Number theory

On AP_3-covering sequences

Sur les suites d'entiers AP_3

Yong-Gao Chen

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China

A R T I C L E I N F O

Article history:
Received 31 October 2017
Accepted after revision 22 December 2017
Available online 11 January 2018
Presented by the Editorial Board

A B S T R A C T

Recently, motivated by Stanley’s sequences, Kiss, Sándor, and Yang introduced a new type sequence: a sequence A of nonnegative integers is called an AP_k-covering sequence if there exists an integer n_0 such that, if $n > n_0$, then there exist $a_1, \ldots, a_{k-1} \in A$, $a_1 < a_2 < \cdots < a_{k-1} < n$ such that a_1, \ldots, a_{k-1}, n form a k-term arithmetic progression. They prove that there exists an AP_3-covering sequence A such that $\limsup_{n \to \infty} A(n)/\sqrt{n} \leq 34$. In this note, we prove that there exists an AP_3-covering sequence A such that $\limsup_{n \to \infty} A(n)/\sqrt{n} = \sqrt{15}$. © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Motivés par la définition des suites de Stanley, Kiss, Sándor et Yang ont récemment introduit un nouveau type de suites: une suite d’entiers positifs ou nuls A est dite AP_k s’il existe un entier n_0 tel que, pour tout $n > n_0$, il existe $a_1, \ldots, a_{k-1} \in A$, $a_1 < a_2 < \cdots < a_{k-1} < n$ tels que a_1, \ldots, a_{k-1}, n soient une progression arithmétique à k termes. Ils démontrent qu’il existe une suite d’entiers A qui est AP_3 et satisfait $\limsup_{n \to \infty} A(n)/\sqrt{n} \leq 34$. Nous montrons ici qu’il en existe une satisfaisant $\limsup_{n \to \infty} A(n)/\sqrt{n} = \sqrt{15}$. © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given an integer $k \geq 3$ and a set $A_0 = \{a_1, \ldots, a_t\} (a_1 < \cdots < a_t)$ of nonnegative integers such that $\{a_1, \ldots, a_t\}$ does not contain a k-term arithmetic progression. Define a_{t+1}, \ldots by the greedy algorithm: for any $l \geq t$, a_{l+1} is the smallest integer $a > a_l$ such that $\{a_1, \ldots, a_l, a\}$ does not contain a k-term arithmetic progression. The sequence $A = \{a_1, a_2, \ldots\}$ is called the Stanley sequence of order k generated by A_0. It is known that if A is a Stanley sequence of order 3, then

\[
\lim\inf_{n \to \infty} \frac{A(n)}{\sqrt{n}} \geq \sqrt{2}
\]

\star The work is supported by the National Natural Science Foundation of China, Grant No. 11771211 and by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

E-mail address: ygchen@njnu.edu.cn.

1631-073X/© 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
(see [3] and [5]) and
\[\limsup_{n \to \infty} \frac{A(n)}{\sqrt{n}} \geq 1.77 \]
(see [1]). For related results, one may refer to [2] and [6]. Recently, Kiss, Sándor and Yang [4] introduced the following notation: a sequence \(A \) of nonnegative integers is called an \(AP_k \)-covering sequence if there exists an integer \(n_0 \) such that, if \(n > n_0 \), then there exist \(a_1, \ldots, a_{k-1} \in A \), \(a_1 < a_2 < \cdots < a_{k-1} < n \) such that \(a_1, \ldots, a_{k-1}, n \) form a \(k \)-term arithmetic progression. They [4] observed that
\[\liminf_{n \to \infty} \frac{A(n)}{\sqrt{n}} \geq \sqrt{2}, \quad \limsup_{n \to \infty} \frac{A(n)}{\sqrt{n}} \geq 1.77 \]
hold for any \(AP_3 \)-covering sequence \(A \) and proved that there exists an \(AP_3 \)-covering sequence \(A \) such that
\[\limsup_{n \to \infty} \frac{A(n)}{\sqrt{n}} \leq 34. \]

In this note, the following result is proved.

Theorem 1.1. There exists an \(AP_3 \)-covering sequence \(A \) such that
\[\limsup_{n \to \infty} \frac{A(n)}{\sqrt{n}} = \sqrt{15}. \tag{1.1} \]

If \(A \) is a Stanley sequence of order \(k \), then \(A \) does not contain a \(k \)-term arithmetic progression. If \(A \) is an \(AP_k \)-covering sequence of order \(k \), then \(A \) contains infinitely many \(k \)-term arithmetic progressions. So none of the sequences is both a Stanley sequence of order \(k \) and an \(AP_k \)-covering sequence. We pose a problem here.

Problem 1.2. Is there a Stanley sequence of order \(k+1 \) that is also an \(AP_k \)-covering sequence?

We introduce a new notation here that generalizes both Stanley sequences of order \(k \) and \(AP_k \)-covering sequences. A sequence \(A \) of nonnegative integers is called a weak \(AP_k \)-covering sequence if there exists an integer \(n_0 \) such that, if \(n > n_0 \) and \(n \not\in A \), then there exist \(a_1, \ldots, a_{k-1} \in A \), \(a_1 < a_2 < \cdots < a_{k-1} < n \) such that \(a_1, \ldots, a_{k-1}, n \) form a \(k \)-term arithmetic progression. Clearly, a Stanley sequence of order \(k \) is also a weak \(AP_k \)-covering sequence and an \(AP_k \)-covering sequence of order \(k \) is also a weak \(AP_k \)-covering sequence.

2. Proof of Theorem 1.1

Let
\[T_l = \left\{ u4^l + \sum_{i=0}^{l-1} v_i4^i : u \in \{1, 2, 3, 4\}, v_i \in \{1, 2\} \right\}, \quad l = 0, 1, \ldots \]
and
\[A = \bigcup_{l=0}^{\infty} T_l. \]

First, we prove that \(A \) is an \(AP_3 \)-covering sequence.

Let \(n \geq 32 \). We will prove that there exist \(a, b \in A \) with \(a < b < n \) such that \(a, b, n \) form a 3-term arithmetic progression. By \(n \geq 32 \), there exists an integer \(l \geq 2 \) such that \(2 \cdot 4^l \leq n < 2 \cdot 4^{l+1} = 8 \cdot 4^l \). Let \(m \) be the integer with \(m4^l \leq n < (m+1)4^l \).

Then \(2 \leq m \leq 7 \) and
\[0 \leq n - m4^l < 4^l. \]
Thus \(n - m4^l \) can be written as
\[n - m4^l = \sum_{i=0}^{l-1} m_i4^i, \quad m_i \in \{0, 1, 2, 3\}. \]
If \(m_i = 0 \), then we take \(v_{1,i} = 1 \) and \(v_{2,i} = 2 \). If \(m_i \in \{1, 2\} \), then we take \(v_{1,i} = v_{2,i} = m_i \). If \(m_i = 3 \), then we take \(v_{1,i} = 2 \) and \(v_{2,i} = 1 \). If \(m = 2 \), then we take \(u_1 = 1 \) and \(u_2 = 0 \). If \(m = 3 \), then we take \(u_1 = 2 \) and \(u_2 = 1 \). If \(m = 4 \), then we take
\[u_1 = 2 \text{ and } u_2 = 0. \text{ If } m = 5, \text{ then we take } u_1 = 3 \text{ and } u_2 = 1. \text{ If } m = 6, \text{ then we take } u_1 = 3 \text{ and } u_2 = 0. \text{ If } m = 7, \text{ then we take } u_1 = 4 \text{ and } u_2 = 1. \text{ Let } \]

\[a = u_2 4^i + \sum_{i=0}^{l-1} v_{2,i} 4^i, \quad b = u_1 4^i + \sum_{i=0}^{l-1} v_{1,i} 4^i. \]

It is clear that \(1 \leq a < b, a, b \in T_l \cup T_{l-1} \subseteq A \) and \(a, b, n \) form a 3-term arithmetic progression. Hence \(A \) is an \(AP_3 \)-covering sequence.

Now we prove that (1.1) holds. Let

\[A = \{n_1, n_2, \ldots\}, \quad n_1 < n_2 < \cdots. \]

For \(n_j < m < n_{j+1} \), we have

\[\frac{A(m)}{\sqrt{m}} = \frac{A(n_j)}{\sqrt{m}} < \frac{A(n_j)}{\sqrt{n_j}}. \]

It follows that

\[\limsup_{n \to \infty} \frac{A(n)}{\sqrt{n}} = \limsup_{j \to \infty} \frac{A(n_j)}{\sqrt{n_j}}. \]

Let

\[n_j = u 4^i + \sum_{i=0}^{l-1} v_i 4^i, \quad u \in \{1, 2, 3, 4\}, v_i \in \{1, 2\} \quad (0 \leq i \leq l-1). \]

Then

\[A(n_j) = (u - 1)2^l + \sum_{i=1}^{l-1} (v_i - 1)2^i + v_0 + 4(2^{l-1} + \cdots + 2 + 1). \quad (2.1) \]

It is clear that

\[n_j \geq u 4^i + v_{l-1} 4^{l-1} + \frac{1}{3}(4^{l-1} - 1) = (4u + v_{l-1} + \frac{1}{3})4^{l-1} - \frac{1}{3}, \]

\[A(n_j) \leq (u - 1)2^l + (v_{l-1} - 1)2^{l-1} + 2^{l-1} + 4(2^l - 1) = (2u + 6 + v_{l-1})2^{l-1} - 4. \]

Since

\[2u + 6 + v_{l-1} < 4\sqrt{4u + v_{l-1} + \frac{1}{3}} \]

for \(u \in \{1, 2, 3, 4\} \) and \(v_{l-1} \in \{1, 2\} \), it follows that

\[A(n_j) \leq (2u + 6 + v_{l-1})2^{l-1} - 4 < 4\sqrt{n_j + \frac{1}{3}} - 4 < 4\sqrt{n_j}. \]

If \(v_i = 1 \) for some \(0 \leq i \leq l-1 \), then \(n_j + 4^i \in A \) and by (2.1), we have

\[A(n_j + 4^i) = A(n_j) + 2^i. \]

Since \(n_j > 4^i \geq 4^{i+1} \), it follows that

\[\sqrt{n_j + 4^i} + \sqrt{n_j} > 4 \cdot 2^i. \]

That is, \(2^i > 4\sqrt{n_j + 4^i} \). By \(A(n_j) < 4\sqrt{n_j} \), we have

\[A(n_j)(\sqrt{n_j + 4^i} - \sqrt{n_j}) < 4\sqrt{n_j}(\sqrt{n_j + 4^i} - \sqrt{n_j}) < 2^i \sqrt{n_j}. \]

So

\[(A(n_j) + 2^i)\sqrt{n_j} > A(n_j)\sqrt{n_j + 4^i}. \]

Hence

\[\frac{A(n_j + 4^i)}{\sqrt{n_j + 4^i}} = \frac{A(n_j) + 2^i}{\sqrt{n_j + 4^i}} > \frac{A(n_j)}{\sqrt{n_j}}. \]

So we need only consider those \(n_j \) with all \(v_i = 2 \). Let
\[q_{u,l} = u4^l + \sum_{i=0}^{l-1} 2 \cdot 4^i = (u + \frac{2}{3})4^l - \frac{2}{3}. \]

By (2.1), \(A(q_{u,l}) = (u + 4)2^l - 4. \) It follows that
\[
\lim_{l \to \infty} \frac{A(q_{u,l})}{\sqrt{q_{u,l}}} = \frac{u + 4}{\sqrt{u + 2/3}}.
\]

Hence
\[
\limsup_{n \to \infty} \frac{A(n)}{\sqrt{n}} = \limsup_{j \to \infty} \frac{A(n_j)}{\sqrt{n_j}} = \max \left\{ \frac{u + 4}{\sqrt{u + 2/3}} : u = 1, 2, 3, 4 \right\} = \sqrt{15}.
\]

This completes the proof.

References