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The relation between the equicontinuity – the so-called e-property – and the stability 
of Markov operators is studied. In particular, it is shown that any asymptotically stable 
Markov operator with an invariant measure such that the interior of its support is non-
empty satisfies the e-property.
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r é s u m é

Nous étudions la relation entre l’équicontinuite – la dite e-propriété – et la stabilité 
d’opérateurs de Markov. En particulier, nous montrons que tout opérateur markovien 
asymptotiquement stable, avec une mesure invariante telle que l’intérieur de son support 
est non vide, satisfait la e-propriété.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This paper is centred around two concepts of equicontinuity for Markov operators defined on probability measures on 
Polish spaces: the e-property and the Cesàro e-property. Both appeared as a condition (among others) in the study of the 
ergodicity of Markov operators. In particular, they are very useful in proving the existence of a unique invariant measure 
and its asymptotic stability: at whatever probability measure one starts, the iterates under the Markov operator will weakly 
converge to the invariant measure. The first concept appeared in [8,12], while the second was introduced in [14] as a 

✩ The work of Maria Aleksandra Ziemlańska has been partially supported by a Huygens Fellowship of Leiden University. The work of Tomasz Szarek has 
been supported by the National Science Centre of Poland, grant number 2016/21/B/ST1/00033.

E-mail addresses: shille@math.leidenuniv.nl (S.C. Hille), szarek@intertele.pl (T. Szarek), m.a.ziemlanska@math.leidenuniv.nl (M.A. Ziemlańska).
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theoretical generalisation of the first and allowed the author to extend various results by replacing the e-property condition 
by the apparently weaker Cesàro e-property condition, among others.

An interest in equicontinuous families of Markov operators existed already before the introduction of the e-property. 
Jamison [6], working on compact metric state spaces, introduced the concepts of (dual) Markov operators on the continuous 
functions that are ‘uniformly stable’ or ‘uniformly stable in mean’ to obtain a kind of asymptotic stability results in this 
setting. Meyn and Tweedie [10] introduced the so-called ‘e-chains’ on locally compact Hausdorff topological state spaces, for 
similar purposes. See also [15] for results in a locally compact metric setting.

The above-mentioned concepts were used for proving ergodicity for some Markov chains (see [11,1–3,5,7,13]).
It is worth mentioning here that similar concepts appear in the study of mean equicontinuous dynamical systems mainly 

on compact spaces (see, for instance, [9]). However, it must be stressed here that our space of Borel probability measures 
defined on some Polish space is non-compact.

Studying the e-property, the natural question arose whether any asymptotically stable Markov operator satisfies this 
property. Proposition 6.4.2 in [10] says that this holds when the phase space is compact. In particular, the authors showed 
that the stronger e-chain property is satisfied. Unfortunately, the proof contains a gap, and it is quite easy to construct an 
example showing that some additional assumptions must be then added.

On the other hand, striving to repair the gap of the Meyn–Tweedie result mentioned above, we show that any asymp-
totically stable Markov operator with an invariant measure such that the interior of its support is nonempty satisfies the 
e-property.

2. Preliminaries

Let (S, d) be a Polish space. By B(x, r), we denote the open ball in (S, d) of radius r, centred at x ∈ S , and ∂ B(x, r) denotes 
its boundary. Further E , IntS E denote the closure of E ⊂ S and the interior of E , respectively. By Cb(S), we denote the 
vector space of all bounded real-valued continuous functions on S and by Bb(S) all bounded real-valued Borel measurable 
functions, both equipped with the supremum norm | · |. By Lb(S) we denote the subspace of Cb(S) of all bounded Lipschitz 
functions (for the metric d on S). For f ∈ Lb(S), Lip f denotes the Lipschitz constant of f .

By M(S), we denote the family of all finite Borel measures on S and by P(S) the subfamily of all probability measures 
in M(S). For μ ∈M(S), its support is the set

suppμ := {x ∈ S : μ(B(x, r)) > 0 for all r > 0}.
An operator P :M(S) →M(S) is called a Markov operator (on S) if it satisfies the following two conditions:

(i) (positive linearity) P (λ1μ1 + λ2μ2) = λ1 Pμ1 + λ2 Pμ2 for λ1, λ2 ≥ 0; μ1, μ2 ∈M(S);
(ii) (preservation of the norm) Pμ(S) = μ(S) for μ ∈M(S).

A measure μ∗ is called invariant if Pμ∗ = μ∗ . A Markov operator P is asymptotically stable if there exists a unique invariant 
measure μ∗ ∈P(S) such that Pnμ → μ∗ weakly as n → ∞ for every μ ∈P(S).

For brevity, we shall use the notation:

〈 f ,μ〉 :=
∫
S

f (x)μ(dx) for f ∈ Bb(S), μ ∈ M(S).

A Markov operator P is regular if there exists a linear operator U : Bb(S) → Bb(S) such that

〈 f , Pμ〉 = 〈U f ,μ〉 for all f ∈ Bb(S), μ ∈ M(S).

The operator U is called the dual operator of P . A regular Markov operator is a Feller operator if its dual operator U maps 
Cb(S) into itself. Equivalently, P is Feller if it is continuous in the weak topology (cf. [14], Proposition 3.2.2).

A Feller operator P satisfies the e-property at z ∈ S if, for any f ∈ Lb(S), we have

lim
x→z

lim sup
n→∞

|Un f (x) − Un f (z)| = 0, (1)

i.e. if the family of iterates {Un f : n ∈ N} is equicontinuous at z ∈ S . We say that a Feller operator satisfies the e-property if 
it satisfies it at any z ∈ S .

D. Worm slightly generalized the e-property, introducing the Cesàro e-property (see [14]). Namely, a Feller operator P
will satisfy the Cesàro e-property at z ∈ S if, for any f ∈ Lb(S), we have

lim
x→z

lim sup
n→∞

∣∣∣∣∣
1

n

n∑
k=1

Uk f (x) − 1

n

n∑
k=1

Uk f (z)

∣∣∣∣∣ = 0. (2)

Analogously, a Feller operator satisfies the Cesàro e-property if it satisfies this property at any z ∈ S .
The following simple example shows that Proposition 6.4.2 in [10] fails.
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Example 2.1. Let S = {1/n : n ≥ 1} ∪ {0} and let T : S → S be given by the following formula:

T (0) = T (1) = 0 and T (1/n) = 1/(n − 1) for n ≥ 2.

The operator P :M(S) → M(S) given by the formula Pμ = T∗(μ) (the pushforward measure) is asymptotically stable, but 
it does not satisfy the e-property at 0.

Jamison [6] introduced, for a Markov operator, the property of uniform stability in mean when {Un f : n ∈N} is an equicon-
tinuous family of functions in the space of real-valued continuous functions C(S) for every f ∈ C(S). Here C is a compact 
metric space. Since the space of bounded Lipschitz functions is dense for the uniform norm in the space of bounded 
uniform continuous functions, this property coincides with the Cesàro e-property for compact metric spaces. Now, if the 
Markov operator P on the compact metric space is asymptotically stable, with the invariant measure μ∗ ∈ M1, then 
1
n

∑n
i=1 U i f → 〈 f , μ∗〉 pointwise, for every f ∈ C(S). According to Theorem 2.3 in [6], this implies that P is uniformly 

stable in mean, i.e. it has the Cesàro e-property.

Example 2.2. Let (kn)n≥1 be an increasing sequence of prime numbers. Set

S := {(
ki

n−1−times︷ ︸︸ ︷
0, . . . ,0, i/kn,0, . . .) ∈ l∞ : i ∈ {0, . . . ,kn},n ∈N}.

The set S endowed with the l∞-norm ‖ · ‖∞ is a (noncompact) Polish space. Define T : S → S by the formula

T ((0, . . .)) = T ((

kkn
n −1−times︷ ︸︸ ︷
0, . . . ,0, 1,0, . . .)) = (0, . . . ,0, . . .) for n ∈N

and

T ((

ki
n−1−times︷ ︸︸ ︷
0, . . . ,0, i/kn,0, . . .)) = (

ki+1
n −1−times︷ ︸︸ ︷
0, . . . ,0, (i + 1)/kn,0, . . .) for i ∈ {1, . . . ,kn − 1},n ∈ N.

The operator P : M(S) → M(S) given by the formula Pμ = T∗(μ) is asymptotically stable, but it does not satisfy the 
Cesàro e-property at 0. Indeed, if we take an arbitrary continuous function f : S → R+ such that f ((0, . . . , 0, . . .)) = 0 and 
f (x) = 1 for x ∈ S such that ‖x‖∞ ≥ 1/2, we have

1

kn

kn∑
i=1

U i f ((

kn−1︷ ︸︸ ︷
0, . . . ,0,1/kn,0, . . .)) − 1

kn

kn∑
i=1

U i f ((0, . . .)) ≥ 1/2.

We are in a position to formulate the main result of our paper (Theorem 2.3).

Theorem 2.3. Let P be an asymptotically stable Feller operator and let μ∗ be its unique invariant measure. If IntS(suppμ∗) �= ∅, then 
P satisfies the e-property.

Its proof involves the following lemma.

Lemma 2.4. Let P be an asymptotically stable Feller operator and let μ∗ be its unique invariant measure. Let U be dual to P . If 
IntS (suppμ∗) �= ∅, then, for every f ∈ Cb(S) and any ε > 0, there exists a ball B ⊂ suppμ∗ and N ∈N such that

|Un f (x) − Un f (y)| ≤ ε for any x, y ∈ B, n ≥ N. (3)

Proof. Fix f ∈ Cb(S) and ε > 0. Let W be an open set such that W ⊂ suppμ∗ . Set Y = W and observe that the subspace Y
is a Baire space. Set

Yn := {x ∈ Y : |Um f (x) − 〈 f ,μ∗〉| ≤ ε/2 for all m ≥ n}
and observe that Yn is closed and

Y =
∞⋃

n=1

Yn.

By the Baire category theorem, there exists N ∈ N such that IntY Y N �= ∅. Thus there exists a set V ⊂ Y N open in the space 
Y and consequently a ball B in S such that B ⊂ Y N ⊂ suppμ∗ . Since

|Un f (x) − 〈 f ,μ∗〉| ≤ ε/2 for any x ∈ B and n ≥ N,

condition (3) is satisfied. �
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We are ready to prove Theorem 2.3.

Proof. Assume, contrary to our claim, that P does not satisfy the e-property. Therefore there exist a function f ∈ Cb(S) and 
a point x0 ∈ S such that

lim sup
x→x0

lim sup
n→∞

|Un f (x) − Un f (x0)| > 0.

Choose ε > 0 such that

lim sup
x→x0

lim sup
n→∞

|Un f (x) − Un f (x0)| ≥ 3ε.

Let B := B(z, 2r) be a ball such that condition (3) holds. Since B(z, r) ⊂ suppμ∗ , we have γ := μ∗(B(z, r)) > 0. Choose 
α ∈ (0, γ ). Since the operator P is asymptotically stable, we have

lim inf
n→∞ Pnμ(B(z, r)) > α for all μ ∈ P(S), (4)

by the Alexandrov theorem (see [4]).
Let k ≥ 1 be such that 2(1 −α)k| f | < ε. By induction we are going to define two sequences of measures (νx0

i )k
i=1, (μx0

i )k
i=1

and a sequence of integers (ni)
k
i=1 in the following way: let n1 ≥ 1 be such that

Pn1δx0(B(z, r)) > α. (5)

Choose r1 < r such that Pn1δx0 (B(z, r1)) > α and Pn1δx0 (∂ B(z, r1)) = 0 and set

ν
x0
1 (·) = Pn1δx0(· ∩ B(z, r1))

Pn1δx0(B(z, r1))
(6)

and

μ
x0
1 (·) = 1

1 − α

(
Pn1δx0(·) − αν

x0
1 (·)) . (7)

Assume that we have done it for i = 1, . . . , l, for some l < k. Now let nl+1 be such that

Pnl+1μ
x0
l (B(z, r)) > α. (8)

Choose rl+1 < r such that Pnl+1μ
x0
l (B(z, rl+1)) > α and Pnl+1μ

x0
l (∂ B(z, rl+1)) = 0 and set

ν
x0
l+1(·) = Pnl+1μ

x0
l (· ∩ B(z, rl+1))

Pnl+1μ
x0
l (B(z, rl+1))

(9)

and

μ
x0
l+1(·) = 1

1 − α

(
Pnl+1μ

x0
l (·) − αν

x0
l+1(·)

)
. (10)

We are done. We have

Pn1+...+nkδx0(·) = αPn2+...+nkν
x0
1 (·) + α(1 − α)Pn3+...+nkν

x0
2 (·) + . . .+

+ α(1 − α)k−1ν
x0
k (·) + (1 − α)kμ

x0
k (·).

By induction, we check that νx
i − ν

x0
i → 0 and μx

i − μ
x0
i → 0 weakly as d(x, x0) → 0. Indeed, if i = 1, then νx

1 − ν
x0
1 → 0

weakly (as d(x, x0) → 0), by the fact that P is a Feller operator and limd(x,x0)→0 Pn1δx(B(z, r1)) = Pn1δx0 (B(z, r1)), by the 
Alexandrov theorem due to the fact that Pn1δx0 (∂ B(z, r1)) = 0. On the other hand, the weak convergence μx

1 − μ
x0
1 → 0

as d(x, x0) → 0 follows directly from the definition of μx
1. Moreover, observe that for x sufficiently close to x0, we have 

Pn1δx(B(z, r)) > α and therefore μx
1 ∈P(S).

Assume now that we have proved that νx
i − ν

x0
i → 0 and μx

i − μ
x0
i → 0 weakly as d(x, x0) → 0 for i = 1, . . . , l. We 

show that νx
l+1 − ν

x0
l+1 → 0 and μx

l+1 − μ
x0
l+1 → 0 weakly as d(x, x0) → 0 too. Analogously, limd(x,x0)→0 Pnl+1μx

l (B(z, rl+1)) =
Pnl+1μ

x0
l (B(z, rl+1)), by the Alexandrov theorem due to the fact that Pnl+1μ

x0
l (∂ B(z, rl+1)) = 0 and from the definition of 

νx
l+1, we obtain that νx

l+1 −ν
x0
l+1 → 0 weakly as d(x, x0) → 0. The weak convergence μx

l+1 −μ
x0
ł+1 → 0 as d(x, x0) → 0 follows 

now directly from the definition of μx
l+1 and for x sufficiently close to x0, we have Pnl+1μx

l (B(z, r)) > α and therefore 
μx

l+1 ∈P(S). We are done.
Observe that for any x sufficiently close to x0 and all n ≥ n1 + . . . + nk , we have

Pnδx(·) = αPn−n1νx
1(·) + α(1 − α)Pn−n1−n2νx

2(·) + . . .

+ α(1 − α)k−1 Pn−n1−...−nkνx(·) + (1 − α)k Pn−n1−...−nkμx(·),
k k
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where suppνx
i ⊂ B(z, r) for all i = 1, . . . , k. Thus

lim sup
n→∞

|〈 f , Pnνx
i 〉 − 〈 f , Pnν

x0
i 〉| = lim sup

n→∞
|〈Un f − 〈 f ,μ∗〉, νx

i 〉 − 〈Un f − 〈 f ,μ∗〉, νx0
i 〉|

≤ ε/2 + ε/2 = ε (11)

for all i = 1, . . . , k and x sufficiently close to x0. Hence

3ε < lim sup
x→x0

lim sup
n→∞

|Un f (x) − Un f (x0)| = lim sup
x→x0

lim sup
n→∞

|〈 f , Pnδx〉 − 〈 f , Pnδx0〉|

≤ ε(α + α(1 − α) + . . . α(1 − α)k−1) + 2(1 − α)k| f |
≤ ε + ε = 2ε,

which is impossible. This completes the proof. �
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