Mathematical analysis/Differential topology

A refined estimate for the topological degree

CrossMark

Une estimée raffinée du degré topologique

Hoai-Minh Nguyen
École polytechnique fédérale de Lausanne, EPFL, SB MATHAA CAMA, Station 8, CH-1015 Lausanne, Switzerland

A R T I C L E I N F O

Article history:

Received 8 October 2017
Accepted 12 October 2017
Available online 16 October 2017
Presented by Haïm Brézis

Abstract

We sharpen an estimate of [4] for the topological degree of continuous maps from a sphere \mathbb{S}^{d} into itself in the case $d \geq 2$. This provides the answer for $d \geq 2$ to a question raised by Brezis. The problem is still open for $d=1$.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous affinons une estimée du degré topologique pour des applications continues d'une sphère \mathbb{S}^{d} dans elle-même dans le cas $d \geq 2$. Cela fournit la réponse pour $d \geq 2$ à une question posée par Brezis. Le problème est encore ouvert pour $d=1$.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Motivated by the theory of Ginzburg-Landau equations (see, e.g., [1]), Bourgain, Brezis and the author established in [4] the following theorem.

Theorem 1. Let $d \geq 1$. For every $0<\delta<\sqrt{2}$, there exists a positive constant $C(\delta)$ such that, for all $g \in C\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$,

$$
\begin{equation*}
|\operatorname{deg} g| \leq C(\delta) \quad \int_{\substack{\mathbb{S}^{d} \\|g(x)-g(y)|>\delta}} \frac{1}{|x-y|^{2 d}} \mathrm{~d} x \mathrm{~d} y \tag{1}
\end{equation*}
$$

Here and in what follows, for $x \in \mathbb{R}^{d+1},|x|$ denotes its Euclidean norm in \mathbb{R}^{d+1}.
The constant $C(\delta)$ depends also on d, but for simplicity of notation, we omit d. Estimate (1) was initially suggested by Bourgain, Brezis, and Mironescu in [2]. It was proved in [3] in the case where $d=1$ and δ is sufficiently small. In [9], the

[^0]author improved (1) by establishing that (1) holds for $0<\delta<\ell_{d}=\sqrt{2+\frac{2}{d+1}}$ with a constant $C(\delta)$ independent of δ. It was also shown there that (1) does not hold for $\delta \geq \ell_{d}$.

This note is concerned with the behavior of $C(\delta)$ as $\delta \rightarrow 0$. Brezis [7] (see also [6, Open problem 3]) conjectured that (1) holds with

$$
\begin{equation*}
C(\delta)=C \delta^{d} \tag{2}
\end{equation*}
$$

for some positive constant C depending only on d. This conjecture is somehow motivated by the fact that (1)-(2) holds "in the limit" as $\delta \rightarrow 0$. More precisely, it is known that (see [8, Theorem 2])

$$
\lim _{\delta \rightarrow 0} \int_{\substack{\mathbb{S}^{d} \\|g(x)-g(y)|>\delta}} \int_{\mathbb{S}^{d}} \frac{\delta^{d}}{|x-y|^{2 d}} \mathrm{~d} x \mathrm{~d} y=K_{d} \int_{\mathbb{S}^{d}}|\nabla g(x)|^{d} \mathrm{~d} x \text { for } g \in C^{1}\left(\mathbb{S}^{d}\right)
$$

for some positive constant K_{d} depending only on d, and that

$$
\operatorname{deg} g=\frac{1}{\left|\mathbb{S}^{d}\right|} \int_{\mathbb{S}^{d}} \operatorname{Jac}(g) \text { for } g \in C^{1}\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)
$$

by Kronecker's formula.
In this note, we confirm Brezis' conjecture for $d \geq 2$. The conjecture is still open for $d=1$. Here is the result of the note.
Theorem 2. Let $d \geq 2$. There exists a positive constant $C=C(d)$, depending only on d, such that, for all $g \in C\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$,

$$
\begin{equation*}
|\operatorname{deg} g| \leq C \quad \int_{\substack{\mathbb{S}^{d} \\|g(x)-g(y)|>\delta}} \frac{\delta^{d}}{|x-y|^{2 d}} \mathrm{~d} x \mathrm{~d} y \quad \text { for } 0<\delta<1 \tag{3}
\end{equation*}
$$

2. Proof of Theorem 2

The proof of Theorem 2 is in the spirit of the approach in [4,9]. One of the new ingredients of the proof is the following result [10, Theorem 1], which has its roots in [5]:

Lemma 1. Let $d \geq 1, p \geq 1$, let B be an open ball in \mathbb{R}^{d}, and let f be a real bounded measurable function defined in B. We have, for all $\delta>0$,

$$
\begin{equation*}
\frac{1}{|B|^{2}} \int_{B} \int_{B}|f(x)-f(y)|^{p} \mathrm{~d} x \mathrm{~d} y \leq C_{p, d}\left(|B|^{\frac{p}{d}-1} \int_{\substack{B \\|f(x)-f(y)|>\delta}} \int_{\substack{B \\|x-y|^{d+p}}} \frac{\delta^{p}}{\mid x \mathrm{~d} y+\delta^{p}}\right) \tag{4}
\end{equation*}
$$

for some positive constant $C_{p, d}$ depending only on p and d.
In Lemma $1,|B|$ denotes the Lebesgue measure of B.
We are ready to present
Proof of Theorem 2. We follow the strategy in $[4,9]$. We first assume in addition that $g \in C^{1}\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$. Let B be the open unit ball in \mathbb{R}^{d+1} and let $u: B \rightarrow B$ be the average extension of g, i.e.

$$
\begin{equation*}
u(X)=\int_{B(x, r)} g(s) \mathrm{d} s \text { for } X \in B \tag{5}
\end{equation*}
$$

where $x=X /|X|, r=2(1-|X|)$, and $B(x, r):=\left\{y \in \mathbb{S}^{d} ;|y-x| \leq r\right\}$. In this proof, $f_{D} g(s)$ ds denotes the quantity $\frac{1}{|D|} \int_{D} g(s)$ ds for a measurable subset D of \mathbb{S}^{d} with positive (d-dimensional Hausdorff) measure. Fix $\alpha=1 / 2$ and for every $x \in \mathbb{S}^{d}$, let $\rho(x)$ be the length of the largest radial interval coming from x on which $|u|>\alpha$ (possibly $\rho(x)=1$). In particular, if $\rho(x)<1$, then

$$
\begin{equation*}
\left|f_{B(x, 2 \rho(x))} g(s) \mathrm{d} s\right|=1 / 2 \tag{6}
\end{equation*}
$$

By [4, (7)], we have

$$
\begin{equation*}
|\operatorname{deg} g| \leq C \int_{\substack{\mathbb{S}^{d} \\ \rho(x)<1}} \frac{1}{\rho(x)^{d}} \mathrm{~d} x \tag{7}
\end{equation*}
$$

Here and in what follows, C denotes a positive constant, which is independent of x, ξ, η, g, and δ, and can change from one place to another.

We now implement ideas involving Lemma 1 applied with $p=1$. We have, by (6),

$$
f_{B(x, 2 \rho(x))} f_{B(x, 2 \rho(x))}|g(\xi)-g(\eta)| \mathrm{d} \xi \mathrm{~d} \eta \geq f_{B(x, 2 \rho(x))}\left|g(\xi)-f_{B(x, 2 \rho(x))} g(\eta) \mathrm{d} \eta\right| \mathrm{d} \xi \geq C .
$$

This yields, for some $1 \leq j_{0} \leq d+1$,

$$
f_{B(x, 2 \rho(x))} f_{B(x, 2 \rho(x))}\left|g_{j_{0}}(\xi)-g_{j_{0}}(\eta)\right| \mathrm{d} \xi \mathrm{~d} \eta \geq C
$$

where g_{j} denotes the j-th component of g. It follows from (4) that, for some $\delta_{0}>0$ (δ_{0} depends only on d) and for $0<\delta<\delta_{0}$,

$$
\rho(x)^{1-d} \int_{\substack{B(x, 2 \rho(x))) \\\left|g_{j_{0}}(\xi)-g_{j_{0}}(\eta)\right|>\delta}} \int_{\substack{(\eta) \mid x))}} \frac{\delta}{|\xi-\eta|^{d+1}} \mathrm{~d} \xi \mathrm{~d} \eta \geq C,
$$

which implies

$$
\begin{equation*}
\sum_{j=1}^{d+1} \rho(x)^{1-d} \int_{\substack{B(x, 2 \rho(x)) \\\left|g_{j}(\xi)-g_{j}(\eta)\right|>\delta}} \int_{B(x)(x))} \frac{\delta}{|\xi-\eta|^{d+1}} \mathrm{~d} \xi \mathrm{~d} \eta \geq C . \tag{8}
\end{equation*}
$$

Since

$$
\rho(x)^{1-d} \int_{\substack{B(x, 2 \rho(x)) B(x, 2 \rho(x)) \\|\xi-\eta|>C_{1} \rho(x) \delta}} \frac{\delta}{|\xi-\eta|^{d+1}} \mathrm{~d} \xi \mathrm{~d} \eta<\frac{C}{2(d+1)},
$$

if $C_{1}>0$ is large enough (the largeness of C_{1} depends only on C and d), it follows from (8) that

$$
\begin{equation*}
\sum_{j=1}^{d+1} \rho(x)^{1-d} \int_{\substack{B(x, 2 \rho(x)) \\\left|g_{j}(\xi)-g_{j}(\eta)\right|>\delta \\|\xi-\eta| \leq C \rho(x) \delta}} \int_{\substack{\mid \xi-2 \rho(x))}} \frac{\delta}{|\xi-\eta|^{d+1}} \mathrm{~d} \xi \mathrm{~d} \eta \geq C \tag{9}
\end{equation*}
$$

We derive from (7) and (9) that, for $0<\delta<\delta_{0}$,

$$
|\operatorname{deg} g| \leq C \int_{\substack{\mathbb{S}^{d} \\
\rho(x)<1}} \frac{1}{\rho(x)^{2 d-1}} \mathrm{~d} x \sum_{j=1}^{d+1} \int_{\begin{array}{c}
B(x, 2 \rho(x))) \\
\mid g_{j}(\xi)-g_{j}, 2 \rho(\eta)>\delta \\
|\xi-\eta| \leq C \rho(x) \delta
\end{array}} \frac{\delta}{|\xi-\eta|^{d+1}} \mathrm{~d} \xi \mathrm{~d} \eta .
$$

This implies, by Fubini's theorem, that, for $0<\delta<\delta_{0}$,

$$
\begin{equation*}
|\operatorname{deg} g| \leq C \sum_{j=1}^{d+1} \int_{\substack{\mathbb{S}^{d} \\\left|g_{j}(\xi)-g_{j}(\eta)\right|>\delta}} \frac{\delta}{|\xi-\eta|^{d+1}} \mathrm{~d} \xi \mathrm{~d} \eta \int_{\substack{\rho(x) \geq C|\xi-\eta| / \delta \\ 2 \rho(x)>|x-\xi|}} \frac{1}{\rho(x)^{2 d-1}} \mathrm{~d} x \tag{10}
\end{equation*}
$$

We have

$$
\begin{aligned}
\int_{\substack{2 \rho(x)>|x-\xi| \\
\rho(x) \geq C|\xi-\eta| / \delta}} \frac{1}{\rho(x)^{2 d-1}} \mathrm{~d} x & \leq \int_{\substack{2 \rho(x)>|x-\xi| \\
|x-\xi|>C|\xi-\eta| / \delta}} \frac{1}{\rho(x)^{2 d-1}} \mathrm{~d} x+\int_{\substack{\rho(x) \geq C|\xi-\eta| / \delta \\
|x-\xi| \leq C|\xi-\eta| / \delta}} \frac{1}{\rho(x)^{2 d-1}} \mathrm{~d} x \\
& \leq \int_{|x-\xi|>C|\xi-\eta| / \delta} \frac{C}{|x-\xi|^{2 d-1}} \mathrm{~d} x+\int_{|x-\xi| \leq C|\xi-\eta| / \delta} \frac{C \delta^{2 d-1}}{|\xi-\eta|^{2 d-1}} \mathrm{~d} x .
\end{aligned}
$$

Finally, we use the assumption that $d \geq 2$. Since $d>1$, it follows that

$$
\begin{equation*}
\int_{\rho(x)>|x-\xi|_{\rho(x) \geq C|\xi-\eta| / \delta}} \frac{1}{\rho(x)^{2 d-1}} \mathrm{~d} x \leq \frac{C \delta^{d-1}}{|\xi-\eta|^{d-1}} \tag{11}
\end{equation*}
$$

Combining (10) and (11) yields, for $0<\delta<\delta_{0}$,

$$
\begin{equation*}
|\operatorname{deg} g| \leq C \sum_{j=1}^{d+1} \int_{\mathbb{S}^{d}} \int_{\mathbb{S}^{d}} \frac{\delta^{d}}{|\xi-\eta|^{2 d}} \mathrm{~d} \xi \mathrm{~d} \eta \tag{12}
\end{equation*}
$$

Assertion (3) is now a direct consequence of (12) for $\delta<\delta_{0}$ and (1) for $\delta_{0} \leq \delta<1$.
The proof in the case $g \in C\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$ can be derived from the case $g \in C^{1}\left(\mathbb{S}^{d}, \mathbb{S}^{d}\right)$ via a standard approximation argument. The details are omitted.

Acknowledgements

The author warmly thanks Haïm Brezis for communicating [7], and Haïm Brezis and Itai Shafrir for interesting discussions.

References

[1] F. Bethuel, H. Brezis, F. Helein, Ginzburg-Landau Vortices, Prog. Nonlinear Differ. Equ. Appl., vol. 13, Birkhäuser, Boston, 1994.
[2] J. Bourgain, H. Brezis, P. Mironescu, Lifting, degree, and distributional Jacobian revisited, Commun. Pure Appl. Math. 58 (2005) 529-551.
[3] J. Bourgain, H. Brezis, P. Mironescu, Complements to the paper "Lifting, Degree, and Distributional Jacobian Revisited", https://hal.archives-ouvertes.fr/hal-00747668/document.
[4] J. Bourgain, H. Brezis, H-M. Nguyen, A new estimate for the topological degree, C. R. Acad. Sci. Paris, Ser. I 340 (2005) 787-791.
[5] J. Bourgain, H-M. Nguyen, A new characterization of Sobolev spaces, C. R. Acad. Sci. Paris, Ser. I 343 (2006) 75-80.
[6] H. Brezis, New Questions Related to the Topological Degree. The Unity of Mathematics, Prog. Math., vol. 244, Birkhäuser, 2006, pp. 137-154.
[7] H. Brezis, Private communication, 2006.
[8] H-M. Nguyen, Some new characterizations of Sobolev spaces, J. Funct. Anal. 237 (2006) 689-720.
[9] H-M. Nguyen, Optimal constant in a new estimate for the degree, J. Anal. Math. 101 (2007) 367-395.
[10] H-M. Nguyen, Some inequalities related to Sobolev norms, Calc. Var. Partial Differ. Equ. 41 (2011) 483-509.

[^0]: E-mail address: hoai-minh.nguyen@epfl.ch.
 https://doi.org/10.1016/j.crma.2017.10.007
 1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

