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We prove that the class of sofic groupoids is stable under several measure-theoretic 
constructions. In particular, we show that virtually sofic groupoids are sofic. We answer 
a question of Conley, Kechris, and Tucker-Drob by proving that an aperiodic pmp groupoid 
is sofic if and only if its full group is metrically sofic.
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r é s u m é

Nous démontrons dans cette note que plusieurs constructions de théorie de la mesure 
préservent la classe des groupoïdes sofiques. En particulier, nous montrons qu’un sous-
groupoïde virtuellement sofique est sofique. Nous répondons aussi à une question de 
Conley, Kechris et Tucker-Drob en démontrant que, pour qu’un groupoïde apériodique muni 
d’une mesure de probabilité invariante soit sofique, il est nécessaire et suffisant que son 
groupe plein soit métriquement sofique.

© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The notion of soficity for groups was introduced by Gromov [11] in his work on symbolic dynamics. In 2010, Elek and 
Lippner [7] introduced soficity for equivalence relations in the same spirit as Gromov’s original definition, i.e. an equiva-
lence relation R , induced by some action of the free group F∞ , is sofic if the Schreier graph of the F∞-space X can be 
approximated, in a suitable sense, by Schreier graphs of finite F∞-spaces.

Alternative definitions by Ozawa [16] and Pǎunescu [17] describe soficity at the level of the so-called full semigroup of R , 
which can be immediately generalized to groupoids. We will describe general elementary techniques to deal with (abstract) 
sofic groupoids.
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1.1. Probability measure-preserving groupoids and full semigroups

We will follow the notations of [5]: given a groupoid G , the source and range maps will be, respectively, s(g) = g−1 g
and r(g) = gg−1 for g ∈ G , and the unit space of G will be denoted G(0) .

A discrete measurable groupoid is a groupoid G endowed with a standard Borel space structure such that the product and 
inversion maps are Borel, and such that s−1(x) is countable for every x ∈ G(0) .

The Borel full semigroup of a discrete measurable groupoid G is the set [[G]]B of Borel subsets α ⊆ G such that the 
restrictions s|α and r|α of the source and range maps are injections, and thus Borel isomorphisms onto their respective 
images ([13, Theorem 15.2]).

[[G]]B is an inverse monoid with the usual product and inverse of sets, namely

αβ =
{

ab : (a,b) ∈ (α × β) ∩ G(2)
}

, α−1 = {
a−1 : a ∈ α

}

and G(0) is the unit of [[G]]B , which we will instead denote by G(0) = 1 when no confusion arises.
A probability measure-preserving (pmp) groupoid is a discrete measurable groupoid G with a Borel probability measure μ

on G(0) satisfying μ(s(α)) = μ(r(α)) for all α ∈ [[G]]B . We write (G, μ) for a pmp groupoid when we need the measure μ
to be explicit. The measure μ induces a pseudometric dμ on [[G]]B via

dμ(α,β) = μ(s(α�β)) = μ(r(α�β)).

The trace of α ∈ [[G]]B is defined as tr(α) = μ(α ∩ G(0)). In fact, the trace and the pseudometric above, along with the 
semigroup operation, determine each other: for example, the unit 1 of [[G]]B is the only element of trace 1, and

dμ(α,β) = tr(α−1α) + tr(β−1β) − tr(α−1αβ−1β) − tr(β−1α)

and similarly one can write the trace in terms of the pseudometric dμ .
The (measured) full semigroup of a pmp groupoid (G, μ) is the quotient metric space [[G]] (or [[G]]μ to make μ explicit) 

of [[G]]B under the pseudometric dμ . In fact, [[G]] is an inverse semigroup, with the quotient operation endowed from 
[[G]]B , and the trace map tr : [[G]]B → R factors through a map on [[G]]. We will not distinguish [[G]]B and [[G]] unless 
strictly necessary.

The Borel full group [G]B of a discrete measurable groupoid G is the set of those α ∈ [[G]]B with s(α) = r(α) = G(0) , and, 
when G is pmp, the image of [G]B in [[G]], denoted [G] or [G]μ , is called the (measured) full group of G .

Definition 1.1. A subset A of a pmp groupoid (G, μ) is called null if μ(s(A)) = 0 (equivalently, μ(r(A)) = 0), and conull if 
its complement G \ A is null. A property of the points of G is said to hold a.e. (almost everywhere) if it holds on a conull 
subset.

Example 1.2. Let R be a countable Borel equivalence relation on a standard probability space (X, μ), and suppose that μ
is invariant (see [8]). We can see R as a pmp groupoid as follows: the product is defined by (x, y)(y, z) = (x, z). The unit 
space of R is the diagonal {(x, x) : x ∈ X}, which we identify with X and endow with the probability measure μ. The Borel 
full semigroup of R can be identified with the semigroup of partial Borel isomorphisms f : A → B , A, B ⊆ X , for which 
( f (x), x) ∈ R for all x ∈ A, by associating such f with the inverse of its graph, {( f (x), x) : x ∈ X}. The pmp groupoids that are 
isomorphic (in the measure-theoretic sense) to one constructed in this way are called principal groupoids.

Example 1.3. Let Y be a finite set and Y 2 the largest equivalence relation on Y , endowed with the usual (discrete) Borel 
structure. The only probability measure on Y that makes Y 2 pmp is the normalized counting measure: μ#(A) = |A|/|Y |. 
We denote the associated metric by d# and call it the normalized Hamming distance.

Note that if Y and Z are finite sets, then the map [[Y 2]] � α 	→ α × (Z 2)(0) ∈ [[Y 2 × Z 2]] is a trace-preserving embed-
ding. The map (y1, y2, z1, z2) 	→ (y1, z1, y2, z2) is a measure-preserving isomorphism between the groupoids Y 2 × Z 2 and 
(Y × Z)2, which induces a trace-preserving isomorphism between the respective two full semigroups. Therefore, if Y and Z
are finite sets, there are a finite set W and trace-preserving embeddings from [[Y 2]] and [[Z 2]] into [[W 2]].

Definition 1.4. A sofic approximation of a pmp groupoid G is a sequence of maps π = {
πk : [[G]] → [[Y 2

k ]]}, where Yk are 
finite sets, such that for all α, β ∈ [[G]],

(i) limk→∞ tr(πk(α)) = tr(α);
(ii) limk→∞ d#(πk(αβ), πk(α)πk(β)) = 0.

A pmp groupoid G is sofic if it admits a sofic approximation.
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We would like to note that this definition of sofic approximation differs from that of Bowen [2], where additional 
properties are required of the sequence π in order to study the entropy of sofic groupoids. However, the existence of a 
sofic approximation in the stronger sense of [2] is actually equivalent to the existence of a sofic approximation as in the 
definition above.

2. Permanence properties

Our first permanence result deals with products of pmp groupoids.

Theorem 2.1. Two pmp groupoids (G, μ) and (H, ν) are sofic if and only if (G × H, μ × ν) is sofic.

Sketch of proof. The main point of the proof is to show that the subsemigroup M of [[G × H]] containing elements that 
can be written as 

⋃n
i=1 αi × βi , such that αi ∈ [[G]], βi ∈ [[H]]

(i) if s(αi) ∩ s(α j) and s(βi) ∩ s(β j) are both nonempty then i = j;
(ii) if r(αi) ∩ r(α j) and r(βi) ∩ r(β j) are both nonempty then i = j,

is dense in [[G × H]]. Common measure-theoretic arguments allow us to approximate any φ ∈ [[G × H]] by subsets of the 
form 

⋃n
i=1 αi × βi , αi ∈ [[G]], βi ∈ [[H]], and αi × βi pairwise disjoint; however, (i) and (ii) are not necessarily satisfied, so 

to deal with this, one substitutes αi × βi \
(⋃

j 
=i αi s(α j) × βi s(β j)
)

for αi × βi , which deals with (i), and perform a similar 
procedure for (ii).

After that, take sofic approximations π = {
πk : [[G]] → [[Y 2

k ]]} and θ = {
θk : [[H]] → [[Z 2

k ]]} and define π ⊗ θ = {(π ⊗ θ)k}
as (π ⊗ θ)k(

⋃
αi × βi) = ⋃

πk(αi) × θk(βi). This is a subset of Y 2
k × Z 2

k , but not necessarily an element of its full semigroup, 
since πk and θk do not necessarily preserve properties (i) and (ii). However, these are preserved in the limit, so we can 
modify (π ⊗ θ)k appropriately on small sets and assume (φ ⊗ θ)k(α) ∈ [[Y 2

k × Z 2
k ]] � [[(Yk × Zk)

2]] for all α ∈ M . Since M is 
dense in [[G × H]], we can extend π ⊗ θ to a sofic approximation of G × H . �

Now we deal with extensions of groupoids, and for this we need to use a notion of finite index.

Definition 2.2. A subgroupoid H ⊆ G has finite index in G if there exist ψ1, . . . , ψn ∈ [G] such that {ψi H : i = 1 . . .n} is a 
partition of G (up to null sets). We call ψ1, . . . , ψn left transversals of H in G . Note that if H has finite index in G , then 
H (0) = G(0) (up to null sets).

Remark. In [15], Kida introduced and studied the index map of a subgroupoid H of a pmp groupoid G with H (0) = G(0) as 
follows: for all x ∈ G(0), define an equivalence relation ∼x on r−1(x) by setting g ∼x h ⇐⇒ g−1h ∈ H for all g, h ∈ r−1(x). 
The index I(x) at x is defined as the number of ∼x-equivalence classes. If H is ergodic, then H has finite index in G if and 
only if the index map is finite a.e. In this case, the index map is a.e. equal to the cardinality of any set of left transversals 
of H in G (this follows from Theorem 2.3 below).

If G is a groupoid and x ∈ G(0) , define the isotropy group Gx
x = s−1(x) ∩ r−1(x), which is in fact a group with the operation 

inherited from G , and the orbit relation (r, s)(G) = {(r(g), s(g)) : g ∈ G} on the unit space G(0) .
A common question is how much of the structure of a pmp groupoid G can be described by the structures of (r, s)(G)

and the isotropy groups Gx
x; for example, G is amenable if and only if (r, s)(G) is amenable and a.e. isotropy group Gx

x
is amenable (see [1, Theorem 4.2.7]). This naturally leads to the question: if H is a subgroupoid of a pmp group G with 
H (0) = G(0) , how does a finite index of H ⊆ G relate to the index of the relations (r, s)(H) ⊆ (r, s)(G), as defined in [9], and 
to the index of the isotropy groups Hx

x ⊆ Gx
x?

Theorem 2.3. Suppose that H is an ergodic subgroupoid of a pmp groupoid G with H (0) = G(0) . Then H has finite index in G if and 
only if (r, s)(H) has finite index in (r, s)(G) and Hx

x has finite index in Gx
x for μ-a.e. x ∈ G(0) .

Proof. We prove only the harder implication: if the latter condition is satisfied, take invertible choice functions ψ1, . . . , ψn
for (r, s)(H) ⊆ (r, s)(G) [9, Lemma 1.3], and an application of the Lusin–Novikov Theorem [13, Theorem 18.10] yields 
φ1, . . . , φn ∈ [G] such that (r, s)(φi) =

{
(x,ψi(x)) : x ∈ G(0)

}
. The index [Gx

x : Hx
x] is (r, s)(H)-invariant, so it is equal a.e. to a 

number m. Using the selection theorem for periodic relations [13, Theorem 12.16], one can take elements θ1, . . . , θm ∈ [G]
such that s(g) = r(g) for all g ∈ θ j , and such that for a.e. x ∈ G(0) , 

{
θ j Hx

x

}
is a partition of Gx

x . Then φiθ j are left transversal 
for H in G . �
Theorem 2.4. Suppose that (G, μ) is a pmp groupoid and H ⊆ G is a subgroupoid of finite index (in particular, H (0) = G(0)). If (H, μ)

is sofic, so is (G, μ).
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Sketch of proof. Suppose that ψ1, . . . , ψN are left transversals for H ⊆ G . For each α ∈ [[G]], let αi, j = ψ−1
i αψ j ∩ H , and 

note that αi, j ∈ [[H]]. Let π = {
πk : [[H] → [[Y 2

k ]]} be a sofic approximation of H . Define φk(α) = ⋃
i, j π(αi, j) × {(i, j)} so 

that up to modifications on small sets (as in the proof of 2.1), we can assume φk(α) ∈ [[Y 2
k × {1, . . . , N}2]]. This gives us a 

sequence of maps φ = {
φk : [[G]] → [[Y 2

k × {1, . . . , N}2]]}.
To check that � = {�k} is a sofic approximation, use its definition and the fact that 

⋃
j αi, jβ j,l = (αβ)i,l to show 

that it asymptotically preserves products, and, to show that � is asymptotically trace-preserving, note that tr�(α) =
1
N

∑N
i=1 tr(αi,i). Since αi,i ∩ G(0) = ψ−1

i αψi ∩ G(0) , ψi ∈ [G] and G is pmp, one obtains tr(αi,i) = tr(α) and we are done. �
In the next theorem, we will deal mostly with distinct measures on a given discrete measurable groupoid, and how 

soficity is preserved under some measure-theoretic constructions. We will simply say that a measure μ on a discrete 
measurable groupoid G is sofic if (G, μ) is sofic.

If H is a non-null subgroupoid of a pmp groupoid G , denote by μH the normalized measure on H (0) , μH (A) =
μ(A)/μ(H (0)) for A ⊆ H (0) , which makes H a pmp groupoid in its own right.

Theorem 2.5. Let G be a discrete measurable groupoid.

(1) A strong limit2 of sofic measures is sofic as well.
(2) A convex combination of sofic measures is sofic.
(3) If μ has a disintegration μ = ∫

G(0) px dν(x), where ν-a.e. px is a sofic measure, then (G, μ) is sofic.
(4) If (G, μ) is sofic and H is a non-null subgroupoid of G, then (H, μH) is sofic.
(5) If ν � μ, where (G, ν) is pmp, and μ is sofic, then ν is sofic.
(6) If {Hn} is a countable Borel partition of G by non-null subgroupoids, then G is sofic if and only if each Hn is sofic.

Hence, by (4) and Theorem 2.4, a pmp groupoid is virtually sofic (i.e. it contains a finite-index sofic subgroupoid) if and 
only if it is sofic. As a particular case of (3), if a.e. ergodic component of (G, μ) is sofic, so is (G, μ), but at present we do 
not know if the converse statement is true.

Let us introduce some notation which will be useful in the proof of the theorem above.

Definition 2.6. If {(Gi,μi)}i is a sequence (finite or infinite) of pmp groupoids and {ti}i is a sequence of nonnegative 
numbers with 

∑
i ti = 1, we define the convex combination groupoid (G, μ) as follows: as a measurable groupoid, G is the 

coproduct G = ∐
Gi , i.e. G is the disjoint union of all Gi , the operation on G is the smallest one extending those of each Gi , 

and the Borel structure of G is generated by those of each Gi . Each measure μi can be regarded as a measure on G(0) by the 
formula μi(A) = μi(A ∩ G(0)

i ), A ⊆ G(0) , and so we endow G with the convex combination of those measures: μ = ∑
i tiμi . 

We will use the notation G = ∑
i ti Gi in this case.

Proof of 2.5. (1) is clear, since soficity is an approximation property for the measure.
(2) The technique is similar to that employed in [18]: suppose first that ν, ρ are sofic measures and μ = tν + (1 − t)ρ , 

where t = p/q is rational, p, q ∈ Z, 0 < p < q. We can take the sofic approximations π = {
πk : [[G]]ν → [[Y 2

k ]]} and 
θ = {

θk : [[G]]ρ → [[Y 2
k ]]} of (G, μ) and (G, ν), on the same sets Yk (see Example 1.3), and define a sofic approximation 

tπ ⊕ (1 − t)ρ = {
ξk : [[G]]μ → [[Y 2

k × {1, . . . ,q}2]]} by ξk(α) = πk(α) × {1, . . . , p} ∪ θk(α) × {p + 1, . . . ,q}. The general 
case follows from (1).

(3) This follows from the previous items, since standard arguments show that in this case μ is a strong limit of convex 
combinations of sofic px .

(4) This is trivial if H (0) = G(0) , since any sofic approximation of G restricts to a sofic approximation of H . On the other 
hand, if G is a convex combination G = t H + (1 − t)K , then H (0) and K (0) are disjoint idempotents whose sum of 
traces is 1. Sofic approximations preserve this information (in the limit), which allows us to decompose, up to neg-
ligible errors, a sofic approximation ξ of G as a convex combination of sofic approximations of H and K , similarly 
to how ξ was constructed in item (1). In the general case, one uses the fact that the convex combination groupoid 
μ(H)H + (1 − μ(H))(G(0) \ H (0))G(G(0) \ H (0)) is contained in G and has full unit space.

(5) By doing appropriate approximations, one may assume that the derivative f = dν/dμ is simple, say f = ∑
i f i1Xi where 

1X denotes the characteristic function of X ⊆ G(0) . In this case, ν = ∑
i

(
f i∑
j f j

)
μi , where μi(A) = μ(A ∩ Xi)/μ(Xi). The 

result then follows from (1), (2), and (4).
(6) Apply items (4) and (2) with the fact that G = ∑

j μ(H (0)
j )H j . �

Let us make a small detour on the structure of finite groupoids in order to obtain a new description of soficity.

2 Recall that a net {μi}i of probability measures on a measurable space (X, A) converges strongly to a measure μ on (X, A) if μi(A) → μ(A) for all 
A ∈ A.
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Proposition 2.7. Every finite pmp groupoid (G, μ) is a convex combination of groupoids of the form Y 2 × �, where Y is a finite set 
and � is a finite group. (In particular, every finite groupoid is a coproduct of those of the form Y 2 × �.)

Sketch of proof. Letting Y1, . . . , Yn be the equivalence classes of the orbit relation (r, s)(G), we obtain G = ∑
μ(Yi)(Yi GYi), 

where each Yi GYi is endowed with the normalized counting measure on (Yi GYi)
(0) � Yi . For a fixed i, choose an arbitrary 

point x ∈ Yi , and for each y ∈ Yi choose h(y) ∈ G with s(h(y)) = x, r(h(y)) = y. The map

Y 2
i × Gx

x → Yi GYi, (y1, y2, γ ) 	→ h(y1)γ h(y2)
−1

is a measure-preserving groupoid isomorphism. �
We can apply the previous results in order to show that finite groupoids are sofic: by Proposition 2.7 and Theorem 2.5(6), 

it suffices to show that groupoids of the form Y 2 × �, where Y is a finite set and � is a finite group, are sofic. Of course, 
Y 2 is sofic, and either Theorem 2.4 or 2.1 imply that Y 2 × � is sofic as well, so we obtain the following corollary.

Corollary 2.8. Every finite groupoid is sofic. Therefore, we may modify the definition of sofic approximation 1.4 by considering arbitrary 
finite pmp groupoids instead of those of the form Y 2, and obtain the same notion.

3. Soficity and the full group

Given a pmp groupoid G , the unit space G(0) is a subgroupoid, and the full semigroup [[G(0)]] coincides with the 
measure algebra MAlg(G(0)), with product given by intersection. In fact, MAlg(G(0)) coincides with the set of idempotents 
of [[G]], and every α ∈ [[G]] can be decomposed as α = α̃A, where α̃ ∈ [G] and A ∈ MAlg(G(0)) (which corresponds to 
the fact that every partial isometry in a finite von Neumann algebra can be extended to a unitary). Given α ∈ [[G]], define 
supp(α) = s(α \ G(0)).

A well-known theorem of Dye [4] states that an aperiodic equivalence relation is determined by its full group, and from 
that one may ask how the properties of the relation correspond to the properties of the full group; for example, in [10, 
Theorem 5.7], the authors prove that the amenability of an ergodic equivalence relation is equivalent to the amenability of 
its full group (as a topological group). We prove that a pmp groupoid G is sofic if and only if [G] is metrically sofic (initially 
defined as sofic metric groups in [12]), which solves a question posed by Conley, Kechris and Tucker-Drob in [3] in this case. 
This can also be seen as a partial answer to the following question asked in Vladimir Pestov’s reviewer’s report for [7]: is a 
pmp equivalence relation R sofic if and only if its full group [R] is sofic? (One direction was answered positively in [6]: If 
R is a sofic relation, then [R] is a sofic group.)

Definition 3.1. A separable group � with an bi-invariant metric d is metrically sofic if it admits a sequence of maps π ={
πk : � → [[Y 2

k ]]}, called a sofic approximation of �, satisfying, for all α, β ∈ �,

(i) limk→∞ d(πk(α), πk(β)) = d(α, β);
(ii) limk→∞ d#(πk(αβ), πk(α)πk(β)) = 0.

For example, if π = {
πk : [[G]] → [[Y 2

k ]]} is a sofic approximation of a pmp groupoid G , then π|[G] = {
πk|[G] : [G] → [[Y 2

k ]]}
is a sofic approximation of [G] (with respect to the metric dμ).

One of the main points of Dye’s proof is to recover MAlg(G(0)) from [G] by looking at the classes of elements of [G]
whose support is a given A ∈ MAlg(G(0)), and this is also an important point in our proof. In fact, the metric of [G] allows 
us to recover the order of MAlg(G(0)) by the following lemma.

Lemma 3.2. Let (G, μ) be a pmp groupoid and α, β ∈ [G] then suppα ∩ suppβ = ∅ if and only if dμ(α, β) = dμ(1, α) + dμ(1, β).

Definition 3.3. A pmp groupoid G is aperiodic if |s−1(x)| = ∞ for a.e. x ∈ G(0) .

Just as in the case of equivalence relations, if G is aperiodic, then there are sufficiently many elements in [G] so as to 
recover MAlg(G(0)), by noting that, for a.e. x ∈ G(0) , at least one of the sets r(s−1(x)) or Gx

x is infinite. The former can be 
dealt with as in [14, Lemma 4.10], and the latter by the Lusin–Novikov Theorem. We obtain:

Lemma 3.4. Suppose that G is an aperiodic pmp groupoid. Then, for all A ∈ MAlg(G(0)), there exists α ∈ [G] such that suppα = A.

Theorem 3.5. An aperiodic pmp groupoid G is sofic if and only if the full group [G] is metrically sofic.
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Sketch of proof. If G is sofic then [G] is metrically sofic by the comment after Definition 3.1.
Conversely, let θ = {

θk : [G] → [[Y 2
k ]]} be a sofic approximation of [G]. Lemma 3.4 allows us to define a sequence of maps 

φ = {
φk : MAlg(G(0)) → MAlg(Yk)

}
by φk(A) = supp θk(α), where α ∈ [G] is any element with suppα = A. This way, φ(A) is 

independent of the choice of α up to null sets, which are disconsidered in sofic approximations. The pair (θ, φ) is asymp-
totically covariant, in the sense that, for all α ∈ [G] and A ∈ MAlg(X), the distance between φk(r(αA)) and θk(α)(φ(A))

converges to zero. After verifying that φ is moreover asymptotically order and measure-preserving, we simply define a sofic 
approximation π = {πk} of G by π(α) = θ(α̃)θ(s(α)), where α̃ ∈ [G] is chosen so that α ⊆ α̃. �

By using similar techniques, Theorem 3.5 can be extended to all pmp groupoids G such that |s−1(x)| ≥ 2 for a.e. x ∈ G(0) .
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