) and for each ε > 0, let uε = (uε
i ) denote the solution to 

problem P(�ε) (Theorem 2.1). Then the following convergences hold:
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1

2ε

ε∫
−ε

uε
α gα,ε dxε

3 → ζαaα in H 1(ω) as ε → 0,

1

2ε

ε∫
−ε

uε
3 g3,ε dxε

3 → ζ3a3 in L2(ω) as ε → 0. �

Comparing the convergences found in Theorem 6.2 with the convergences

ζ ε
α,K aα → ζαaα in H 1(ω) as ε → 0,

ζ ε
3,K a3 → ζ3a3 in L2(ω) as ε → 0,

established in Theorem 3.2 thus shows that, if the shell under consideration is an elliptic membrane shell satisfying the 
“density property” in Theorem 3.2, the solution to the three-dimensional obstacle problem P(�ε) and to the two-dimensional 
obstacle problem Pε

K (ω) exhibit the same limit behavior as ε → 0. This observation then fully justifies the formulation of our 
proposed Koiter’s model for an elliptic membrane shell subjected to a confinement condition.
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