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We give two conditions that are necessary and sufficient for the uniqueness of Filippov 
solutions to scalar, autonomous ordinary differential equations with discontinuous velocity 
fields. When only one of the two conditions is satisfied, we give a natural selection 
criterion that guarantees uniqueness of the solution.
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r é s u m é

Nous donnons deux conditions nécessaires et suffisantes pour l’unicité des solutions de 
Filippov des équations différentielles ordinaires autonomes scalaires, avec champs de 
vitesse discontinus. Lorsqu’une seule de ces deux conditions est satisfaite, nous donnons 
un critère naturel sélectionnant une unique solution.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of the theorem

The purpose of this paper is to derive necessary and sufficient conditions for the uniqueness of Filippov solutions to the 
scalar, autonomous ordinary differential equation (ODE)

dX

dt
(t) = b(X(t)) for t > 0

X(0) = x0

(1)

where b : R → R is Borel measurable and locally bounded, and x0 ∈ R. If b is continuous then the sense in which (1)
holds is classical: X : [0, ∞) → R is absolutely continuous and d

dt X(t) = b(X(t)) holds for almost every t > 0. It was shown 
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by Binding [3] that the solution is unique if and only if b satisfies the so-called Osgood condition at all zeroes of b (see 
below). For instance, any Lipschitz continuous b satisfies Osgood’s condition. For a general reference on the uniqueness and 
non-uniqueness of ODEs, see [1].

If b is merely measurable, say, b ∈ L∞(R), then the interpretation of (1) is more subtle, and choosing a different repre-
sentative in the equivalence class of b can lead to very different solutions. For instance, redefining the constant velocity field 
b(x) ≡ 1 at a single point, b(x0) = 0, yields both the solutions X(t) ≡ x0 and X(t) = x0 + t . Several authors have analyzed 
possible modifications of b on negligible sets in order to ensure the existence of a classical solution, see, e.g., [7,4] and 
the references therein. The concept of Filippov flows or Filippov solutions to (1) provides an alternative solution to this issue 
by choosing a canonical representation of the velocity field. More precisely, the differential equation (1) is replaced by a 
differential inclusion where the right-hand side contains information on the behavior of b in an infinitesimal neighborhood 
of X(t). Filippov [6] showed that there exists a Filippov solution to (1) under very mild conditions on b, for instance if 
b ∈ L∞(R) or, for local existence, b ∈ L∞

loc(R).
In Section 1.1, we provide the definition of Filippov solutions and, in Section 1.2, we describe the essential Osgood 

criterion. The main theorem of this paper, stated in Section 1.3, gives necessary and sufficient conditions for the uniqueness 
of Filippov solutions to (1). As a corollary, we define a class of functions b̃ : R → R, for which the corresponding ODE all 
have the same unique, classical solution. Section 2 contains the proof of the Theorem and its Corollary, while Section 3 lists 
some examples.

1.1. Set-valued functions and Filippov solutions

We say that an absolutely continuous function X : [0, T ) →R is a Filippov solution to (1) if X(0) = x0 and

dX

dt
(t) ∈ K [b](X(t)) for a.e. t ∈ (0, T )

(see [6]). Here, the set-valued function K [b] is defined as

K [b](x) :=
⋂
δ>0

⋂
N⊂R|N|=0

conv
(
b
(

Bδ(x) \ N
))

where Bδ(x) is the open ball around x with radius δ, and conv(A) is the smallest closed, convex set containing A. The 
intersection is taken over all Lebesgue measurable sets N ⊂R with one-dimensional Lebesgue measure |N| = 0. In a similar 
vein we define the essential upper and lower bounds of b at x as

m[b](x) := min
(

K [b](x)
) = lim

δ→0
ess inf
x′∈Bδ(x)

b(x′),

M[b](x) := max
(

K [b](x)
) = lim

δ→0
ess sup
x′∈Bδ(x)

b(x′).
(2)

We will say that b is continuous at a point x if the set K [b](x) contains a single point, otherwise we say that b is discontin-
uous at x. It is evident that this coincides with the usual definition of continuity at a point, possibly after redefining b on a 
negligible set.

We list below some properties that are straightforward to check (see also [2,5]):

(i) K [b] is upper hemicontinuous;
(ii) if 0 /∈ K [b](x) for some x ∈R then there is a neighborhood U of x such that 0 /∈ K [b](y) for every y ∈ U ;

(iii) m[b] and M[b] are lower and upper semi-continuous, respectively;
(iv) the set of discontinuities of b coincides with the measurable set {x : m[b](x) < M[b](x)}.

1.2. The Osgood condition

The classical uniqueness result for ODEs requires Lipschitz continuity of the velocity field b. In 1898, Osgood relaxed 
this condition to mere continuity of b, along with an integrability condition on its reciprocal [8]. We recall the main idea 
of Osgood’s condition here. We will call a function g : (−δ0, δ0) → [0, ∞) an Osgood function if it is nonnegative, Borel 
measurable, and satisfies:

0∫
−δ

g(z)−1dz = +∞,

δ∫
0

g(z)−1dz = +∞ ∀ δ ∈ (0, δ0). (3)

Lemma 1 (Osgood lemma). Let g : (−δ0, δ0) → [0, ∞) be an Osgood function and let u : [0, T ) → (−δ0, δ0) be an absolutely contin-
uous function satisfying u(0) = 0 and
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dt
|u(t)| � g(u(t)) for a.e. t ∈ (0, T ). (4)

Then u ≡ 0.

Proof. Assume conversely that, say, u(t1) > 0 for some t1 > 0, and let t0 ∈ [0, t1) be such that u(t0) = 0 but u(t) > 0 for 
all t ∈ (t0, t1]. From (4), it follows in particular that du

dt (t) � g(u(t)) + ε for every ε > 0 and a.e. t ∈ (t0, t1). Dividing this 
inequality by the right-hand side and integrating over t ∈ (t0, t1) yields

t1 − t0 �
t1∫

t0

du
dt (t)

g(u(t)) + ε
dt =

u(t1)∫
0

1

g(z) + ε
dz.

But the right-hand side goes to +∞ as ε → 0, a contradiction. �
1.3. The main theorem

In Section 2, we prove the following uniqueness result. We recall from [6] that if b ∈ L∞
loc(R), then there exists at least 

one local-in-time Filippov solution to (1).

Theorem. Assume that b ∈ L∞
loc(R) satisfies the following two conditions:

(A) the set{
x ∈R : 0 /∈ K [b](x) and b is discontinuous at x

}
(5)

has zero Lebesgue measure;
(B) for every x ∈R where 0 ∈ K [b](x), the function

g(z) := M
[
b+

x

]
(z), where b+

x (z) := (
b(x + z) sgn(z)

)+
(6)

is an Osgood function. (Here, u+ = max(0, u).)

Then the Filippov solution to (1) is unique. Conversely, if one of the conditions (A) or (B) does not hold, then there is some x0 ∈ R for 
which there are uncountably many Filippov solutions.

If b is continuous then the Theorem reduces to Binding’s result [3, Theorem 5.3]. Indeed, if b is continuous, then the set 
(5) is empty, and condition (B) is equivalent to saying that b+

x is an Osgood function.
Condition (A) addresses a deficiency in the concept of Filippov solutions: Roughly speaking, if discontinuities in b are 

too densely packed, then the set-valued function K [b] is unable to “see” the (almost everywhere defined) function b. An 
example where (A) is violated is given in Section 3. The following corollary shows that when (A) is violated, the alternative 
requirement of being a classical solution can act as a selection criterion among the infinitely many Filippov solutions.

Corollary. Assume that b ∈ L∞
loc(R) satisfies condition (B). Define

Lb :=
{

b̃ : R →R : b = b̃ almost everywhere, b̃(x) ∈ K [b](x) ∀ x ∈R, 0 ∈ K [b](x) ⇒ b̃(x) = 0
}
.

Then, for every x0 ∈ R and b̃ ∈ Lb there is a unique classical solution to the ODE

dX

dt
(t) = b̃(X(t)) for t > 0

X(0) = x0

(7)

and this solution is independent of the choice of b̃ ∈ Lb.

As mentioned above, a classical solution is an absolutely continuous function X : [0, T ) → R satisfying equation (7) for 
a.e. t ∈ (0, T ). The proof of the Corollary is given in Section 2.

Remark. Let Xx0
t denote the (classical or Filippov) solution to (1). Using the fact that (1) is time-reversible, one can show 

that if the solution Xx0
t is unique (as in the Theorem and in the Corollary), then the map x 
→ X x

t is continuous and surjective 
for any t � 0.
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2. Proofs

Proof of sufficiency of (A), (B). It is sufficient to show that the solution remains unique up to some time T > 0. For any 
given x0 ∈R, there are two cases to consider.

Case 1. First, assume that 0 ∈ K [b](x0) and let X = X(t) be a solution to (1). We wish to show that X(t) ≡ x0, so assume con-
versely that X(t) �= x0 for some t > 0; by translating in time we may assume that X(t) > x0 for all t in some interval (0, T ). 
(The case X(t) < x0 is completely symmetric.) By definition, the function g in (6) is nonnegative and upper semi-continuous. 
By the definition of K [b](x), we have, for every δ > 0,

dX

dt
(t)� ess sup

x′∈Bδ(X(t))
b(x′),

and for every ε > 0 there is a subset of points x∗ ∈ Bδ(x(t)) of positive measure such that

ess sup
x′∈Bδ(X(t))

b(x′) � b(x∗) + ε.

It follows that for almost every t ∈ (0, T ) and for sufficiently small δ,

d

dt
|X(t) − x0| = dX

dt
(t) � b(x∗) + ε

= sgn(x∗ − x0)b(x∗) + ε

� g(x∗ − x0) + ε (by (6)).

Passing δ, ε → 0 and using the upper semi-continuity of g , we arrive at d
dt |X(t) − x0| � g(X(t) − x0). Applying Lemma 1

yields X(t) = x0 for every t ∈ [0, T ). Thus, the constant solution is unique.

Case 2. Assume now that 0 /∈ K [b](x0); since K [b](x0) is closed and convex we may assume that, say, K [b](x0) ⊂ (0, ∞). 
Then there is a δ > 0 such that K [b](x) ⊂ [c, ∞) for some c > 0 for every x ∈ Bδ(x0). Write d = ‖b‖L∞(Bδ (x0)) . Let now X, Y
be two solutions to (6), and fix T > 0 such that X(t), Y (t) ∈ Bδ(x0) for all t ∈ [0, T ). Let A X , AY ⊂ [0, T ) be the sets of 
differentiability of X, Y , respectively, both of which have full measure.

Since dX
dt (t), dY

dt (t) ∈ [c, d] we have X(t), Y (t) ∈ [x0 + ct, x0 + dt] for all t ∈ [0, T ) and hence—possibly after decreasing 
T —there is a map τ : [0, T ) → [0, T ) such that τ (0) = 0 and X(τ (t)) = Y (t) for all t ∈ [0, T ). Since X, Y are absolutely 
continuous, so is τ , and moreover τ ′(t) � d

c > 0. It follows that the set A = AY ∩ τ−1(A X ) ⊂ [0, T ) has full measure. Finally, 
define

E = A ∩ {
t ∈ [0, T ) : K [b](Y (t)) is a singleton

}
.

By assumption 1 and the fact that Y is monotone, the set E also has full measure. For every t ∈ E we have now

dX

dt
(τ (t)) = b(X(τ (t))) = b(Y (t)) = dY

dt
(t).

But, at the same time, X(τ (t)) = Y (t), so that dX
dt (τ (t))τ ′(t) = dY

dt (t) for a.e. t . It follows that τ ′(t) ≡ 1, whence X(t) = Y (t)
for all t . �

Next, we claim that condition (A) is necessary. To this end, we need the following elementary result.

Lemma 2. Let U ⊂ R be an open set and let K ⊂ U be a measurable set with |K | > 0. Then there exists a point x0 ∈ U such that 
|[x0, x0 + δ) ∩ K | > 0 for every δ > 0.

Proof. Select an interval [a, b) ⊂ U such that |[a, b) ∩ K | > 0. Define

x0 = sup
{

x ∈ [a,b) : |[a, x) ∩ K | = 0
}
.

Then a � x0 < b so x0 ∈ U , and |[x0, x0 + δ) ∩ K | > 0 for every δ > 0. �
Proof of necessity of (A). Assume that (A) is not satisfied, and define

D := {
x ∈R : b is discontinuous at x

}
,

U− := {
x ∈R : K [b](x) ⊂ (−∞,0)

}
, U+ := {

x ∈R : K [b](x) ⊂ (0,∞)
}
.
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By assumption, at least one of the sets D− := U− ∩ D and D+ := U+ ∩ D has positive measure, so we assume that, say, 
|D+| > 0. Let x0 ∈ U+ be a point where 

∣∣[x0, x0 + δ) ∩ D+∣∣ > 0 for every δ > 0 (cf. Lemma 2). Since K [b](x0) ⊂ (0, ∞)

there is a c > 0 and a δ0 > 0 such that K [b](x) ⊂ [c, ∞) for every |x − x0| < δ0. In particular, c � m[b](x) < M[b](x) for 
every x ∈ [x0, x0 + δ0) ∩ D+ . Select measurable functions b1, b2 such that m[b](x) � b1(x) � b2(x) � M[b](x) and such that 
b1(x) < b2(x) for every x ∈ [x0, x0 + δ0) ∩ D+ . Note that there are uncountably many such pairs of functions. Then the 
functions X1, X2 defined by

Xi(t) := G−1
i (t), Gi(x) :=

x∫
x0

1

bi(y)
dY

are distinct Filippov solutions to (1). �
Proof of necessity of (B). Let g be as in (6). If condition (B) is not satisfied then necessarily either 

∫ 0
−δ

g(z)−1 dz < ∞ or ∫ δ

0 g(z)−1 dz < ∞ for every 0 < δ � δ0 for a sufficiently small δ0 > 0. Assume the latter case; the former is completely 
analogous. Necessarily, g(δ) > 0 for almost every δ ∈ (0, δ0), so in particular g(z) = M

[
b+

x0

]
(z) = M[b](x0 + z). Let

G(x) :=
x−x0∫
0

1

g(z)
dz, x ∈ [x0, x0 + δ0).

Then G is absolutely continuous with G ′(x) = 1
g(x−x0)

� 1
‖b‖L∞ > 0, so G is invertible and its inverse X := G−1 : [0, T ) →

[x0, x0 + δ0) (for some T > 0) is also absolutely continuous. Differentiating the relation 
∫ X(t)−x0

0
1

g(z) dz = t and reorganizing, 
we find that

dX

dt
(t) = g

(
X(t) − x0

) = M[b](X(t)
) ∈ K [b](X(t)

)
,

whence X solves (1). Clearly, the trivial solution Y (t) ≡ x0 is also a solution to (1); hence, any c > 0 yields a new solution:

Z(t) =
{

x0 for 0 � t � c

X(t − c) for c � t < c + T .

We conclude that there exists a continuum of solutions to (1). �
We conclude this section with the proof of the Corollary.

Proof of the Corollary. From the definition of Lb , it is clear that any classical solution to (7) is also a Filippov solution 
to (1). Hence, the fact that b satisfies condition (B) implies that if 0 ∈ K [b](x0), then any classical solution must satisfy 
X(t) ≡ x0. If 0 /∈ K [b](x0), say, if K [b](x) ⊂ [c, ∞) for |x − x0| < δ for some c > 0, then define X(t) := G−1(t), where

G(x) :=
x∫

x0

1

b(z)
dz =

x∫
x0

1

b̃(z)
dz.

Then X satisfies (7) in the classical sense for a.e. t , and is necessarily the only classical solution since any other Y (t) such 
that d

dt Y (t) = b̃(Y (t)) for a.e. t also satisfies G(Y (t)) = t , whence X = Y . �
3. Examples

Example (Velocity fields not satisfying (B)). Counterexamples to uniqueness of (1) when b does not satisfy the Osgood condition
are well known, the most popular ones being b(x) = |x|α for some α ∈ (0, 1) and the Heaviside function b(x) = 1(0,∞)(x). 
Note that, say, b(x) = 1 + |x|α , does satisfy conditions (A) and (B), even though it is not (one-sided) Lipschitz bounded. The 
function b(x) = −x log |x| is an example of a non-Lipschitz function that does satisfy condition (B).

Example (An everywhere discontinuous velocity field). Let A ⊂ R be a Borel set with the following property: for every x ∈ R

and δ > 0, both |A ∩ Bδ(x)| > 0 and |Bδ(x) \ A| > 0 (see Rudin [9]). Define

b(x) =
{

1 x ∈ A

2 x /∈ A.

It is easy to check that K [b](x) ≡ [1, 2], and hence that b is nowhere continuous. Clearly, x(t) = x0 +at is a Filippov solution 
to (1) for any a ∈ [1, 2]. Note that, by the Corollary, there is a unique classical solution for this velocity field.



U.S. Fjordholm / C. R. Acad. Sci. Paris, Ser. I 356 (2018) 916–921 921
References

[1] R.P. Agarwal, V. Lakshmikantham, Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, Series in Real Analysis, vol. 6, World 
Scientific Publishing Co, 1993.

[2] J.-P. Aubin, H. Frankowska, Set-Valued Analysis, Birkhäuser, Basel, Switzerland, 2009.
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