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In 1980, Yano showed that on smooth compact manifolds, for endomorphisms in dimen-
sion one or above and homeomorphisms in dimensions greater than one, topological en-
tropy is generically infinite. It had earlier been shown that, for Lipschitz endomorphisms on 
such spaces, topological entropy is always finite. In this article, we investigate what occurs 
between C0-regularity and Lipschitz regularity, focussing on two cases: Hölder mappings 
and Sobolev mappings.
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r é s u m é

En 1980, Yano a montré que, sur une variété différentielle compacte, pour les endomor-
phismes en toutes dimensions et les homéomorphismes en dimension plus grande que un, 
l’entropie topologique est génériquement infinie. Il avait été auparavant montré que, pour 
les endomorphismes Lipschitz continus, l’entropie est toujours finie. Dans cette note, nous 
étudions ce qui se passe entre la régularité C0 et la continuité de type Lipschitz, en nous 
concentrant sur deux cas, endomorphismes et homéomorphismes de classes de Hölder et 
de Sobolev.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a Lipschitz self-map f of a compact metric space with finite Hausdorff dimension, the topological entropy htop( f )
is always finite (see [6, Theorem 3.2.9]). By contrast, Yano [7] showed that, in the space of homeomorphisms of a smooth 
compact manifold of dimension d ≥ 2, and in the space of endomorphisms of a smooth compact manifold of dimension 
d ≥ 1 (both spaces endowed with the C0-topology), infinite topological entropy is a generic property. A natural question for 
Euclidean spaces is:
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What happens for intermediate regularity between Lipschitz and C0?

The term ‘intermediate’ can be understood in several different ways. Here we investigate what happens in the Hölder class 
Cα , 0 ≤ α < 1, of maps satisfying the Hölder condition of exponent α, and in the Sobolev class W 1,p ∩ C0, 1 ≤ p < ∞, of 
continuous maps with weak derivatives lying in Lp . For fixed α or p, neither class is closed under composition (so the space 
of homeomorphisms of each class does not form a group). However, they are closed under pre- and post-composition by 
Lipschitz maps, and the union, over α and p respectively, of Cα and W 1,p ∩ C0 is closed under composition.

Before stating our main results from [2], we construct a one-parameter family of interval endomorphisms fa , a ∈ (0, 1], 
with htop( fa) = +∞ for all a, and where the regularity of fa varies with the parameter. Such maps are toy-models of the 
example, constructed in [2, Appendix A], of a planar homeomorphism of infinite entropy with regularity close to bi-Lipschitz. 
It will be useful to first consider an auxiliary family ga,b of interval maps defined as follows. Fix a ∈ (0, 1] and a positive 
integer b. Given an interval J , let A J denote the unique increasing affine bijection from J to [0, 1]. Subdivide the interval 
[0, 1] into b closed intervals Jb,0, Jb,1, . . . , Jb,b−1 of equal length, ordered from left to right. Let Ab,k = A Jb,k for each 
k = 0, 1, . . . , b − 1. Let ν denote the unique decreasing affine bijection of [0, 1] to itself, and let qa(x) = xa . For each k =
0, 1, . . . , b − 1, define

ga,b(x) = qa ◦ νk ◦ Ab,k(x), ∀x ∈ Jb,k. (1)

Observe that ga,b is continuous on [0, 1]. Also, [0, 1] contains a ga,b-invariant subset on which ga,b acts as the unilateral 
b-shift. Thus, for all positive integers b, htop(ga,b) = log b (see, e.g., [6, Section 3.2.c]).

We now define the family fa as follows. For each positive integer n, define the interval In = (2−n, 2−n+1] and define fa
by

fa(x) =
{

A−1
In

◦ ga,2n+1 ◦ AIn (x) ∀x ∈ In,n = 1,2 . . .

0 x = 0.
(2)

Observe that, since ga,2n+1 fixes the endpoints of [0, 1] and is continuous, the map fa is also continuous. Moreover, the 
closure of each interval In is totally invariant. Since the topological entropy of a map is the supremum of the topologi-
cal entropy of its restrictions to all closed invariant subsets, and since topological entropy is invariant under topological 
conjugacy (see, e.g., [6, Section 3.1.b]) it follows that

htop( fa) ≥ sup
n

htop( fa|In ) = sup
n

htop(ga,2n+1) = sup
n

log(2n + 1) = +∞ . (3)

Theorem 1.1. For f = f1 , the following holds.

(i) f has modulus of continuity ω(t) = t log(1/t) .
(ii) f is in the Sobolev class W 1,p for each 1 ≤ p < ∞ .

(iii) htop( f ) = +∞ .

We have already seen in (3) that property (iii) holds. Properties (i)–(ii) are shown in [5]. We recall that maps with modulus 
of continuity t log(1/t) are in the Hölder class Cα for every α ∈ [0, 1). Moreover, the map f1 is a Cα-limit of piecewise-affine 
maps. Hence it lies in the Cα-boundary of the space of Lipschitz maps. Also, f1 is not in the Zygmund class. (However, in [5], 
continuous examples with infinite entropy satisfying the little Zygmund condition are also constructed.)

When a 	= 1, the map fa does not satisfy this property. More precisely, we have the following result.

Theorem 1.2. For f = fa , a ∈ (0, 1), the following holds.

(i) f is Cα if and only if α ≤ a .
(ii) f is W 1,p if and only if p < (1 − a)−1 .

(iii) htop( f ) = +∞ .

The proof of Theorem 1.2 could be made using the argument presented in [5] for Theorem 1.1. However, we give a more 
direct proof for this special case below. For that we need the following gluing principle, which is a simple exercise using 
Jensen’s Inequality.

Proposition 1.1. Let a ∈ (0, 1). Let f be continuous self-mapping of the compact interval I . Let I1, I2, . . . denote a collection of closed 
intervals with pairwise disjoint interiors, covering I , and with the property that f |Ik is Ca, for all k. Denote the Ca-semi-norm of f |Ik

by Ck. If supk Ck < ∞ and f |∂ Ik = id for all k, then f is Ca-continuous with Ca-semi-norm bounded by C = diam(I)1−a + 2 supk Ck.

Proof of Theorem 1.2. We adopt the following notation. Given an interval J , denote by [ f ]Cα, J and [ f ]W 1,p , J the Cα- and 
W 1,p-semi-norms of f | J , respectively. (For the more general case of compact Euclidean domains, the definitions are given 
at the start of Section 2 below.) Define the subintervals In,k = A−1( J2n+1,k) of In for k = 0, 1, . . . , 2n.
In
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(i) Since ga,b cannot be Cα for any α > a, it follows that fa also cannot be Cα for any α > a. To show that f is Ca we use 
the following:

Observation: For all non-negative integers n and k with k ≤ n − 1, there exists a non-negative integer � ≤ n − 2, and 
a subinterval Kn−1,� of In−1,� such that the graph of f |In,k is isometric to the graph of f |Kn−1,�

. Hence [ f ]Ca,In,k ≤
[ f ]Ca,In−1,�

.

(The first part follows directly from the scale-invariance of qa .) Therefore, [ f ]Ca,In,k is uniformly bounded. Applying 
Proposition 1.1 twice, we find that [ f ]Ca,[0,1] is bounded and thus f is Ca .

(ii) Observe that f is differentiable on each In,k . In fact, on In,k we have f (x) = A−1
In

◦ qa ◦ νk ◦ AIn,k (x). Differentiating f
and applying the change of variables formula gives

[ f ]p
W 1,p ,In,k

= (2n + 1)p
∫

[0,1]
|q′

a(y)|p 2−n

2n + 1
dy =

⎧⎨
⎩

2−nap(2n + 1)p−1

(a − 1)p + 1
if (a − 1)p + 1 > 0 ,

∞ otherwise .

Hence [ f ]W 1,p ,[0,1] = ∞ if p ≥ (1 − a)−1 and otherwise

[ f ]p
W 1,p ,[0,1] =

∞∑
n=1

2n∑
k=0

∫
In,k

| f ′|p dx = ap

(a − 1)p − 1

∞∑
j=1

(2n + 1)p2−n .

The right-hand side is a convergent series. Thus, f is W 1,p for all 1 ≤ p < (1 − a)−1, as required.

Property (iii) follows directly from inequality (3) above. Thus properties (i)–(iii) have been shown and the proof is com-
plete. �
2. Main results

Let us now state the main results proved in [2]. By a compact Euclidean domain in Rd , we will mean the closure of a 
bounded open subset of Rd . Given a compact Euclidean domain � in Rd , let d� denote the distance induced by the usual 
Euclidean metric d

Rd on Rd . Given a mapping f : � → R
k , for some positive integer k, let [ f ]Cα,� , 0 ≤ α < 1, denote the 

Hölder Cα-semi-norm, i.e.

[ f ]Cα,� = sup
x,y∈�,x	=y

d
Rk ( f (x), f (y))

d�(x, y)α
(4)

and let [ f ]W 1,p ,� , 1 ≤ p ≤ ∞, denote the Sobolev W 1,p-semi-norm, i.e.

[ f ]W 1,p ,� =
⎛
⎝∫

�

|D f |pdμ

⎞
⎠

1/p

(5)

where μ denotes the Lebesgue measure on Rd and, given a matrix A = (aij), we use the matrix norm |A| = ∑
i, j |aij |. We 

then define the norms

‖ f ‖Cα(�) = ‖ f ‖C0(�) + [ f ]Cα,� , ‖ f ‖W 1,p(�) = ‖ f ‖C0(�) + [ f ]W 1,p ,� . (6)

In the Lipschitz case, we define the norm ‖ f ‖Lip(�) in a similar fashion. Let Hα(�) denote the space of bi-α-Hölder home-
omorphisms of � for α ∈ (0, 1) and H1(�) denote the space of bi-Lipschitz homeomorphisms of �. For α < 1, define the 
distance

dα( f , g) = max
{‖ f − g‖Cα(�),‖ f −1 − g−1‖Cα(�)

}
. (7)

For α = 1, define d1( f , g) in similar fashion, replacing the Cα-norm by the Lipschitz norm. Endow Hα(�) with the topology 
induced by the metric dα . Finally, given α < β ≤ 1, denote by Hβ

α(�) the closure of Hβ(�) as a subspace of Hα(�).
In the Sobolev case, for 1 ≤ p, p∗ < ∞, let S p,p∗

(�) denote the space of homeomorphisms f of � such that f ∈ W 1,p(�)

and f −1 ∈ W 1,p∗
(�). We endow S p,p∗

(�) with the topology induced by the distance

dp,p∗( f , g) = max
{
‖ f − g‖W 1,p(�),‖ f −1 − g−1‖W 1,p∗

(�)

}
. (8)
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Theorem 2.1. Let � be a compact d-dimensional Euclidean domain with piecewise-smooth boundary.

• For d ≥ 2 and 0 ≤ α < 1; H1
α(�) contains a residual subset of homeomorphisms with infinite topological entropy .

• For d = 2 and 1 ≤ p, p∗ < ∞; or d > 2 and d − 1 < p, p∗ < ∞; S p,p∗
(�) contains a residual subset of homeomorphisms with 

infinite topological entropy .

Strategy of Proof of Theorem 2.1. The basic geometric idea behind the proof is similar to, but not entirely the same as, the 
one in Yano’s Theorem [7]. (Our strategy is to the C1-Closing Lemma, as Yano’s strategy is to the C0-Closing Lemma.)

(a) Take a homeomorphism f : � → � in the appropriate Hölder or Sobolev space. Given k ∈ N and ε > 0, we consider a 
finite segment x, f (x), . . . , f k(x), of a recurrent orbit such that x and f k(x) are less than a distance ε apart. We take 
pairwise disjoint ε-small neighbourhoods Ui , 0 ≤ i ≤ k − 1, with f i(x) ∈ Ui , 0 ≤ i ≤ k − 1, and f k(x) ∈ U0.

(b) In each Ui we take a (solid) cylinder Ci . We perturb f by post-composing with a bi-Lipschitz homeomorphism having 
support in Ui , so that Ci maps across Ci+1 (where addition is taken modulo k) like an N-branched horseshoe.

(c) Since the supports of these perturbations have size less that ε , and since the Lipschitz norm dominates either the 
Hölder or Sobolev norms, we get a new homeomorphism g : � → �, which is ε-close to f in either the Hölder or 
Sobolev metrics, and for which there exists a cylinder C0 with the property that gk|C0 is a horseshoe with Nk branches. 
This implies that g has entropy at least log N .

Remark 1. Another strategy of proof in the homeomorphism case is given in [4]. This uses the Closing Lemma and the 
Annulus Theorem, both in the C0-category. (See, e.g., [3] for more on the Annulus Theorem.) Unfortunately, we do not know 
whether the Annulus Theorem is valid in either the Hölder or Sobolev categories.

Remark 2. In the specific case of dimension d = 2, an alternative proof is given in the main paper [2], for Sobolev map-
pings, which relies on a surgery technique that uses p-harmonic maps and a generalization of the Radó–Kneser–Choquet 
theorem [1].

Remark 3. In the α-Hölder case, we must consider homeomorphisms in the closure of bi-Lipschitz mappings, rather than 
the full space of bi-α-Hölder homeomorphisms, as our perturbations are via composition with Lipschitz homeomorphisms. 
The size of such perturbations, in the α-Hölder topology, supported on an r-ball is of the order Lr1−α , where L denotes the 
Lipschitz constant of the perturbation.

As a corollary of the proof of Theorem 2.1, we get the following result.

Corollary 2.2. Let � be a compact d-dimensional Euclidean domain with piecewise-smooth boundary.

– For d ≥ 2 and 0 ≤ α < 1; topological entropy is continuous on a residual subset of H1
α(�) .

– For d = 2 and 1 ≤ p, p∗ < ∞; or d > 2 and d − 1 < p, p∗ < ∞; topological entropy is continuous on a residual subset of 
S p,p∗

(�) .

As topological entropy is invariant under topological conjugacy, we also find the following.

Corollary 2.3. Let � be a compact d-dimensional Euclidean domain with piecewise-smooth boundary.

– For d ≥ 2 and 0 ≤ α < 1; a generic homeomorphism in H1
α(�) is not conjugate to any bi-Lipschitz homeomorphism.

– For d = 2 and 1 ≤ p, p∗ < ∞; or d > 2 and d − 1 < p, p∗ < ∞; a generic homeomorphism in S p,p∗
(�) is not conjugate to any 

bi-Lipschitz homeomorphism.

In [2], we prove these results in more generality for homeomorphisms on smooth compact manifolds. However, the con-
struction of the topology in the Sobolev and Hölder classes is more involved (analogous to the construction of the weak 
Ck-Whitney topology).

Acknowledgements

The authors would like to thank IME–USP, ICERM (Brown University), Imperial College London, and the CUNY Graduate 
Center for their support and hospitality. We also thank Michael Benedicks for useful discussions concerning maps of low 
regularity, and Charles Pugh, Dennis Sullivan, and Étienne Ghys for their questions and comments.



E. de Faria et al. / C. R. Acad. Sci. Paris, Ser. I 355 (2017) 1185–1189 1189
References

[1] G. Alessandrini, M. Sigalotti, Geometric properties of solutions to the anisotropic p-Laplace equation in dimension two, Ann. Acad. Sci. Fenn., Math. 
26 (1) (2001) 249–266.

[2] E. de Faria, P. Hazard, C. Tresser, Genericity of infinite entropy for maps with low regularity, ArXiv preprint, arXiv:1709.02431, 2017.
[3] R.D. Edwards, Solution of the 4-dimensional Annulus conjecture (after Frank Quinn), Contemp. Math. 32 (1984) 211–264.
[4] E. Glasner, B. Weiss, The topological Rohlin property and topological entropy, Amer. J. Math. 128 (2001) 1055–1070.
[5] P. Hazard, Maps in dimension one with infinite entropy, ArXiv preprint, arXiv:1710.03369, 2017.
[6] A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Encyclopedia of Mathematics and Its Applications, vol. 54, Cambridge 

University Press, 1995.
[7] K. Yano, A remark on the topological entropy of homeomorphisms, Invent. Math. 59 (1980) 215–220.

http://refhub.elsevier.com/S1631-073X(17)30276-5/bib416C657373616E6472696E69536967616C6F74746932303031s1
http://refhub.elsevier.com/S1631-073X(17)30276-5/bib416C657373616E6472696E69536967616C6F74746932303031s1
http://refhub.elsevier.com/S1631-073X(17)30276-5/bib644648617A5432s1
http://refhub.elsevier.com/S1631-073X(17)30276-5/bib4564776172647331393834s1
http://refhub.elsevier.com/S1631-073X(17)30276-5/bib476C61736E6572576569737332303031s1
http://refhub.elsevier.com/S1631-073X(17)30276-5/bib48617A3230313761s1
http://refhub.elsevier.com/S1631-073X(17)30276-5/bib48616E644Bs1
http://refhub.elsevier.com/S1631-073X(17)30276-5/bib48616E644Bs1
http://refhub.elsevier.com/S1631-073X(17)30276-5/bib59616E6F3830s1

	Inﬁnite entropy is generic in Hölder and Sobolev spaces
	1 Introduction
	2 Main results
	Acknowledgements
	References


