Algebraic geometry/Algebra

A note on a question of Dimca and Greuel

Une note sur une question de Dimca et Greuel

Patricio Almirón a, Guillem Blanco b

a Departamento de Álgebra, Geometría y Topología, Universidad Complutense de Madrid, Plaza de las Ciencias 3, 28040 Madrid, Spain
b Departament de Matemàtiques, Univ. Politécnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain

1. Introduction

Let \(f : (\mathbb{C}^2, 0) \rightarrow (\mathbb{C}, 0) \) with \(f(0) = 0 \) be a germ of a holomorphic function defining an isolated plane curve singularity. Associated with any isolated plane curve singularity \(f \), one has the Milnor number \(\mu \) and the Tjurina number \(\tau \) that are defined as

\[
\mu := \dim_{\mathbb{C}} \frac{\mathbb{C}[x, y]}{(\partial f/\partial x, \partial f/\partial y)}, \quad \tau := \dim_{\mathbb{C}} \frac{\mathbb{C}[x, y]}{(f, \partial f/\partial x, \partial f/\partial y)}.
\]

In [3], Dimca and Greuel posed the following question:

Question 1. Is it true that \(\mu/\tau < 4/3 \) for any isolated plane curve singularity?

Furthermore, they show with an example that this bound is asymptotically sharp.
The purpose of this note is to show that Question 1 has a positive answer, using some known results in two cases: the case of a single Puiseux pair and for semi-quasi-homogeneous singularities. By a well-known result of Zariski [7], the latter case contains the former. However, we decided to include both proofs as the approaches are fundamentally different and may lead to different more general cases of the question. The proof for the first case is based on the results of Delorme [2] and Teissier [6]. For the second case, we use the ideas of Briançon, Granger and Maisonobe [1]. We also show at the end of this note that the bound also holds for a non-trivial family with two Puiseux pairs studied by Luengo and Pfister [5]. All this gives further evidences for a positive answer to the question in the general case.

2. One Puiseux pair

In this section, we will assume that \(f \) has a single Puiseux pair \((n, m)\). We will denote by \(\Gamma = \langle n, m \rangle, n < m \) with \(\gcd(n, m) = 1 \) the semigroup of \(f \). Ebey proves in [4] that the moduli space of curves having a given semigroup is in bijection with a constructible algebraic subset of some affine space. For this, he shows that the moduli space is a quotient of an affine space by an algebraic group. Consequently, Zariski [7, §VI] defines the generic component of the moduli space as the variety representing the generic orbits of this group action.

Following the ideas of Zariski in [7], Delorme [2] computed the dimension of the generic component \(q_{n,m} \) of the moduli space of plane branches with a single Puiseux pair \((n, m)\).

Theorem 1 ([2, Thm. 32]). Consider the continued fraction representation \(m/n = [h_1, h_2, \ldots, h_k] \), with \(k \geq 2, h_1 > 0 \) and \(h_2 > 0 \). Define, inductively, the following numbers

\[
r_k := 0, \quad t_k := 1, \quad r_{i-1} := r_i + t_i h_i, \quad t_{i-1} := \begin{cases} 0, & \text{if } t_1 = 1 \text{ and } r_{i-1} \text{ even}, \\ 1, & \text{otherwise}. \end{cases}
\]

Then, the dimension \(q_{n,m} \) of the generic component of the moduli space is given by

\[
q_{n,m} = \frac{(n-4)(m-4)}{4} + \frac{r_0}{4} + \frac{(2-t_1)(h_1-2)}{2} - \frac{t_1 t_2}{2}.
\]

In particular, except for the case \((n, m) = (2, 3)\),

\[
\frac{(n-4)(m-4)}{4} \leq q_{n,m} \leq \frac{(n-3)(m-3)}{2}.
\]

(1)

The bound in the left-hand side of Eq. (1) is sharp; consider, for instance, the characteristic pair \(n = 8, m = 11 \). In the Appendix [6] of [7], Teissier, using the monomial curve \(C^\Gamma \), proves that, in general, the dimension \(q \) of the generic component of the moduli space of plane branch with semigroup \(\Gamma \) is given by

\[
q = \tau - (\mu - \tau_{\min}),
\]

(2) where \(\tau \) is the dimension of the miniversal constant semigroup deformation of the monomial curve \(C^\Gamma \). For one characteristic exponent, we have that \(\tau \) is the number of points of the standard lattice of \(\mathbb{Z}^2 \) that are in the interior of the triangle defined by the lines \(\alpha = m-1, \beta = n-1, \alpha n + \beta m = nm \), see [7, §VI.2]. Therefore, it is easy to see that

\[
\tau = \frac{(n-3)(m-3)}{2} + \left\lfloor \frac{m}{n} \right\rfloor - 1,
\]

where \(\lfloor \cdot \rfloor \) denotes the integer part. In this case, the Milnor number is \(\mu = (n-1)(m-1) \). Combining the lower bound in Eqs. (1) and (2), one obtains the following lower bound for \(\tau_{\min} \)

\[
\frac{(n-4)(m-4)}{4} + (n-1)(m-1) - \frac{(n-3)(m-3)}{2} - \frac{m}{n} + 1 \leq \tau_{\min},
\]

except for the case \((n, m) = (2, 3)\).

Proposition 1. For any plane branch with one characteristic exponent, \(\mu/\tau < 4/3 \).

Proof. It is sufficient to prove the inequality for the \(\tau_{\min} \) of each characteristic pair \((n, m)\). Dividing \(\mu \) by the expression in Eq. (3) and rewriting

\[
\frac{\mu}{\tau} \leq \frac{\mu}{\tau_{\min}} \leq \frac{4n(n-1)(m-1)}{3n^2m - 2n^2 - 2nm + 6n - 4m}.
\]

(4)
assuming always that \((n, m) \neq (2, 3), n < m\). The upper bound in Eq. (4) is strictly smaller than 4/3 if and only if \(0 < m(n - 4) + n(n + 3)\). Therefore, the result holds if \(n \geq 4\). The cases \(n = 2\) and \(n = 3\) follow from computing \(\tau_{\min}\) using Theorem 1.

Indeed, let \(n = 2\) and \(m = 2h_1 + 1, h_1 > 1\), so the continued fraction representation is \(m/n = [h_1, 2]\). Then, \(r_0 = 2, t_1 = 0, t_2 = 1\) and \(q_{2, m} = h_1 - m/2 - 1/2 = 0\). Analogously, if \(n = 3\), then \(m = 3h_1 + 1\) or \(m = 3h_1 + 2\); the continued fractions are either \(m/n = [h_1, 3]\) or \(m/n = [h_1, 1, 2]\). Then, \(r_0 = 3 + h\) or \(r_0 = 2 + h, t_2 = 1\) or \(t_2 = 0\), respectively, and \(t_1 = 1\) in either case. Consequently, in both cases, \(q_{3,3h_1+1} = -m/4 + 3h_1/4 + 1/4 = 0\) and \(q_{3,3h_1+1} = -m/4 + 3h_1/4 + 1/2 = 0\). Finally, since \(\tau_\pm = 0\) if \(n = 2\) and \(\tau_\pm = h_1 - 1\) if \(n = 3\),

\[
\frac{\mu}{\tau_{\min}} = 1 < \frac{4}{3}, \quad \frac{\mu}{\tau_{\min}} < \frac{6m - 6}{5m - 3} < \frac{6}{5} < \frac{4}{3}.
\]

for \(n = 2, m \geq 3\) and \(n = 3, m \geq 4\), respectively. \(\square\)

3. Semi-quasi-homogeneous singularities

We assume now that \(f\) is a semi-quasi-homogeneity with weights \(w = (n, m)\) such that \(gcd(n, m) \geq 1\) and \(n, m \geq 2\). This means that \(f = f_0 + g\) is a deformation of the initial term \(f_0 = y^n - x^m\) such that \(deg_w(f_0) < deg_w(g)\). In [1], Briançon, Granger and Maisonobe, using the technique of stairs, give recursive formulas to compute the \(\tau_{\min}\) of this type of singularities. Their main result is the following.

Theorem 2 ([1, §6]). For semi-quasi-homogeneous singularities with initial term \(y^n - x^m\),

\[
\tau_{\min} = (m - 1)(n - 1) - \sigma(m, n).
\]

The number \(\sigma(a, b)\) is defined recursively for any non-negative integers \(a, b\) as follows. If \(a, b \leq 2\) then \(\sigma(a, b) := 0\). Otherwise, we can express \(a = bq + r, 0 \leq r < b, q \geq 1\). For the cases \(r = 0, 1, b - 1, b/2\), there are closed formulas for \(\sigma(a, b)\) denoted by \(\Sigma_0, \Sigma_1, \Sigma_{b-1}, \Sigma_{b/2}\), see Table 1 in [1]. If none of the above cases holds, define recursively, see Tables 2 and 3 in [1], a finite sequence \((a_0, b_0), (a_1, b_1), \ldots, (a_k, b_k)\) with \((a_0, b_0) = (m, n)\); \(\sigma(a_k, b_k)\) is in one of the previous cases, and for \(i = 0, \ldots, k - 1\):

(A) if \(gcd(a_i, b_i) = 1\), we can find \(u b_i - v a_i = 1\) with \(2 \leq u < a_i\); letting \(\gamma := \frac{b_i}{b}\), we have two subcases:

(AE) if \(\gamma\) is even, define \(a_{i+1} = a_i - \gamma u, b_{i+1} = b_i - \gamma v,\) then

\[
\sigma(a_i, b_i) := \frac{(a_i - 2)(b_i - 2)}{4} - \frac{(a_{i+1} - 2)(b_{i+1} - 2)}{4} - \frac{\gamma}{4} + \sigma(a_{i+1}, b_{i+1}).
\]

(AO) if \(\gamma\) is odd, define \(a_{i+1} = (\gamma + 1)u - a_i, b_{i+1} = (\gamma + 1)v - b_i\), and

\[
\sigma(a_i, b_i) := \frac{(a_i - 2)(b_i - 2)}{4} - \frac{(a_{i+1} - 2)(b_{i+1} - 2)}{4} - \frac{\gamma + 1}{4} + \sigma(a_{i+1}, b_{i+1}).
\]

(B) otherwise, \(a_i = \alpha a', b_i = \alpha b'\) with \(\alpha \geq 2, gcd(a', b') = 1\), and we can find a Bezout’s identity \(ub' - va' = 1\) with \(1 \leq u < a'\); we have again two subcases:

(BP) if \(\alpha\) is even,

\[
\sigma(a_i, b_i) := \frac{(a_i - 2)(b_i - 2)}{4} - \frac{\alpha}{2},
\]

(BO) if \(\alpha\) is odd, define \(a_{i+1} = |a' - 2u|\) and \(b_{i+1} = |b' - 2v|,\) and

\[
\sigma(a_i, b_i) := \frac{(a_i - 2)(b_i - 2)}{4} - \frac{\alpha}{2} - \frac{(a_{i+1} - 2)(b_{i+1} - 2)}{4} + \sigma(a_{i+1}, b_{i+1}).
\]

Proposition 2. For any semi-quasi-homogeneous singularities with initial term \(y^n - x^m\),

\[
\mu/\tau < 4/3.
\]

Proof. Observe that in the recursive cases (A) and (BO),

\[
\sigma(a, b) \leq \frac{(a - 2)(b - 2)}{4} - \frac{(a - 2)(b - 2)}{4} + \sigma(a_k, b_k),
\]

where \(\sigma(a_k, b_k)\) is either zero or has a closed form. Notice also that \(a_i b_{i+1} > b_i a_{i+1}\) for all \(i = 0, \ldots, k - 1\). From these observations, one can deduce that, in general,
\[(n - 1)(m - 1) - \frac{(m - 2)(n - 2)}{4} - \kappa(n, m) \leq \tau_{\text{min}},\]

where \(\kappa(n, m) = m/4n\) if \(\sigma(a_k, b_k) = \Sigma_0, \Sigma_1, \Sigma_{b-1}\) with \(b\) odd, \(\kappa(n, m) = 5/4\) if \(\sigma(a_k, b_k) = \Sigma_0, \Sigma_1, \Sigma_{b-1}\) with \(b\) even or \(\Sigma_{b/2}\) with \(b/2\) odd, and \(\kappa(n, m) = 0\) if \(\sigma(a_k, b_k) = \Sigma_{b/2}\) with \(b/2\) even or in the case (BP). In any case,

\[
\frac{\mu}{\tau} \leq \frac{\mu}{\tau_{\text{min}}} \leq \frac{4(n - 1)(m - 1)}{3nm - 2n - 2m - 4\kappa(n, m)},
\]

which is bounded by \(4/3\) if and only if \(n + m + \kappa(n, m) > 3\), which is true for \(n, m \geq 2\). \(\square\)

4. A family with two Puiseux pairs

In [5], Luengo and Pfister study the family of irreducible plane curve singularities with semigroup \((2p, 2q, 2pq + d)\) such that \(\gcd(p, q) = 1, p < q\) and \(d\) odd. The Milnor number of this family equals

\[
\mu = (2p - 1)(2q - 1) + d.
\]

Studying the kernel of the Kodaira–Spencer map, they prove, see [5, pg. 259], that \(\tau\) is constant in each equisingularity class and equals

\[
\tau = \mu - (p - 1)(q - 1).
\]

One can easily check that \(\mu/\tau < 4/3\) for all the semigroups of the family.

Acknowledgements

The authors would like to thank M. Alberich-Carramiñana, M. González-Villa, A. Melle-Hernández, and J. Álvarez-Montaner for their helpful comments and suggestions.

References