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We obtain sufficient conditions for the existence and uniqueness of a positive compact 
almost automorphic solution to a logistic equation with discrete and continuous delay. 
Moreover, we provide a counterexample to some results in literature which deal with the 
uniqueness of almost periodic solutions to logistic type equations.
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r é s u m é

Nous obtenons des conditions suffisantes pour l’existence et l’unicité d’une solution 
positive et compacte presque automorphe, d’une équation logistique avec retard discret 
et continu. De plus, nous donnons un contre-exemple à des résultats publiés, qui traitent 
l’unicité des solutions presque périodiques des équations de type logistique.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the following equation:

N ′(t) = N(t)

(
a(t) − b(t)N(t − τ1) − c(t)

τ2∫
0

k(s)N(t − s)ds

)
for t ∈R, (1.1)

where k : [0, ∞) → [0, ∞) is piecewise continuous, and the functions a(·), b(.) and c(.) are almost automorphic and satisfy 
the following conditions

0 < a0 ≤ a(t) ≤ a1, 0 < b0 ≤ b(t) ≤ b1 and 0 < c0 ≤ c(t) ≤ c1 for t ∈R, (1.2)

E-mail addresses: nadia_drisi@yahoo.fr (N. Drisi), essebbar@live.fr (B. Es-sebbar).
https://doi.org/10.1016/j.crma.2017.11.004
1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.crma.2017.11.004
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:nadia_drisi@yahoo.fr
mailto:essebbar@live.fr
https://doi.org/10.1016/j.crma.2017.11.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2017.11.004&domain=pdf


N. Drisi, B. Es-sebbar / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 1208–1214 1209
where a0, a1, b0, b1, c0, c1 are positive constants. This equation can model the dynamics of population of a species in a 
time-fluctuating environment. Even if the birth rate a(t) and death rates b(t), c(t) are periodic with respect to time t , the 
overall time dependence may not be periodic; i.e., if the quotient of periods of these functions is not rational, the overall 
time dependence will not be periodic, but almost periodic in the sense of Bohr. In reality, the parameters a(t), b(t), c(t)
of Eq. (1.1) may be outputs of other almost periodic dynamical systems. However, it is well known in general that almost 
periodic systems do not carry necessarily almost periodic dynamics [6,9,11]. Although these systems may have bounded 
oscillating solutions, these oscillations belong to a class larger than the class of almost periodic functions: we are talking 
about almost automorphic functions. Bochner introduced the concept of almost automorphy in the literature in [1] as a 
generalization of almost periodicity. This concept was then deeply investigated by Veech [12] and many other authors. 
That is why it is natural to assume that the coefficients a(t), b(t), c(t) in Eq. (1.1) are almost automorphic. To the best of 
our knowledge, no authors have considered the problems of positive almost automorphic solutions to logistic-type delay 
equations.

The purpose of this work is to give sufficient conditions for the existence and uniqueness of a positive compact almost 
automorphic solution to Eq. (1.1) when the coefficients are almost automorphic. In the case where the coefficients are 
periodic, a variant of Eq. (1.1) has been studied extensively in [4]. The almost periodic case was treated by Seifert in an 
article [10] where he gave a result for the existence and uniqueness of an almost periodic solution to

N ′(t) = N(t)

(
a(t) − b(t)

∞∫
0

k(s)N(t − s)ds

)
for t ∈ R (1.3)

provided that

b2
0

b2
1

> a1

∫ ∞
0 sk(s)ds∫ ∞

0 e−a1sk(s)ds
. (1.4)

In many works in the literature such as [7], [8] and [13], the authors claimed that the delay logistic equation (1.3) and other 
variants have a unique positive almost periodic solution without assuming any assumption such as (1.4). Unfortunately, 
those results seem to be incorrect. We will explain this in Section 3 through a counterexample.

2. Main results

The following lemma gives an a priori lower and upper bounds for positive solutions to Eq. (1.1).

Lemma 2.1. Let N be a positive solution to Equation (1.1) on R+ . Then,

lim sup
t→∞

N(t) ≤ a1

b̃
:= m1 (2.1)

and

lim inf
t→∞ N(t) ≥ a0

b1e−d0τ1 + c1
∫ τ2

0 k(s)e−d0s ds
:= m0, (2.2)

where ̃b = b0e−a1τ1 + c0

τ2∫
0

k(s)e−a1s ds and d0 = a0 − 2m1b1 − 2c1m1

τ2∫
0

k(s)ds.

Proof. We have for each t ≥ 0

N ′(t) ≤ a1N(t) − b0N(t)N(t − τ1) − c0N(t)

τ2∫
0

k(s)N(t − s)ds, (2.3)

which implies, by the positivity of N , that N ′(t) < a1N(t). It follows that N(t) < ea1τ1 N(t − τ1) and N(t) < ea1s N(t − s) for 
all s ∈ [0, τ2]. We deduce from (2.3) that

N ′(t) < a1N(t) − b̃N2(t),

where ̃b = b0e−a1τ1 + c0

τ2∫
0

k(s)e−a1s ds. Put y(t) = 1

N(t)
, then we have

y′(t) > e−a1t y(0) + b̃ (
1 − e−a1t) .
a1
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Thus

N(t) <
1

e−a1t

N(0)
+ b̃

a1

(
1 − e−a1t

) ,

which implies that

lim sup
t→∞

N(t) ≤ a1

b̃
:= m1. (2.4)

On the other hand, we have

N ′(t) = d(t)N(t),

where d(t) = a(t) − b(t)N(t − τ1) − c(t)

τ2∫
0

k(s)N(t − s)ds. It follows that N(t) = e
∫ t

t−τ1
d(θ) dθ

N(t − τ1) and N(t) =

e
∫ t

t−s d(θ) dθ N(t − s) for all s ∈ [0, τ2]. For sufficiently large t we have by (2.4) N(θ) ≤ 2m1 for all θ ∈ [t − max(τ1, τ2), t]
and thus

d(θ) ≥ a0 − 2m1b1 − 2c1m1

τ2∫
0

k(s)ds := d0.

This implies that N(t −τ1) ≤ e−d0τ1 N(t) and N(t − s) ≤ e−d0s N(t) for all s ∈ [0, τ2]. We get the following differential inequal-
ity

N ′(t) ≥ a0N(t) −
⎛
⎝b1e−d0τ1 + c1

τ2∫
0

k(s)e−d0s ds

⎞
⎠ N2(t).

By derivating again the function y(t) = 1

N(t)
, we deduce that

lim inf
t→∞ N(t) ≥ a

b1e−d0τ1 + c1
∫ τ2

0 k(s)e−d0s ds
:= m0.

This ends the proof of the lemma. �
Consider the following Cauchy problem⎧⎨

⎩N ′(t) = N(t)

(
a(t) − b(t)N(t − τ1) − c(t)

∫ τ2
0 k(s)N(t − s)ds

)
for t ≥ 0

N(t) = ϕ(t) for − τ ≤ t ≤ 0
(2.5)

where τ = max {τ1, τ2} and ϕ is a continuous function from [−τ ,0] to R.

Proposition 2.2. For each nonnegative initial data ϕ with ϕ(0) > 0, there exists a unique positive global solution to Eq. (2.5).

Proof. The local existence of a solution is guaranteed by [5, Theorem 2.3, Chapter 2], where

f (t, φ) = φ(0)

(
a(t) − b(t)φ(−τ1) − c(t)

τ2∫
0

k(s)φ(−s)ds

)
.

The positivity of this solution can be proved using the same arguments as in [3, Lemma 1]. This local solution is global, 
since otherwise the solution must blow up at the maximal time of existence and thus will contradict the a priori estimate 
in Lemma 2.1. �
Definition 2.3. [1] A continuous function f : R �→ X is said to be almost automorphic if, for every sequence of real numbers 
(sn)n , there exist a subsequence (s′

n)n ⊂ (sn)n and a function f̃ , such that, for each t ∈ R

f (t + s′
n) → f̃ (t)

and

f̃ (t − s′
n) → f (t)

as n → ∞. If the above limits hold uniformly in compact subsets of R, then f is said to be compact almost automorphic.
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The following proposition gives a characterization of compact almost automorphic functions.

Proposition 2.4. [2] A function f is compact almost automorphic if and only if it is almost automorphic and uniformly continuous.

Theorem 2.5. There exists a positive solution S to Eq. (1.1) on R such that

m0 ≤ S(t) ≤ m1, (2.6)

where m0 and m1 are the positive constants defined by (2.1) and (2.2). Moreover, this solution is unique provided that⎛
⎝b1τ1 + c1

τ2∫
0

sk(s)ds

⎞
⎠m2

1 <
b0 + c0

∫ τ2
0 k(s)ds

b1 + c1
∫ τ2

0 k(s)ds
m0. (2.7)

Proof. Let N be a positive solution to Eq. (1.1) on R+ . Using (2.1), one can see that N and its derivative are bounded, thus 
N is uniformly continuous. Let (tn)n be a sequence of real numbers such that lim

t→∞ tn = ∞. Then, for sufficiently large n, 
the sequence of functions Nn : t �→ N(t + tn) is well defined on [−1,1] and is equicontinuous. It follows by Arzelà–Ascoli’s 
theorem that there exist a function Q and a subsequence (t1

n)n ⊂ (tn)n such that

N(t + t1
n) → Q (t) as n → ∞

uniformly on [−1, 1]. By applying the same argument to the subsequence (t1
n)n , we extract a subsequence (t2

n)n ⊂ (t1
n)n ⊂

(tn)n such that

N(t + t2
n) → Q (t) as n → ∞

uniformly on [−2, 2]. By proceeding inductively, we obtain for each m ∈ N
∗ a subsequence (tm

n )n ⊂ · · · ⊂ (t1
n)n ⊂ (tn)n such 

that

N(t + tm
n ) → Q (t) as n → ∞

uniformly on [−m, m]. Let (t′
n)n := (tn

n)n be the diagonal sequence, then we have

N(t + t′
n) → Q (t) as n → ∞ (2.8)

uniformly on each compact subset of R. Note that

m0 ≤ Q (t) ≤ m1.

Since a(.), b(.) and c(.) are almost automorphic functions, we can extract a subsequence (t′′
n )n ⊂ (t′

n)n such that a(t + t′′
n ) →

ã(t), ã(t − t′′
n) → a(t), b(t + t′′

n) → b̃(t), b̃(t − t′′
n) → b(t), c(t + t′′

n) → c̃(t), and c̃(t − t′′
n) → c(t) as n → ∞. For each t ≥ s and 

for n ∈N sufficiently large, we have

N(t + t′′
n) = N(s + t′′

n)

+
t∫

s

N(u + t′′
n)

⎛
⎝a(u + t′′

n) − b(u + t′′
n)N(u + t′′

n − τ1) − c(u + t′′
n)

τ2∫
0

k(θ)N(u + t′′
n − θ)dθ

⎞
⎠ du. (2.9)

By taking n → ∞, we get for each t ≥ s

Q (t) = Q (s) +
t∫

s

Q (u)

⎛
⎝ã(u) − b̃(u)Q (u − τ1) − c̃(u)

τ2∫
0

k(θ)Q (u − θ)dθ

⎞
⎠ du.

By applying the above argument to the returning sequence 
(−t′′

n

)
n , we obtain a subsequence 

(
t′′′
n

)
n ⊂ (

t′′
n

)
n and a function 

S such that

Q (t − t′′′
n ) → S(t) as n → ∞ (2.10)

uniformly on each compact subset of R. One can see that S is a solution to (1.1) on R that satisfies

m0 ≤ S(t) ≤ m1.

Now, for the uniqueness, assume that (2.7) holds. Let S̃ be another solution on R that satisfies (2.6). Let x(t) = log S(t), 
y(t) = log S̃(t) and L(t) = x(t) − y(t). For each fixed t0 ∈ R, we set L0(t) := L(t + t0). One can see that there exists a 
continuous function θ(t) such that, for all t ∈R,
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S(t) − S̃(t) = θ(t)L(t) and m0 ≤ θ(t) ≤ m1.

Then L0 satisfies the following differential equation

L′
0(t) = −b0(t)θ0(t − τ1)L0(t − τ1) − c0(t)

τ2∫
0

k(s)θ0(t − s)L0(t − s)ds.

Consider the following Lyapunov function

V (t) = V 1(t) + V 2(t) + V 3(t)

where

V 1(t) =
⎡
⎣L0(t) −

t∫
t−τ1

b0(s + τ1)θ0(s)L0(s)ds −
τ2∫

0

t∫
t−s

k(s)c0(u + s)θ0(u)L0(u)du ds

⎤
⎦

2

,

V 2(t) =
⎛
⎝b1 + c1

τ2∫
0

k(s)ds

⎞
⎠b1m2

1

t∫
t−τ1

t∫
s

L2
0(u)du ds,

and

V 3(t) =
⎛
⎝b1 + c1

τ2∫
0

k(s)ds

⎞
⎠ c1m2

1

τ2∫
0

k(s)

t∫
t−s

t∫
u

L2
0(ξ)dξ du ds.

By derivating V using 2xy ≤ x2 + y2, we get the following inequality

V ′(t) ≤ −C L2
0(t),

where

C = 2

⎛
⎝m0

⎡
⎣b0 + c0

τ2∫
0

k(s)ds

⎤
⎦ −

⎛
⎝b1 + c1

τ2∫
0

k(s)ds

⎞
⎠

⎛
⎝b1τ1m2

1 + c1m2
1

τ2∫
0

sk(s)ds

⎞
⎠

⎞
⎠ .

Notice that C > 0 by (2.7). By integrating the above inequality and using the positivity of V (t), we obtain

t∫
0

L2
0(s)ds ≤ V (0)

C
. (2.11)

Notice also that there exists a constant M independent of t0 such that V (0) ≤ M . Thus,

∞∫
−∞

L2(s)ds ≤ M

C
.

Since the function s �→ L2(s) is uniformly continuous (
d

ds
L2(s) is bounded), we obtain by Barbalat’s Lemma [4, Lemma 1.2.2]

that lim
t→±∞ L2(t) = 0. Let ε > 0, then there exists T > 0 such that, for all t ∈R with |t| > T , we have |L(t)| < ε. We fix t0 ∈R

such that t0 < −T . Thus we have from (2.11)

∞∫
t0

L2(s)ds ≤ V (0)

C
.

On the other hand, since t0 < −T , one can see that there exists a constant M1 > 0 independent of t0 such that V (0) ≤ M1ε
2. 

Therefore, we get

∞∫
−∞

L2(s)ds ≤ M1

C
ε2.

Since ε > 0 is arbitrary, L(t) = 0 for all t ∈ R, and thus S(t) = S̃(t) for all t ∈ R. �
We are now in a position to present our main result.
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Theorem 2.6. Assume that⎛
⎝b1τ1 + c1

τ2∫
0

sk(s)ds

⎞
⎠m2

1 <
b0 + c0

∫ τ2
0 k(s)ds

b1 + c1
∫ τ2

0 k(s)ds
m0. (2.12)

Then Equation (1.1) has a unique compact almost automorphic solution S on R such that m0 ≤ S(t) ≤ m1 for t ∈ R. Furthermore, 
S attracts all positive solutions on (0, ∞).

Proof. From Theorem 2.5, Equation (1.1) has a unique solution S on R such that

m0 ≤ S(t) ≤ m1 for t ∈R. (2.13)

We claim that S is compact almost automorphic. In fact, S is uniformly continuous as it has a bounded derivative. Let (tn)n
be a sequence of real numbers. Using the equicontinuity of the family of functions Sn : t �→ S(t + tn) and Arzelà–Ascoli’s 
theorem, there exist a function Q and a subsequence (t′

n)n ⊂ (tn)n such that

S(t + t′
n) → Q (t) as n → ∞ (2.14)

uniformly on each compact subset of R. On the other hand, we can extract a subsequence (t′′
n )n ⊂ (t′

n)n such that a(t +t′′
n ) →

ã(t), ã(t − t′′
n) → a(t), b(t + t′′

n) → b̃(t), b̃(t − t′′
n) → b(t), c(t + t′′

n ) → c̃(t), and c̃(t − t′′
n) → c(t) as n → ∞. Thus, Q satisfies 

the following differential equation:

Q ′(t) = Q (t)

(
ã(t) − b̃(t)Q (t) − c̃(t)

τ2∫
0

k(s)Q (t − s)ds

)
for t ∈R.

By applying the above argument to the returning sequence 
(−t′′

n

)
n , we obtain a subsequence 

(
t′′′
n

)
n ⊂ (

t′
n

)
n such that

Q (t − t′′′
n ) → R(t) as n → ∞ (2.15)

uniformly on each compact subset of R, where R is a solution to (1.1) on R. In addition, it follows from (2.13), (2.14) and 
(2.15) that

m0 ≤ R(t) ≤ m1 for t ∈ R.

We deduce using Theorem 2.5 that R(t) = S(t) for all t ∈ R, and thus by (2.14) and (2.15) that S is compact almost auto-
morphic. The attractiveness of the solution S follows from the proof of Theorem 2.5. �
3. A counterexample

In many works in the literature such as [7], [8], and [13], the authors claimed that delay logistic equations similar to (1.1)
have a unique positive almost periodic solution when the coefficients are almost periodic, without assuming any assumption 
such as (2.12). These results seem, however, to be incorrect. In fact, if we consider, for example, the following autonomous 
delay logistic equation

u′(t) = hu(t)

(
1 − 1

c

∞∫
0

k(s)u(t − s)ds

)
for t ∈R (3.1)

where c is a positive constant and k(t) = t e−t for t ≥ 0. Then it is known (see [4, Chapter 2]) that Eq. (3.1) exhibits a Hopf 
bifurcation with respect to the parameter h. More specifically, when 0 < h < 2, then the steady state u(t) = c is locally 
asymptotically stable. But when h > 2 and h − 2 is small, the steady state loses its asymptotic stability and at the same 
time a nonconstant periodic solution arises. Therefore, in this case, Eq. (3.1) has two positive almost periodic solutions: the 
steady state u1(t) = c and the bifurcating nonconstant periodic solution u2, which contradicts the main results in [7], [8], 
and [13]. The flaw in all the proofs given in [7], [8] and [13] seems to be the use of the estimation

r∫
0

L0(t) (L0(t) − L0(t − s)) dt ≤ sup
t

|L0(t)|
∣∣∣∣∣∣

r∫
0

(L0(t) − L0(t − s)) dt

∣∣∣∣∣∣
which does not hold when the function L0(t) − L0(t − s) is not nonnegative, where L0(t) = log S(t + t0) − log S̃(t + t0) as in 
the proof of Theorem 2.5.

This phenomenon happens even for simpler logistic equations. For instance, consider the following logistic equation

u′(t) = u(t) (1 − u(t − r)) . (3.2)

When r = 1.2, there is a unique positive periodic solution, which is the asymptotically stable steady state u(t) = 1 (Fig. 3.1). 
But when r = 1.62, there are two positive periodic solutions: the steady state u1(t) = 1 and the bifurcating nonconstant 
periodic solution u2 (Fig. 3.2).
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Fig. 3.1. r = 1.2, the steady state (in dashed line) is the only positive periodic solution.

Fig. 3.2. r = 1.62, there are two positive periodic solutions (in dashed line).
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