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Conditionally on the ABC conjecture, we apply work of Granville to show that a 
hyperelliptic curve C/Q of genus at least three has infinitely many quadratic twists that 
violate the Hasse Principle iff it has no Q-rational hyperelliptic branch points.
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r é s u m é

En supposant la conjecture ABC, nous utilisons un travail de Granville pour montrer qu’une 
courbe hyperelliptique C/Q de genre au moins trois a une infinité de tordues quadratiques, 
qui violent le principe de Hasse si et seulement si elle n’a pas de point de branchement 
hyperelliptique rationnel sur Q.

© 2018 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let C/Q be an algebraic curve. (All our curves will be nice: smooth, projective and geometrically integral.) An involution 
ι on C is an order 2 automorphism of C/Q . For any quadratic field Q(

√
d)/Q, there is a curve Td(C, ι)/Q , the quadratic 

twist of C by ι and Q(
√

d)/Q. After extension to Q(
√

d), the curve Td(C, ι) is canonically isomorphic to C
/Q(

√
d)

, but the 
Aut(Q(

√
d)/Q) = 〈σd〉 action on C(Q(

√
d)) is “twisted by ι”, meaning that σd : P ∈ C(Q(

√
d)) �→ ι(σd(P )). Thus, we have:

Td(C, ι)(Q) = {P ∈ C(Q(
√

d)) | ι(P ) = σd(P )}.
If d ∈Q×2, we put Td(C, ι) = C , the “trivial quadratic twist.”

Let q : C → C/ι be the quotient map. Every Q-rational point on Td(C, ι) maps via q to a Q-rational point on C/ι. Let 
P ∈ (C/ι)(Q). If P a branch point of ι, the unique point P ∈ C(Q) such that q(P ) = P is also rational on every quadratic 
twist. If P is not a branch point of ι, there is a unique d ∈ Q×/Q×2 such that the fiber of q : Td(C, ι) → C/ι consists of two 
Q-rational points.
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Work of Clark and Clark–Stankewicz [2], [3], [4] gives criteria on C and ι for there to be infinitely many d ∈ Q×/Q×2

such that Td(C, ι)/Q violates the Hasse Principle: letting AQ be the adele ring over Q, this means Td(C, ι)(AQ) �= ∅ but 
Td(C, ι)(Q) = ∅. Here is one version.

Theorem 1. [4, Thm. 2] Let C/Q be a nice curve, and let ι be an involution on C. Suppose:
(T1) the involution ι has no Q-rational branch points;
(T2) the involution ι has at least one geometric branch point: {P ∈ C(Q) | ι(P ) = P } �=∅;
(T3) For some d ∈Q×/Q×2 we have Td(C, ι)(AQ) �= ∅;
(T4) The set (C/ι)(Q) is finite.
Then, as X → ∞, the number of squarefree d with |d| ≤ X such that Td(C, ι)/Q violates the Hasse Principle is �C

X
log X .

An involution ι on a curve C/Q is hyperelliptic if C/ι ∼= P1. A hyperelliptic curve is a pair (C, ι) with ι a hyperelliptic 
involution on C . (A curve of genus at least two admits at most one hyperelliptic involution.) A hyperelliptic curve (C, ι)
of genus g has an affine model y2 = f (x) with f (x) ∈ Q[x] squarefree of degree 2g + 2 and ι : (x, y) �→ (x, −y). The twist 
Td(C, ι) has affine model dy2 = f (x). The branch points of ι are the roots of f in Q.1

If ι is a hyperelliptic involution then (C/ι)(Q) = P1(Q) is infinite, so (T4) is not satisfied. In this note, we give a condi-
tional complement to Theorem 1 that applies to hyperelliptic curves.

Theorem 2. Assume the ABC conjecture. For a hyperelliptic curve (C, ι) of genus g ≥ 3, the following are equivalent:
(i) the hyperelliptic involution ι has no Q-rational branch points;
(ii) as X → ∞, the number of squarefree integers d with |d| ≤ X such that Td(C, ι)/Q violates the Hasse Principle is �C

X
log X ;

(iii) some quadratic twist Td(C, ι)/Q violates the Hasse Principle.

Certainly (ii) =⇒ (iii). As for (iii) =⇒ (i): if ι has a Q-rational branch point, then this point stays rational on every 
quadratic twist. So the crux is to show (i) =⇒ (ii), which we will do in §2. The global part and the dependence on ABC 
both come from work of Granville [5]. In §3 we give upper and, in a special case, lower bounds on the number of quadratic 
twists having adelic points. We use these results to show that when hyperelliptic curves of genus g ≥ 3 are ordered by 
height, for 100% of such curves the number of twists up to X violating the Hasse Principle is o(X), but conditionally on 
ABC, there are hyperelliptic curves for which the number of twists up to X violating the Hasse Principle is � X . Some final 
remarks are given in §4.

2. Proof of Theorem 2

2.1. Local

Theorem 3. Let (C, ι)/Q be a hyperelliptic curve of genus g ≥ 1. If C(AQ) �= ∅, then the set of primes p ≡ 1 (mod 8) for which 
Tp(C, ι)(AQ) �=∅ has positive density.

Proof. For any place � ≤ ∞ of Q, if p ∈Q×2
� then Tp(C, ι)/Q�

∼= C/Q�
and thus Tp(C, ι)(Q�) �= ∅. In particular, this holds for 

� = ∞. Henceforth � denotes a prime number.
Let M1 ∈ Z+ be such that C extends to a smooth relative curve over Z� for all � > M1. Such an M1 exists for any nice 

curve C/Q by openness of the smooth locus. Since C is hyperelliptic, we can take M1 to be the largest prime dividing its 
minimal discriminant.

Suppose � > M := max(M1, 4g2 − 1), � �= p and p /∈ Q×2
� . Then the minimal regular model C/Z�

is smooth. We have 
Tp(C, ι)/Q�(

√
p)

∼= C/Q�(
√

p) . Since Q�(
√

p)/Q� is unramified and formation of the minimal regular model commutes with 
étale base change [6, Prop. 10.1.17], it follows that the minimal regular model Tp(C, ι)/Z�

is smooth. By the Riemann hy-
pothesis for curves over a finite field, since � ≥ 4g2, we have Tp(C, ι)(F�) �= ∅, and then by Hensel’s Lemma we have 
Tp(C, ι)(Q�) �=∅.

Suppose � ≤ M and � �= p. If � = 2, then p ∈ Q×2
� because p ≡ 1 (mod 8). If � is odd, we require that p is a quadratic 

residue modulo �, so again p ∈ Q×2
� . Either way, Tp(C, ι)(Q�) = C(Q�) �= ∅.

Suppose � = p. Let P ∈ C(Q) be a hyperelliptic branch point. We assume that p splits completely in Q(P ). Then P ∈
C(Qp) ∩ Tp(C, ι)(Qp).

All in all, we have finitely many conditions on p, each of the form that p splits completely in a certain number field. 
Taking the compositum of these finitely many number fields and its Galois closure, say L, we see that if p splits completely 
in L then Tp(C, ι)(AQ) �=∅. By (e.g.) the Chebotarev density theorem, this set of primes has positive density. �

1 We have chosen a model in which the point at ∞ is not a branch point; this is always possible. There is a model in which the point at ∞ is a branch 
point iff there is a Q-rational branch point.
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2.2. Global

Theorem 4. (Granville [5, Cor. 1.2]) Assume the ABC conjecture. Let (C, ι)/Q be a hyperelliptic curve of genus g ≥ 3. The number of 
squarefree integers d with |d| ≤ X such that Td(C, ι)(Q) has a point that is not a hyperelliptic branch point is �C X

1
g−1 +o(1) �C X2/3 .

2.3. Local–global

We now complete the proof of Theorem 2. Let (C, ι) be a hyperelliptic curve of genus g ≥ 3 without Q-rational hyperel-
liptic branch points, so C has an affine model of the form y2 = f (x) with f (x) ∈ Z[x] of degree 2g + 2, with distinct roots 
in Q and no roots in Q. Put d0 := f (1). Then (1, 1) is a Q-point on d0 y2 = f (x) and thus on Td0 (C, ι). The involution ι
remains Q-rational on Td0 (C, ι) (cf. [4, §2.1]). We may thus apply Theorem 3 to the hyperelliptic curve (Td0(C, ι), ι), getting 
a set of primes p ≡ 1 (mod 8) of density δ > 0 such that

Tpd0(C, ι)/Q = Tp(Td0(C, ι), ι)/Q

has points everywhere locally. By the Prime Number Theorem in Arithmetic Progressions, for at least ( δ
d0

+o(1)) X
log X square-

free d with |d| ≤ X , we have Td(C, ι)(AQ) �= ∅. By Theorem 4, we have Td(C, ι)(Q) �= ∅ for � X2/3 squarefree d with |d| ≤ X . 
So the number of squarefree d with |d| ≤ X such that Td(C, ι)/Q violates the Hasse Principle is �C

X
log X .

3. Counting twists with adelic points

For a hyperelliptic curve (C, ι)/Q , let

UC = {squarefree d ∈ Z | Td(C, ι)(AQ) �= ∅}
be the set of twists of C having points everywhere locally. For X ≥ 1, put

UC (X) = #(UC ∩ [−X, X]).
As we saw above, Theorem 3 gives UC (X) � X

log X .

Recall that a polynomial f ∈ Z[x] is intersective if it has roots modulo N for all N ∈ Z+ , or equivalently, in Zp for all 
primes p. We say a polynomial f ∈ Z[x] is weakly intersective if the set of prime numbers p such that f has a root modulo 
p has density 1.

Remark 5. Suppose f = anxn + . . .+a1x +a0 ∈ Z[x] has degree n ≥ 2, is weakly intersective and has distinct roots in Q, with 
discriminant �. Let G be the Galois group of f .

For every prime number p � an�, the partition of n given by the cycle type of a Frobenius element σp at p coincides 
with the partition of n given by the degrees of the irreducible factors of the image of f in Z/pZ[x]. Since f is weakly 
intersective, it follows from the Frobenius Density Theorem (see, e.g., [10, §3]) that every σ ∈ G has a fixed point and thus 
f has a root mod p for all p � an�, and thus by Hensel’s Lemma it has a root in Zp for all but finitely many p.

Since every σ ∈ G has a fixed point, it follows from the Cauchy–Frobenius(–“not Burnside”) Lemma that f ∈ Q[x] is not 
irreducible.

Theorem 6. Let (C, ι)/Q be a hyperelliptic curve. Let y2 = f (x) be an affine equation for C with f ∈ Z[x] squarefree of even degree.
a) If f is weakly intersective then UC (X) � X.
b) If f is not weakly intersective, let β be the density of the set of prime numbers p such that f has no root modulo p, so β ∈ (0, 1).2

Then UC (X) � X
logβ X

.

Proof. Let � be the discriminant of f .
Step 1: suppose f ∈ Z[x] is weakly intersective. By Remark 5, f has a root in Zp for all but finitely many p, and thus the 
set P of prime numbers p such that C(Qp) = ∅ is finite. For each p ∈P , we have Cd(Qp) �= ∅ so long as d lies in the same 
Qp-adic square class as f (1). The set of integers lying in a given Qp-adic square class is a nonempty union of congruence 
classes modulo p2 (if p > 2) or modulo 16 (if p = 2). Applying the Chinese Remainder Theorem, there are a, N ∈ Z+ such 
that if d ≡ a (mod N) then Td(C, ι)(Qp) �= ∅ for all primes p. Finally, if f has a real root then Td(C, ι)(R) �= ∅ for all d; 
otherwise Td(C, ι)(R) �= ∅ iff df (1) > 0. Thus UC (X) � X . (The implied constant can be made explicit in terms of �.)
Step 2: suppose f is not weakly intersective. Let E ′ be the set of all squarefree integers d such that for all primes p | d, 
either p | 2� or f has a root modulo p. Let E be the set of all squarefree integers that do not lie in E ′ . Thus for all d ∈ E , 

2 The polynomial f has a root modulo every prime p that splits completely in the splitting field of f , so β > 0.
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there is an odd prime p | d such that the image of f in Z/pZ is squarefree and has no root modulo p. By a result of Sadek 
[8, Cor. 4.2], this implies that Td(C)(Qp) = ∅. It follows that

UC ⊂ E ′.

Let E ′(X) be the number of d ∈ E ′ with |d| ≤ X . Then [9, Thm. 2.4] implies that if 0 < β < 1 then there is c > 0 such that 
E ′(X) ∼ c X

logβ X
. �

We call a hyperelliptic curve (C, ι)/Q weakly intersective if it has a weakly intersective squarefree, integral, even degree 
defining polynomial.3 Since no weakly intersective polynomial is irreducible, when genus g hyperelliptic curves are ordered 
by height, 0% of them are weakly intersective.

Theorems 2 and 6 immediately imply the following:

Corollary 7. Let (C, ι)/Q be a hyperelliptic curve of genus g without Q-rational branch points.
a) If C is weakly intersective and g ≥ 3, then conditionally on ABC, as X → ∞ the number of quadratic twists of (C, ι) that violate the 
Hasse Principle is � X.
b) If C is not weakly intersective, then as X → ∞, the number of quadratic twists of (C, ι) that violate the Hasse Principle is o(X).

Example 8.
a) For any coprime, nonsquare integers a, b > 1, the polynomial (x2 − a)(x2 − b)(x2 − ab) is weakly intersective and without 
rational roots. The polynomial (x2 −2)(x2 −3)(x2 −6) is not intersective – it has no root in Q2. The polynomial (x2 −2)(x2 −
17)(x2 − 34) is intersective.
b) For g ≥ 3, let h(x) ∈ Z[x] be monic of degree 2 g − 4, with nonzero discriminant, without rational roots and such that 
h(±√

2), h(±√
3), h(±√

6) �= 0. Then

C/Q : y2 = 2 (x2 − 2)(x2 − 3)(x2 − 6)h(x)

is a weakly intersective hyperelliptic curve of genus g ≥ 3 without Q-rational branch points. So conditionally on ABC, a 
positive proportion of the quadratic twists of C violate the Hasse principle.
c) For every even n ≥ 2, there is a cyclic Galois extension F/Q of degree n, and there is a monic polynomial f ∈ Z[x] such 
that Q[x]/( f ) ∼= F . The hyperelliptic curve C/Q : y2 = 2 f (x) has genus n

2 − 1 and UC (X) � X

log1− 1
n X

.

4. Some remarks

In [5, Conj. 1.3], Granville conjectures that for all g ≥ 2, if f ∈ Z[x] has degree 2 g + 1 or 2 g + 2 and distinct roots in 
Q, then there is a constant κ ′

f > 0 such that the number of squarefree d with |d| ≤ X such that dy2 = f (x) has a Q-point 

that is not a hyperelliptic branch point is ∼ κ ′
f X

1
g+1 . The above arguments apply verbatim to show that conditionally on 

Granville’s conjecture, for all g ≥ 2, a hyperelliptic curve C/Q has �C
X

log X twists that violate the Hasse principle iff C has 
no Q-rational branch points. On the other hand, Vatsal has exhibited a genus-one hyperelliptic curve (C, ι)/Q , for which 
a positive proportion of the quadratic twists have infinitely many rational points [11]. Still, it may be true that every 
hyperelliptic curve of genus 1 without Q-rational branch points has infinitely many twists that violate the Hasse Principle.

The present work should be compared to two other works that apply Theorem 1 (or its predecessor [2, Thm. 2]) and 
Faltings’ Theorem to get Hasse Principle violations. Namely, Ozman [7] works with the Atkin–Lehner involution w N on a 
modular curve X0(N) for a prime N ≡ 1 (mod 4) and Clark–Stankewicz [4] work with the Atkin–Lehner involution w D on 
a Shimura curve X D for a squarefree D > 1. Taking N > 131 (resp. D > 546) ensures that X0(N)/〈w N 〉 (resp. X D/〈w D〉) has 
genus at least 2 and thus finitely many Q-points. In each work, there is an analysis of UC (X), the number of twists up to X
with adelic points. For modular curves X0(N), Ozman shows that UC (X) ∼ C X

logγ X
for a positive constant C and a γ ∈ [0, 1]

determined in terms of the class group of Q(
√−N) [7, Thm. 5.4] (and cf. [4, p. 2841, footnote 5]). In the case of Shimura 

curves X D , Clark–Stankewicz show [4, Thm. 8] that

X

logαD X
� UX D (X) � X

logβD X

for constants 0 < βD < αD < 1 determined in terms of D , such that limD→∞ αD − βD = 0.

3 By Theorem 6, if one defining polynomial is weakly intersective, then all are.
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There is some overlap: for a finite nonempty set of N (resp. of D), the pair (X0(N), w N ) (resp. (X D , w D)) is hyperel-
liptic. E.g., the pair (X0(41), w41) is hyperelliptic of genus 3 and [7, loc. cit.] gives UX0(41)(X) ∼ C X

log
11
16 X

. Similarly, the pair 

(X35, w35) is hyperelliptic of genus 3 and [4, loc. cit.] gives X

log
15
16 X

� UX35 (X) � X

log
11
16 X

.

It can be shown that for all hyperelliptic curves (C, ι)/Q , there is α = α(C) < 1 such that UC (X) � X
logα X

. In fact, the 
same conclusion should hold for any (C, ι)/Q satisfying (T1), (T2), and (T3) in Theorem 1, which amounts to a quantitative 
strengthening of the local part of this result. We hope to return to this in a future work.

Recent work of Bhargava–Gross–Wang [1] shows that, for each fixed g ≥ 1, when genus-g hyperelliptic curves (C, ι)/Q
are ordered by height, a positive proportion violate the Hasse Principle. This work is unconditional; moreover, the positive 
proportion result should be contrasted with Corollary 7b). On the other hand, since all quadratic twists of a hyperelliptic 
curve induce the same point of the moduli space Hg of hyperelliptic curves of genus g , our result gives, conditionally on 
ABC, Hasse Principle violations on the largest possible subset of Hg .
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