## Differential geometry/Mathematical problems in mechanics

# $W^{2, p}$-estimates for surfaces in terms of their two fundamental forms 

# Estimations dans $W^{2, p}$ pour des surfaces à partir de leurs deux formes fondamentales 

Philippe G. Ciarlet ${ }^{\text {a }}$, Cristinel Mardare ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong<br>${ }^{\text {b }}$ Sorbonne Universités, Université Pierre-et-Marie-Curie, Laboratoire Jacques-Louis-Lions, 75005 Paris, France

## A R T I C L E I N F O

## Article history:

Received 7 December 2017
Accepted 7 December 2017
Available online 19 December 2017
Presented by Philippe G. Ciarlet


#### Abstract

Let $p>2$. We show how the fundamental theorem of surface theory for surfaces of class $W_{\text {loc }}^{2, p}(\omega)$ over a simply-connected open subset of $\mathbb{R}^{2}$ established in 2005 by S. Mardare can be extended to surfaces of class $W^{2, p}(\omega)$ when $\omega$ is in addition bounded and has a Lipschitz-continuous boundary. Then we establish a nonlinear Korn inequality for surfaces of class $W^{2, p}(\omega)$. Finally, we show that the mapping that defines in this fashion a surface of class $W^{2, p}(\omega)$, unique up to proper isometries of $\mathbb{E}^{3}$, in terms of its two fundamental forms is locally Lipschitz-continuous. © 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


## R ÉS U M É

Soit $p>2$. Nous montrons comment le théorème fondamental de la théorie des surfaces de classe $W_{\text {loc }}^{2, p}(\omega)$ sur un ouvert simplement connexe $\omega$ de $\mathbb{R}^{2}$ établi par $S$. Mardare in 2005 peut être étendu à des surfaces de classe $W^{2, p}(\omega)$ lorsque $\omega$ est de plus borné et de frontière lipschitzienne. Ensuite, nous établissons une inégalité de Korn non linéaire pour des surfaces de classe $W^{2, p}(\omega)$. Nous établissons enfin que l'application qui définit une surface de classe $W^{2, p}(\omega)$ à une isométrie propre de $\mathbb{E}^{3}$ près en fonction de ses deux formes fondamentales est localement lipschitzienne.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

## 1. Preliminaries

In what follows, Greek indices and exponents, except $\varepsilon$ and $\delta$, vary in the set $\{1,2\}$, Latin indices vary in the set $\{1,2,3\}$, and the summation convention for repeated indices and exponents is used. Boldface letters denote vector and matrix fields.

[^0]The three-dimensional Euclidean space is denoted $\mathbb{E}^{3}$. The inner product, exterior product, and norm, in $\mathbb{E}^{3}$ are respectively denoted $\cdot, \wedge$, and $|\cdot|$. The set of all proper isometries of $\mathbb{E}^{3}$ is denoted and defined by

$$
\boldsymbol{I s o m}_{+}\left(\mathbb{E}^{3}\right):=\left\{\boldsymbol{r}: \mathbb{E}^{3} \rightarrow \mathbb{E}^{3}, \boldsymbol{r}(x)=\boldsymbol{R} x+\boldsymbol{a}, x \in \mathbb{E}^{3} ; \boldsymbol{R} \in \mathbb{O}_{+}^{3}, \boldsymbol{a} \in \mathbb{E}^{3}\right\}
$$

where $\mathbb{O}_{+}^{3}$ denotes the set of all real $3 \times 3$ proper orthogonal matrices.
Remark 1. The set $\mathbf{I s o m}_{+}\left(\mathbb{E}^{3}\right)$ is in effect a smooth submanifold of dimension six of the space of all $3 \times 3$ real matrices and its tangent space at the identity mapping $\boldsymbol{i d} \in \operatorname{Isom}{ }_{+}\left(\mathbb{E}^{3}\right)$ is the space of all "infinitesimal rigid displacements of $\mathbb{E}^{3}$ ", which is denoted and defined by

$$
\boldsymbol{\operatorname { R i g }}\left(\mathbb{E}^{3}\right)=\mathcal{T}_{\boldsymbol{i d} \boldsymbol{I} \mathbf{I s o m}}^{+}\left(\mathbb{E}^{3}\right):=\left\{\zeta: \mathbb{E}^{3} \rightarrow \mathbb{E}^{3}, \zeta(x)=\boldsymbol{A} x+\boldsymbol{b}, x \in \mathbb{E}^{3} ; \boldsymbol{A} \in \mathbb{A}^{3}, \boldsymbol{b} \in \mathbb{E}^{3}\right\}
$$

where $\mathbb{A}^{3}$ denotes the set of all real $3 \times 3$ antisymmetric matrices.
Given an open subset $\omega$ of $\mathbb{R}^{2}$, we let $y=\left(y_{\alpha}\right)$ denote a generic point in $\omega$, and we let $\partial_{\alpha}:=\partial / \partial y_{\alpha}$ and $\partial_{\alpha \beta}:=$ $\partial^{2} / \partial y_{\alpha} \partial y_{\beta}$.

The space of distributions over an open subset $\omega$ of $\mathbb{R}^{2}$ is denoted $\mathcal{D}^{\prime}(\omega)$. For each integer $m \geq 1$ and each real number $p \geq 1, \mathcal{C}^{m}(\omega)$ denotes the subspace of $\mathcal{C}^{0}(\omega)$ of functions that possess continuous partial derivatives up to order $m$, and $W^{m}, p(\omega)$ denotes the usual Sobolev space.

The notation $L_{\text {loc }}^{p}(\omega)$, resp. $W_{\text {loc }}^{m, p}(\omega)$, denotes the space of functions $f: \omega \rightarrow \mathbb{R}$ such that $\left.f\right|_{U} \in L^{p}(U)$, resp. $\left.f\right|_{U} \in$ $W^{m, p}(U)$, for all open sets $U \Subset \omega$, where $\left.f\right|_{U}$ denotes the restriction of $f$ to $U$ and the notation $U \Subset \omega$ means that the closure of the set $U$ is a compact subset of $\omega$. Given any finite dimensional real space $\mathbb{Y}$, the notation $L_{\text {loc }}^{p}(\omega ; \mathbb{Y})$, resp. $W_{\text {loc }}^{1, p}(\omega ; \mathbb{Y})$, denotes the space of $\mathbb{Y}$-valued fields with components in $L_{\text {loc }}^{p}(\omega)$, resp. $W_{\text {loc }}^{1, p}(\omega)$. Other similar notations with self-explanatory definitions will be used.

An immersion from $\omega$ into $\mathbb{E}^{3}$ is a smooth enough mapping $\boldsymbol{\theta}: \omega \rightarrow \mathbb{E}^{3}$ such that the two vector fields $\partial_{\alpha} \boldsymbol{\theta}: \omega \rightarrow \mathbb{E}^{3}$ are linearly independent at each point of $\omega$. Given an immersion $\boldsymbol{\theta}: \omega \rightarrow \mathbb{E}^{3}$, define the functions

$$
\hat{a}_{\alpha \beta}(\boldsymbol{\theta}):=\hat{\boldsymbol{a}}_{\alpha}(\boldsymbol{\theta}) \cdot \hat{\boldsymbol{a}}_{\beta}(\boldsymbol{\theta}) \text { and } \hat{b}_{\alpha \beta}(\boldsymbol{\theta}):=\partial_{\alpha} \hat{\boldsymbol{a}}_{\beta}(\boldsymbol{\theta}) \cdot \hat{\boldsymbol{a}}_{3}(\boldsymbol{\theta}),
$$

where

$$
\hat{\boldsymbol{a}}_{\alpha}(\boldsymbol{\theta}):=\partial_{\alpha} \boldsymbol{\theta} \text { and } \hat{\boldsymbol{a}}_{3}(\boldsymbol{\theta}):=\frac{\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}}{\left|\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}\right|} .
$$

The image $S=\boldsymbol{\theta}(\omega)$ is thus a surface in $\mathbb{E}^{3}$ and the functions $\hat{a}_{\alpha \beta}(\boldsymbol{\theta})$ and $\hat{b}_{\alpha \beta}(\boldsymbol{\theta})$ are the covariant components of the first and second fundamental forms of $S$.

The space of real $2 \times 2$ symmetric matrices is denoted $\mathbb{S}^{2}$; its subset formed by all positive-definite matrices is denoted $\mathbb{S}_{>}^{2}$.

An open subset $\omega$ of $\mathbb{R}^{2}$ satisfies the uniform interior cone property if there exists a bounded open cone $V \subset \mathbb{R}^{2}$ such that any point $y \in \omega$ is the vertex of a cone $V_{y}$ congruent with $V$ and contained in $\omega$. An open subset $\omega$ of $\mathbb{R}^{2}$ is a domain if it is bounded and has a Lipschitz-continuous boundary.

Detailed proofs of the results announced here will be found in [4].

## 2. The fundamental theorem of surface theory in the spaces $W_{l o c}^{2, p}(\omega)$ and $W^{2, p}(\omega)$

The fundamental theorem of surface theory, which is classically established in the spaces of continuously differentiable functions (cf., e.g., [5, Theorem 3.8.8], [1, Appendix to Chapter 4], [2, Theorems 8.16-1 and 8.17-1]), has been shown to hold in function spaces with little regularity, according to the following remarkable result, due to S. Mardare [6, Theorem 9]:

Theorem 1. Let $\omega$ be a simply-connected open subset of $\mathbb{R}^{2}$, let $p>2$, and let a matrix field $\left(a_{\alpha \beta}\right) \in W_{\text {loc }}^{1, p}\left(\omega ; \mathbb{S}_{>}^{2}\right)$ and a matrix field $\left(b_{\alpha \beta}\right) \in L_{\text {loc }}^{p}\left(\omega ; \mathbb{S}^{2}\right)$ be given that satisfy the Gauss and Codazzi-Mainardi equations, viz.

$$
R_{\alpha \beta \tau}^{\sigma}:=\partial_{\tau} \Gamma_{\alpha \beta}^{\sigma}-\partial_{\beta} \Gamma_{\alpha \tau}^{\sigma}+\Gamma_{\alpha \beta}^{\gamma} \Gamma_{\tau \gamma}^{\sigma}-\Gamma_{\alpha \tau}^{\gamma} \Gamma_{\beta \gamma}^{\sigma}-b_{\alpha \beta} b_{\tau}^{\sigma}+b_{\alpha \tau} b_{\beta}^{\sigma}=0 \text { in } \mathcal{D}^{\prime}(\omega)
$$

and

$$
R_{\alpha \beta \tau}^{3}:=\partial_{\tau} b_{\alpha \beta}-\partial_{\beta} b_{\alpha \tau}+\Gamma_{\alpha \beta}^{\gamma} b_{\tau \gamma}-\Gamma_{\alpha \tau}^{\gamma} b_{\beta \gamma}=0 \text { in } \mathcal{D}^{\prime}(\omega),
$$

where the functions $\Gamma_{\alpha \beta}^{\sigma} \in L_{\mathrm{loc}}^{p}(\omega)$ and $b_{\alpha}^{\sigma} \in L_{\mathrm{loc}}^{p}(\omega)$ are defined by

$$
\Gamma_{\alpha \beta}^{\sigma}:=\frac{1}{2} a^{\sigma \tau}\left(\partial_{\alpha} a_{\beta \tau}+\partial_{\beta} a_{\alpha \tau}-\partial_{\tau} a_{\alpha \beta}\right) \text { and } b_{\beta}^{\sigma}:=a^{\sigma \tau} b_{\tau \beta}, \text { where }\left(a^{\sigma \tau}\right):=\left(a_{\alpha \beta}\right)^{-1} .
$$

Then there exists an immersion $\boldsymbol{\theta} \in W_{\text {loc }}^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ such that

$$
\hat{a}_{\alpha \beta}(\boldsymbol{\theta})=a_{\alpha \beta} \text { and } \hat{b}_{\alpha \beta}(\boldsymbol{\theta})=b_{\alpha \beta} \text { a.e. in } \omega .
$$

Besides, an immersion $\psi \in W_{\text {loc }}^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ satisfies

$$
\hat{a}_{\alpha \beta}(\boldsymbol{\psi})=\hat{a}_{\alpha \beta}(\boldsymbol{\theta}) \text { and } \hat{b}_{\alpha \beta}(\boldsymbol{\psi})=\hat{b}_{\alpha \beta}(\boldsymbol{\theta}) \text { a.e. in } \omega
$$

if and only if there exists an isometry $\boldsymbol{r} \in \mathbf{I s o m}_{+}\left(\mathbb{E}^{3}\right)$ such that

$$
\boldsymbol{\psi}=\boldsymbol{r} \circ \boldsymbol{\theta} \text { in } \omega .
$$

Our first objective (Theorem 2) consists in showing that an existence and uniqueness theorem similar to Theorem 1 holds in the spaces $W^{m, p}(\omega)$ instead of the spaces $W_{\text {loc }}^{m, p}(\omega)$ if the open set $\omega$ is in addition a domain.

Theorem 2. Let $\omega$ be a simply-connected domain in $\mathbb{R}^{2}$, let $p>2$, and let a matrix field $\left(a_{\alpha \beta}\right) \in W^{1, p}\left(\omega ; \mathbb{S}_{>}^{2}\right)$ and a matrix field $\left(b_{\alpha \beta}\right) \in L^{p}\left(\omega ; \mathbb{S}^{2}\right)$ be given that satisfy the equations

$$
R_{\alpha \beta \tau}^{\sigma}=0 \text { and } R_{\alpha \beta \tau}^{3}=0 \text { in } \mathcal{D}^{\prime}(\omega)
$$

Then there exists an immersion $\boldsymbol{\theta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ such that

$$
\hat{a}_{\alpha \beta}(\boldsymbol{\theta})=a_{\alpha \beta} \text { and } \hat{b}_{\alpha \beta}(\boldsymbol{\theta})=b_{\alpha \beta} \text { a.e. in } \omega .
$$

Besides, an immersion $\psi \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ satisfies

$$
\hat{a}_{\alpha \beta}(\boldsymbol{\psi})=\hat{a}_{\alpha \beta}(\boldsymbol{\theta}) \text { and } \hat{b}_{\alpha \beta}(\boldsymbol{\psi})=\hat{b}_{\alpha \beta}(\boldsymbol{\theta}) \text { a.e. in } \omega
$$

if and only if there exists an isometry $\boldsymbol{r} \in \operatorname{Isom}_{+}\left(\mathbb{E}^{3}\right)$ such that

$$
\boldsymbol{\psi}=\boldsymbol{r} \circ \boldsymbol{\theta} \text { in } \omega .
$$

Sketch of proof. Since $p>2$ and $\omega$ is a domain, $W^{1, p}(\omega)$ is a Banach algebra and the canonical injection from $W^{1, p}(\omega)$ into $\mathcal{C}^{0}(\bar{\omega})$ is continuous. Combining these two observations with the Gauss equations

$$
\partial_{\alpha} \hat{\boldsymbol{a}}_{\beta}(\boldsymbol{\theta})=\Gamma_{\alpha \beta}^{\sigma} \hat{\boldsymbol{a}}_{\sigma}(\boldsymbol{\theta})+b_{\alpha \beta} \hat{\boldsymbol{a}}_{3}(\boldsymbol{\theta}) \text { a.e. in } \omega
$$

and the relations

$$
\left|\hat{\boldsymbol{a}}_{\alpha}(\boldsymbol{\theta})\right|=\sqrt{a_{\alpha \alpha}} \text { (no summation on } \alpha \text { here) and }\left|\hat{\boldsymbol{a}}_{3}(\boldsymbol{\theta})\right|=1 \text { a.e. in } \omega \text {, }
$$

where $\boldsymbol{\theta} \in W_{\text {loc }}^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ denotes the immersion found in Theorem 1 and the functions $\Gamma_{\alpha \beta}^{\sigma}$ are defined as in Theorem 1 (in effect the Christoffel symbols associated with $\boldsymbol{\theta})$, shows that the three vector fields $\hat{\boldsymbol{a}}_{i}(\boldsymbol{\theta})$ belong to $L^{\infty}\left(\omega\right.$; $\left.\mathbb{E}^{3}\right)$, which in turn implies that $\partial_{\alpha} \boldsymbol{\theta} \in L^{\infty}\left(\omega ; \mathbb{E}^{3}\right)$ and $\partial_{\alpha \beta} \boldsymbol{\theta} \in L^{p}\left(\omega ; \mathbb{E}^{3}\right)$. It is then an easy matter to conclude that $\boldsymbol{\theta} \in L^{p}\left(\omega ; \mathbb{E}^{3}\right)$, hence that $\boldsymbol{\theta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$. The uniqueness up to isometries follows immediately from Theorem 1 .

## 3. A nonlinear Korn inequality for surfaces of class $W^{2, p}$

The second objective of this Note is to complement the existence and uniqueness result of Theorem 2 by a stability result (Theorem 3 below), showing that the distance modulo a proper isometry between two surfaces in $W^{2, p}$-norm is bounded by the distance between their first fundamental forms in the $W^{1, p}$-norm and the distance between their second fundamental forms in the $L^{p}$-norm. A notation such as $c=c(\omega, p, \varepsilon)$ means that $c$ is a real constant that depends on $\omega, p$ and $\varepsilon$.

Theorem 3. Let $\omega$ be a bounded and connected open subset of $\mathbb{R}^{2}$ that satisfies the uniform interior cone property. Given any $p>2$ and $\varepsilon>0$, let

$$
V_{\varepsilon}\left(\omega ; \mathbb{E}^{3}\right):=\left\{\boldsymbol{\theta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right) ;\|\boldsymbol{\theta}\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)} \leq 1 / \varepsilon \text { and }\left|\partial_{1} \boldsymbol{\theta} \wedge \partial_{2} \boldsymbol{\theta}\right| \geq \varepsilon \text { in } \omega\right\}
$$

Then there exists a constant $c=c(\omega, p, \varepsilon)$ such that

$$
\inf _{\boldsymbol{r} \in \mathbf{I s o m}_{+}\left(\mathbb{E}^{3}\right)}\|\boldsymbol{\varphi}-\boldsymbol{r} \circ \boldsymbol{\psi}\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)} \leq c\left\{\left\|\left(\hat{a}_{\alpha \beta}(\boldsymbol{\varphi})-\hat{a}_{\alpha \beta}(\boldsymbol{\psi})\right)\right\|_{W^{1, p}\left(\omega ; \mathbb{S}^{2}\right)}+\left\|\left(\hat{b}_{\alpha \beta}(\boldsymbol{\varphi})-\hat{b}_{\alpha \beta}(\boldsymbol{\psi})\right)\right\|_{L^{p}\left(\omega ; \mathbb{S}^{2}\right)}\right\}
$$

for all $\varphi \in V_{\varepsilon}\left(\omega ; \mathbb{E}^{3}\right)$ and $\psi \in V_{\varepsilon}\left(\omega ; \mathbb{E}^{3}\right)$.

Remark 2. The above inequality can indeed be seen as a nonlinear Korn inequality for surfaces of class $W^{2, p}$, since a formal linearization (such a linearization consists first in letting in the above nonlinear inequality $\boldsymbol{\varphi}:=\boldsymbol{\theta}+\boldsymbol{\eta}$ and $\boldsymbol{\psi}:=\boldsymbol{\theta}$, where $\boldsymbol{\theta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ is a given immersion considered as "fixed", and $\boldsymbol{\eta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ is an arbitrary vector field, then in canceling all the terms that depend nonlinearly on $\eta$ ) yields the following linear Korn inequality on the surface $S=\boldsymbol{\theta}(\omega)$ : There exists a constant $c_{0}=c_{0}(\boldsymbol{\theta}, \omega)$ such that (the space $\boldsymbol{\operatorname { R i g }}\left(\mathbb{E}^{3}\right)$ is defined in Remark 1)

$$
\inf _{\zeta \in \operatorname{Rig}\left(\mathbb{E}^{3}\right)}\|\boldsymbol{\eta}-\zeta\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)} \leq c_{0}\left\{\left\|\left(\gamma_{\alpha \beta}(\boldsymbol{\eta})\right)\right\|_{W^{1, p}\left(\omega ; \mathbb{S}^{2}\right)}+\left\|\left(\rho_{\alpha \beta}(\boldsymbol{\eta})\right)\right\|_{L^{p}\left(\omega ; \mathbb{S}^{2}\right)}\right\} \text { for all } \boldsymbol{\eta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right),
$$

where

$$
\gamma_{\alpha \beta}(\boldsymbol{\eta}):=\frac{1}{2}\left[\hat{a}_{\alpha \beta}(\boldsymbol{\theta}+\boldsymbol{\eta})-\hat{a}_{\alpha \beta}(\boldsymbol{\theta})\right]^{\operatorname{lin}} \text { and } \rho_{\alpha \beta}(\boldsymbol{\eta}):=\left[\hat{b}_{\alpha \beta}(\boldsymbol{\theta}+\boldsymbol{\eta})-\hat{b}_{\alpha \beta}(\boldsymbol{\theta})\right]^{\text {lin }}
$$

designate the linear parts with respect to $\eta$ of the tensors appearing in the right-hand side of the inequality of Theorem 3.

The proof of Theorem 3 relies on a comparison theorem between solutions to general Pfaff systems due to the first author and S. Mardare (see Theorem 3.1 and Remark 3.1 in [3] and Theorem 4.1 in [7]), which we state below only in the particular case needed here. The notations $\mathbb{M}^{3}$ and $|\cdot|$ used in the next theorem respectively denote the space of $3 \times 3$ real matrices and the Frobenius norm in this space. The notation $(\boldsymbol{a}|\boldsymbol{b}| \boldsymbol{c})$ denotes the matrix in $\mathbb{M}^{3}$ with column vectors $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in \mathbb{E}^{3}$.

Theorem 4. Let $\omega$ be a bounded and connected open subset of $\mathbb{R}^{2}$ that satisfies the uniform interior cone property. Given any $p>2$, $\varepsilon>0$, and $y_{0} \in \omega$, there exists a constant $c_{1}=c_{1}\left(\omega, p, \varepsilon, y_{0}\right)$ such that

$$
\|\boldsymbol{F}-\tilde{\boldsymbol{F}}\|_{W^{1, p}\left(\omega ; \mathbb{M}^{3}\right)} \leq c_{1}\left(\left|\boldsymbol{F}\left(y_{0}\right)-\tilde{\boldsymbol{F}}\left(y_{0}\right)\right|+\sum_{\alpha}\left\|\boldsymbol{\Gamma}_{\alpha}-\tilde{\boldsymbol{\Gamma}}_{\alpha}\right\|_{L^{p}\left(\omega ; \mathbb{M}^{3}\right)}\right)
$$

for all matrix fields $\boldsymbol{F}, \tilde{\boldsymbol{F}} \in W^{1, p}\left(\omega ; \mathbb{M}^{3}\right)$ and $\boldsymbol{\Gamma}_{\alpha}, \tilde{\boldsymbol{\Gamma}}_{\alpha} \in L^{p}\left(\omega ; \mathbb{M}^{3}\right)$ that satisfy

$$
\left|\boldsymbol{F}\left(y_{0}\right)\right|+\sum_{\alpha}\left\|\boldsymbol{\Gamma}_{\alpha}\right\|_{L^{p}\left(\omega ; \mathbb{M}^{3}\right)} \leq \frac{1}{\varepsilon} \text { and }\left|\tilde{\boldsymbol{F}}\left(y_{0}\right)\right|+\sum_{\alpha}\left\|\tilde{\boldsymbol{\Gamma}}_{\alpha}\right\|_{L^{p}\left(\omega ; \mathbb{M}^{3}\right)} \leq \frac{1}{\varepsilon},
$$

and

$$
\partial_{\alpha} \boldsymbol{F}=\boldsymbol{F} \boldsymbol{\Gamma}_{\alpha} \text { and } \partial_{\alpha} \tilde{\boldsymbol{F}}=\tilde{\boldsymbol{F}} \tilde{\boldsymbol{\Gamma}}_{\alpha} \text { a.e. in } \omega .
$$

Sketch of the proof of Theorem 3. With any immersion $\boldsymbol{\varphi} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$, we associate: the proper isometry $\boldsymbol{r}\left(\boldsymbol{\varphi}, y_{0}\right)$ of $\mathbb{E}^{3}$ defined by

$$
\boldsymbol{r}\left(\boldsymbol{\varphi}, y_{0}\right)(x):=\left(\boldsymbol{B}^{T} \boldsymbol{B}\right)^{1 / 2} \boldsymbol{B}^{-1}\left(x-\boldsymbol{\varphi}\left(y_{0}\right)\right) \text { for all } x \in \mathbb{E}^{3},
$$

where

$$
\boldsymbol{B}:=\left(\hat{\boldsymbol{a}}_{1}(\boldsymbol{\varphi})\left(y_{0}\right)\left|\hat{\boldsymbol{a}}_{2}(\boldsymbol{\varphi})\left(y_{0}\right)\right| \hat{\boldsymbol{a}}_{3}(\boldsymbol{\varphi})\left(y_{0}\right)\right) ;
$$

the immersion

$$
\boldsymbol{\theta}\left(\boldsymbol{\varphi}, y_{0}\right):=\boldsymbol{r}\left(\boldsymbol{\varphi}, y_{0}\right) \circ \boldsymbol{\varphi} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)
$$

and the matrix fields

$$
\boldsymbol{F}\left(\boldsymbol{\varphi}, y_{0}\right):=\left(\hat{\boldsymbol{a}}_{1}\left(\boldsymbol{\theta}\left(\boldsymbol{\varphi}, y_{0}\right)\right)\left|\hat{\boldsymbol{a}}_{2}\left(\boldsymbol{\theta}\left(\boldsymbol{\varphi}, y_{0}\right)\right)\right| \hat{\boldsymbol{a}}_{3}\left(\boldsymbol{\theta}\left(\boldsymbol{\varphi}, y_{0}\right)\right)\right)
$$

and

$$
\boldsymbol{A}(\boldsymbol{\varphi}):=\left(\begin{array}{ccc}
a_{11} & a_{12} & 0 \\
a_{21} & a_{22} & 0 \\
0 & 0 & 1
\end{array}\right) \text { and } \Gamma_{\alpha}(\boldsymbol{\varphi}):=\left(\begin{array}{ccc}
\Gamma_{\alpha 1}^{1} & \Gamma_{\alpha 2}^{1} & -b_{\alpha}^{1} \\
\Gamma_{\alpha 1}^{2} & \Gamma_{\alpha 2}^{2} & -b_{\alpha}^{2} \\
b_{\alpha 1} & b_{\alpha 2} & 0
\end{array}\right)
$$

where

$$
a_{\alpha \beta}:=\hat{a}_{\alpha \beta}(\varphi), b_{\alpha \beta}:=\hat{b}_{\alpha \beta}(\varphi), b_{\beta}^{\alpha}:=a^{\alpha \sigma} b_{\sigma \beta},\left(a^{\sigma \tau}\right):=\left(a_{\alpha \beta}\right)^{-1}
$$

and

$$
\Gamma_{\alpha \beta}^{\sigma}:=\frac{1}{2} a^{\sigma \tau}\left(\partial_{\alpha} a_{\beta \tau}+\partial_{\beta} a_{\alpha \tau}-\partial_{\tau} a_{\alpha \beta}\right)
$$

These matrix fields satisfy the Pfaff system

$$
\partial_{\alpha} \boldsymbol{F}\left(\boldsymbol{\varphi}, y_{0}\right)=\boldsymbol{F}\left(\boldsymbol{\varphi}, y_{0}\right) \boldsymbol{\Gamma}_{\alpha}(\boldsymbol{\varphi}) \text { a.e. in } \omega
$$

and the "initial condition"

$$
\left(\boldsymbol{F}\left(\boldsymbol{\varphi}, y_{0}\right)\right)\left(y_{0}\right)=\left(\boldsymbol{A}(\boldsymbol{\varphi})\left(y_{0}\right)\right)^{1 / 2} \in \mathbb{S}_{>}^{3}
$$

Note in passing that the above Pfaff system is equivalent to the equations of Gauss and Weingarten associated with the immersion $\boldsymbol{\theta}\left(\boldsymbol{\varphi}, y_{0}\right)$.

In addition, if $\varphi \in V_{\varepsilon}\left(\omega ; \mathbb{E}^{3}\right)$ for some $\varepsilon>0$ (the set $V_{\varepsilon}\left(\omega ; \mathbb{E}^{3}\right)$ is defined in the statement of Theorem 3), then

$$
\boldsymbol{F}\left(\boldsymbol{\varphi}, y_{0}\right) \in W^{1, p}\left(\omega ; \mathbb{S}^{3}\right) \text { and } \boldsymbol{\Gamma}_{\alpha}(\boldsymbol{\varphi}) \in L^{p}\left(\omega ; \mathbb{M}^{3}\right)
$$

and there exists a constant $c_{1}=c_{1}(\omega, p, \varepsilon)$ such that

$$
\left|\left(\boldsymbol{F}\left(\boldsymbol{\varphi}, y_{0}\right)\right)\left(y_{0}\right)\right|+\left\|\boldsymbol{\Gamma}_{\alpha}(\boldsymbol{\varphi})\right\|_{L^{p}\left(\omega ; \mathbb{M}^{3}\right)} \leq c_{1} .
$$

This allows us to apply Theorem 4 and to deduce that there exists a constant $c_{2}=c_{2}\left(\omega, y_{0}, p, \varepsilon\right)$ such that

$$
\left\|\boldsymbol{F}\left(\boldsymbol{\varphi}, y_{0}\right)-\boldsymbol{F}\left(\boldsymbol{\psi}, y_{0}\right)\right\|_{W^{1, p}\left(\omega ; \mathbb{M}^{3}\right)} \leq c_{2}\left(\left|(\boldsymbol{A}(\boldsymbol{\varphi}))\left(y_{0}\right)-(\boldsymbol{A}(\boldsymbol{\psi}))\left(y_{0}\right)\right|+\sum_{\alpha}\left\|\boldsymbol{\Gamma}_{\alpha}(\boldsymbol{\varphi})-\boldsymbol{\Gamma}_{\alpha}(\boldsymbol{\psi})\right\|_{L^{p}\left(\omega ; \mathbb{M}^{3}\right)}\right)
$$

for all immersions $\varphi$ and $\psi$ that belong to the set $V_{\varepsilon}\left(\omega ; \mathbb{E}^{3}\right)$.
Next, using the expressions of the matrix fields appearing in the right-hand side of the above inequality in terms of the fundamental forms associated with the immersions $\varphi$ and $\psi$, we deduce after a series of straightforward, but somewhat technical, computations that there exist two constants $c_{3}=c_{3}(\omega, p, \varepsilon)$ and $c_{4}=c_{4}(\omega, p, \varepsilon)$ such that

$$
\left|(\boldsymbol{A}(\boldsymbol{\varphi}))\left(y_{0}\right)-(\boldsymbol{A}(\boldsymbol{\psi}))\left(y_{0}\right)\right| \leq c_{3}\left\|\left(\hat{a}_{\alpha \beta}(\boldsymbol{\varphi})-\hat{a}_{\alpha \beta}(\boldsymbol{\psi})\right)\right\|_{W^{1, p}\left(\omega ; \mathbb{S}^{2}\right)}
$$

and

$$
\left\|\boldsymbol{\Gamma}_{\alpha}(\boldsymbol{\varphi})-\boldsymbol{\Gamma}_{\alpha}(\boldsymbol{\psi})\right\|_{L^{p}\left(\omega ; \mathbb{M}^{3}\right)} \leq c_{4}\left(\left\|\left(\hat{a}_{\alpha \beta}(\boldsymbol{\varphi})-\hat{a}_{\alpha \beta}(\boldsymbol{\psi})\right)\right\|_{W^{1, p}\left(\omega ; \mathbb{S}^{2}\right)}+\left\|\left(\hat{b}_{\alpha \beta}(\boldsymbol{\varphi})-\hat{b}_{\alpha \beta}(\boldsymbol{\psi})\right)\right\|_{L^{p}\left(\omega ; \mathbb{S}^{2}\right)}\right) .
$$

Finally, the definition of the immersions $\boldsymbol{\theta}\left(\boldsymbol{\varphi}, y_{0}\right)$ and $\boldsymbol{\theta}\left(\boldsymbol{\psi}, y_{0}\right)$ implies that the vector field

$$
\eta:=\boldsymbol{\theta}\left(\boldsymbol{\varphi}, y_{0}\right)-\boldsymbol{\theta}\left(\boldsymbol{\psi}, y_{0}\right) \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)
$$

satisfies the Poincaré system (the notation $[\cdot]_{\alpha}$ denotes the $\alpha$-th column vector of the matrix appearing between the brackets)

$$
\partial_{\alpha} \boldsymbol{\eta}=\left[\boldsymbol{F}\left(\boldsymbol{\varphi}, y_{0}\right)-\boldsymbol{F}\left(\boldsymbol{\psi}, y_{0}\right)\right]_{\alpha} \text { in } \omega
$$

and the "initial condition"

$$
\eta\left(y_{0}\right)=\mathbf{0}
$$

Using an inequality of Poincarés type, we infer from the above system and initial condition that there exists a constant $c_{5}=c_{5}(\omega, p)$ such that

$$
\|\boldsymbol{\eta}\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)} \leq c_{5}\left\|\boldsymbol{F}\left(\boldsymbol{\varphi}, y_{0}\right)-\boldsymbol{F}\left(\boldsymbol{\psi}, y_{0}\right)\right\|_{W^{1, p}\left(\omega ; \mathbb{M}^{3}\right)} .
$$

The conclusion follows by combining the above inequalities and by noting that, thanks to the invariance under rotations of the Euclidean and Frobenius norms,

$$
\|\boldsymbol{\eta}\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)}=\left\|\boldsymbol{\theta}\left(\boldsymbol{\varphi}, y_{0}\right)-\boldsymbol{\theta}\left(\boldsymbol{\psi}, y_{0}\right)\right\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)} \geq \inf _{\boldsymbol{r} \in \mathbf{I s o m}_{+}\left(\mathbb{E}^{3}\right)}\|\boldsymbol{\varphi}-\boldsymbol{r} \circ \boldsymbol{\psi}\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)}
$$

## 4. Local Lipschitz-continuity of the mapping defining a surface of class $\boldsymbol{W}^{\mathbf{2}, \boldsymbol{p}}, \boldsymbol{p}>2$, in terms of its fundamental forms

Let $\omega$ be an open subset of $\mathbb{R}^{2}$. Given two symmetric matrix fields

$$
\boldsymbol{A}=\left(a_{\alpha \beta}\right) \in W_{\mathrm{loc}}^{1, p}\left(\omega ; \mathbb{S}^{2}\right) \text { and } \boldsymbol{B}=\left(b_{\alpha \beta}\right) \in L_{\mathrm{loc}}^{p}\left(\omega ; \mathbb{S}^{2}\right), p>2
$$

such that $\boldsymbol{A}(y) \in \mathbb{S}_{>}^{2}$ for all $y \in \bar{\omega}$, define the distributions

$$
\begin{aligned}
& R_{\alpha \beta \tau}^{\sigma}(\boldsymbol{A}, \boldsymbol{B}):=\partial_{\tau} \Gamma_{\alpha \beta}^{\sigma}-\partial_{\beta} \Gamma_{\alpha \tau}^{\sigma}+\Gamma_{\alpha \beta}^{\gamma} \Gamma_{\tau \gamma}^{\sigma}-\Gamma_{\alpha \tau}^{\gamma} \Gamma_{\beta \gamma}^{\sigma}-b_{\alpha \beta} b_{\tau}^{\sigma}+b_{\alpha \tau} b_{\beta}^{\sigma} \in \mathcal{D}^{\prime}(\omega) \\
& R_{\alpha \beta \tau}^{3}(\boldsymbol{A}, \boldsymbol{B}):=\partial_{\tau} b_{\alpha \beta}-\partial_{\beta} b_{\alpha \tau}+\Gamma_{\alpha \beta}^{\gamma} b_{\tau \gamma}-\Gamma_{\alpha \tau}^{\gamma} b_{\beta \gamma} \in \mathcal{D}^{\prime}(\omega)
\end{aligned}
$$

where

$$
\begin{aligned}
\Gamma_{\alpha \beta}^{\sigma}=\Gamma_{\alpha \beta}^{\sigma}(\boldsymbol{A}) & :=\frac{1}{2} a^{\sigma \tau}\left(\partial_{\alpha} a_{\beta \tau}+\partial_{\beta} a_{\alpha \tau}-\partial_{\tau} a_{\alpha \beta}\right) \in L_{\mathrm{loc}}^{p}(\omega), \\
b_{\beta}^{\sigma} & :=a^{\sigma \tau} b_{\tau \beta} \in L_{\mathrm{loc}}^{p}(\omega), \text { and }\left(a^{\sigma \tau}\right):=\left(a_{\alpha \beta}\right)^{-1} \in W_{\mathrm{loc}}^{1, p}(\omega)
\end{aligned}
$$

Remark 3. The above regularity assumptions on the fields $\boldsymbol{A}$ and $\boldsymbol{B}$ are the minimal possible in order that the definitions of the distributions $R^{j}{ }_{\alpha \beta \tau}(\boldsymbol{A}, \boldsymbol{B})$ make sense: combined with the Sobolev embedding $W_{\text {loc }}^{1, p}(\omega) \subset \mathcal{C}^{0}(\omega)$, they ensure that $\operatorname{det} \boldsymbol{A}$ is a continuous positive function over $\omega$, which in turn implies that $a^{\sigma \tau} \in \mathcal{C}^{0}(\omega)$ and so the products appearing in the definitions of $\Gamma_{\alpha \beta}^{\sigma}$ and $b_{\alpha}^{\sigma}$ belong to $L_{\mathrm{loc}}^{p}(\omega)$; this allows to define the partial derivatives of $\Gamma_{\alpha \beta}^{\sigma}$ and $b_{\alpha}^{\sigma}$ appearing in the above definition of $R^{j}{ }_{\alpha \beta \tau}(\boldsymbol{A}, \boldsymbol{B})$ as distributions in $\mathcal{D}^{\prime}(\omega)$.

The third objective of this Note is to establish, as a consequence of the nonlinear Korn inequality of Theorem 3, the following "existence, uniqueness, and stability theorem" for the reconstruction of a surface from its fundamental forms in the spaces $W^{1, p}\left(\omega ; \mathbb{S}^{2}\right)$ and $L^{p}\left(\omega ; \mathbb{S}^{2}\right)$.

In Theorem 5 below, the set $\dot{W}^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ is the quotient set of the space $W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ by the equivalence relation between isometrically equivalent immersions, and the set $\mathbb{T}(\omega)$ is the subset of the space $W^{1, p}\left(\omega ; \mathbb{S}^{2}\right) \times L^{p}\left(\omega ; \mathbb{S}^{2}\right)$ formed by all pairs of a positive-definite symmetric matrix field and a symmetric matrix field that satisfy together the equations of Gauss and Codazzi-Mainardi in the distributional sense. As such, the sets $\dot{W}^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ and $\mathbb{T}(\omega)$ are metric spaces equipped respectively with the distances defined by

$$
\operatorname{dist}_{\dot{W}^{2, p}\left(\omega ; \mathbb{E}^{3}\right)}(\dot{\boldsymbol{\theta}}, \dot{\boldsymbol{\psi}}):=\inf _{\tilde{\boldsymbol{\theta}} \in \boldsymbol{\boldsymbol { \theta }}, \tilde{\boldsymbol{\psi}} \in \dot{\boldsymbol{\psi}}}\|\tilde{\boldsymbol{\theta}}-\tilde{\boldsymbol{\psi}}\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)}=\inf _{\boldsymbol{r} \in \mathbf{I s o m}_{+}\left(\mathbb{E}^{3}\right)}\|\boldsymbol{\theta}-\boldsymbol{r} \circ \boldsymbol{\psi}\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)}
$$

for all $\dot{\boldsymbol{\theta}}$ and $\dot{\boldsymbol{\psi}}$ in $\dot{W}^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$, and by

$$
\operatorname{dist}_{\mathbb{T}(\omega)}((\boldsymbol{A}, \boldsymbol{B}),(\tilde{\boldsymbol{A}}, \tilde{\boldsymbol{B}})):=\|\boldsymbol{A}-\tilde{\boldsymbol{A}}\|_{W^{1, p}\left(\omega ; \mathbb{S}^{2}\right)}+\|\boldsymbol{B}-\tilde{\boldsymbol{B}}\|_{L^{p}\left(\omega ; \mathbb{S}^{2}\right)}
$$

for all ( $\boldsymbol{A}, \boldsymbol{B})$ and $(\tilde{\boldsymbol{A}}, \tilde{\boldsymbol{B}})$ in $\mathbb{T}(\omega)$.

Theorem 5. Let $\omega$ be a domain in $\mathbb{R}^{2}$. Given any $p>2$, define the sets

$$
\dot{W}^{2, p}\left(\omega ; \mathbb{E}^{3}\right):=\left\{\dot{\boldsymbol{\theta}}=\left\{\boldsymbol{r} \circ \boldsymbol{\theta} ; \boldsymbol{r} \in \operatorname{Isom}_{+}\left(\mathbb{E}^{3}\right)\right\} ; \boldsymbol{\theta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)\right\}
$$

and

$$
\mathbb{T}(\omega):=\left\{(\boldsymbol{A}, \boldsymbol{B}) \in W^{1, p}\left(\omega ; \mathbb{S}^{2}\right) \times L^{p}\left(\omega ; \mathbb{S}^{2}\right) ; \boldsymbol{A}(y) \in \mathbb{S}_{>}^{2} \text { at each } y \in \bar{\omega}, R_{\alpha \beta \tau}^{j}(\boldsymbol{A}, \boldsymbol{B})=0 \text { in } \mathcal{D}^{\prime}(\omega)\right\} .
$$

Then the following assertions are true:
(a) Two matrix fields $\boldsymbol{A}=\left(a_{\alpha \beta}\right)$ and $\boldsymbol{B}=\left(b_{\alpha \beta}\right)$ satisfy
$(\boldsymbol{A}, \boldsymbol{B}) \in \mathbb{T}(\omega)$
if and only if there exists an immersion $\boldsymbol{\theta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ such that
$\hat{a}_{\alpha \beta}(\boldsymbol{\theta})=a_{\alpha \beta}$ in $\omega$ and $\hat{b}_{\alpha \beta}(\boldsymbol{\theta})=b_{\alpha \beta}$ a.e. in $\omega$.
(b) Two immersions $\boldsymbol{\theta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ and $\boldsymbol{\psi} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ satisfy the relations

$$
\hat{a}_{\alpha \beta}(\boldsymbol{\theta})=\hat{a}_{\alpha \beta}(\boldsymbol{\psi}) \text { in } \omega \text { and } \hat{b}_{\alpha \beta}(\boldsymbol{\theta})=\hat{b}_{\alpha \beta}(\boldsymbol{\psi}) \text { a.e. in } \omega
$$

if and only if there exists a proper isometry $\boldsymbol{r}$ of $\mathbb{E}^{3}$ such that

$$
\boldsymbol{\psi}=\boldsymbol{r} \circ \boldsymbol{\theta} \text { in } \omega .
$$

(c) The mapping defined by (a) and (b), namely

$$
\mathcal{G}:(\boldsymbol{A}, \boldsymbol{B}) \in \mathbb{T}(\omega) \rightarrow \mathcal{G}((\boldsymbol{A}, \boldsymbol{B})):=\dot{\boldsymbol{\theta}} \in \dot{W}^{2, p}\left(\omega ; \mathbb{E}^{3}\right)
$$

where $\boldsymbol{\theta} \in W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)$ is any immersion that satisfies

$$
\left(\hat{a}_{\alpha \beta}(\boldsymbol{\theta})\right)=\boldsymbol{A} \text { and }\left(\hat{b}_{\alpha \beta}(\boldsymbol{\theta})\right)=\boldsymbol{B} \text { a.e. in } \omega,
$$

is locally Lipschitz-continuous.
Sketch of proof. Parts (a) and (b) are just a re-statement of Theorem 2. Otherwise, the rest of the proof follows a strategy introduced by the first author and S. Mardare in [3]. More precisely, part (c) of Theorem 5 is deduced from Theorem 3 as follows.

On the one hand, the Sobolev embedding $W^{1, p}(\omega) \subset \mathcal{C}^{0}(\bar{\omega})$ implies that, given any $(\boldsymbol{A}, \boldsymbol{B}) \in \mathbb{T}(\omega)$, there exists $\delta=$ $\delta(\boldsymbol{A}, \boldsymbol{B})>0$ such that the set

$$
\mathbb{T}_{\delta}(\omega):=\left\{(\tilde{\boldsymbol{A}}, \tilde{\boldsymbol{B}}) \in \mathbb{T}(\omega) ; \operatorname{det} \tilde{\boldsymbol{A}} \geq \delta \text { in } \omega,\|\tilde{\boldsymbol{A}}\|_{W^{1, p}\left(\omega ; \mathbb{S}^{2}\right)} \leq 1 / \delta, \text { and }\|\tilde{\boldsymbol{B}}\|_{L^{p}\left(\omega ; \mathbb{S}^{2}\right)} \leq 1 / \delta\right\}
$$

is a neighborhood of $(\boldsymbol{A}, \boldsymbol{B})$ in the metric space $\mathbb{T}(\omega)$. It also implies that

$$
\mathbb{T}(\omega)=\bigcup_{\delta>0} \mathbb{T}_{\delta}(\omega)
$$

Besides, for each $\delta>0$, there exists $\varepsilon(\delta)>0$ such that

$$
\mathcal{G}\left(\mathbb{T}_{\delta}(\omega)\right) \subset\left\{\dot{\boldsymbol{\theta}} \in \dot{W}^{2, p}\left(\omega ; \mathbb{E}^{3}\right) ; \boldsymbol{\theta} \in V_{\varepsilon(\delta)}\left(\omega ; \mathbb{E}^{3}\right)\right\}
$$

where $\mathcal{G}$ denotes the mapping defined in part (c) of the statement of the theorem and $V_{\mathcal{\varepsilon}(\delta)}\left(\omega ; \mathbb{E}^{3}\right)$ is defined as in Theorem 3.

On the other hand, Theorem 3 implies that there exists a constant $c=c(\omega, p, \varepsilon(\delta))$ such that

$$
\inf _{\boldsymbol{r} \in \operatorname{Isom}_{+}\left(\mathbb{E}^{3}\right)}\|\boldsymbol{\varphi}-\boldsymbol{r} \circ \boldsymbol{\psi}\|_{W^{2, p}\left(\omega ; \mathbb{E}^{3}\right)} \leq c\left\{\left\|\left(\hat{a}_{\alpha \beta}(\boldsymbol{\varphi})-\hat{a}_{\alpha \beta}(\boldsymbol{\psi})\right)\right\|_{W^{1, p}\left(\omega ; \mathbb{S}^{2}\right)}+\left\|\left(\hat{b}_{\alpha \beta}(\boldsymbol{\varphi})-\hat{b}_{\alpha \beta}(\boldsymbol{\psi})\right)\right\|_{L^{p}\left(\omega ; \mathbb{S}^{2}\right)}\right\}
$$

for all mappings $\varphi \in V_{\varepsilon(\delta)}\left(\omega ; \mathbb{E}^{3}\right)$ and $\boldsymbol{\psi} \in V_{\varepsilon(\delta)}\left(\omega ; \mathbb{E}^{3}\right)$ (note that Theorem 3 can be applied under the assumptions of Theorem 5 since a domain satisfies the uniform interior cone property).

We then infer from the observations above that, given any mappings $\boldsymbol{\varphi} \in V_{\varepsilon(\delta)}\left(\omega ; \mathbb{E}^{3}\right)$ and $\tilde{\boldsymbol{\varphi}} \in V_{\varepsilon(\delta)}\left(\omega ; \mathbb{E}^{3}\right)$ such that $\dot{\boldsymbol{\varphi}}=\mathcal{G}(\boldsymbol{A}, \boldsymbol{B})$ and $\dot{\tilde{\boldsymbol{\varphi}}}=\mathcal{G}(\tilde{\boldsymbol{A}}, \tilde{\boldsymbol{B}})$ for some $(\boldsymbol{A}, \boldsymbol{B}) \in \mathbb{T}_{\delta}(\omega)$ and $(\tilde{\boldsymbol{A}}, \tilde{\boldsymbol{B}}) \in \mathbb{T}_{\delta}(\omega)$,

$$
\operatorname{dist}_{\dot{W}^{2, p}\left(\omega ; \mathbb{E}^{3}\right)}(\dot{\boldsymbol{\varphi}}, \dot{\tilde{\boldsymbol{\varphi}}}) \leq c \operatorname{dist}_{\mathbb{T}(\omega)}((\boldsymbol{A}, \boldsymbol{B}),(\tilde{\boldsymbol{A}}, \tilde{\boldsymbol{B}}))
$$

This shows that the restriction of the mapping $\mathcal{G}$ to the set $\mathbb{T}_{\delta}(\omega)$ is Lipschitz-continuous.

## Acknowledgements

The work described in this paper was substantially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. 9042388, CityU 11305716].

## References

[1] M.P. do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, Englewood Cliffs, 1976.
[2] P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications, SIAM, Philadelphia, 2013.
[3] P.G. Ciarlet, S. Mardare, Nonlinear Korn inequalities in $\mathbb{R}^{n}$ and immersions in $W^{2, p}, p>n$, considered as functions of their metric tensors in $W^{1, p}$, J. Math. Pures Appl. 105 (2016) 873-906.
[4] P.G. Ciarlet, C. Mardare, A surface in $W^{2, p}$ is a locally Lipschitz-continuous function of its fundamental forms in $W^{1, P}$ and $L^{p}, p>2$, in preparation.
[5] W. Klingenberg, Eine Vorlesung über Differentialgeometrie, Springer, Berlin, 1973. English translation: A Course in Differential Geometry, Springer, Berlin, 1978.
[6] S. Mardare, On Pfaff systems with $L^{p}$ coefficients and their applications in differential geometry, J. Math. Pures Appl. 84 (2005) $1659-1692$.
[7] S. Mardare, On systems of first order linear partial differential equations with $L^{p}$ coefficients, Adv. Differ. Equ. 12 (2007) 301-360.


[^0]:    E-mail addresses: mapgc@cityu.edu.hk (P.G. Ciarlet), mardare@ann.jussieu.fr (C. Mardare).
    https://doi.org/10.1016/j.crma.2017.12.003
    1631-073X/C 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

