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We show that, for any countable discrete nonamenable group �, the relations of conjugacy, 
orbit equivalence, stable orbit equivalence, von Neumann equivalence, and stable von 
Neumann equivalence of free ergodic pmp actions of � on the standard atomless 
probability space are not Borel. This answers a question of Kechris.
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r é s u m é

Nous montrons que, pour tout groupe dénombrable discret et non moyennable �, les 
relations de conjugaison, d’équivalence orbitale, d’équivalence orbitale stable, d’équivalence 
de von Neumann et d’équivalence de von Neumann stable des actions libres ergodiques de 
� sur un espace borélien standard muni d’une mesure de probabilité sans atomes ne sont 
pas Borel. Cela répond à une question de Kechris.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The classification problem in ergodic theory

Ergodic theory studies probability-measure-preserving (pmp) actions of a countable discrete group � on a standard 
probability space (X, μ). The classification problem in ergodic theory asks for an explicit method to classify (certain classes 
of) such actions. This program has been initially championed by Halmos, who asked in his famous ergodic theory lectures 
[7] whether there exists a method to determine whether two given Z-actions on the standard atomless probability space are 
conjugate. By Halmos’ own admission, this is a vague question, but it can be made precise in the setting of Borel complexity 
theory.
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Two pmp actions of � on (X, μ) are conjugate if there exists a measure-preserving automorphism of (X, μ) that inter-
twines the given actions. One can then study the complexity of the relation of conjugacy in the sense of Borel complexity 
theory. Indeed, for a fixed countable discrete group �, the space Act�(X, μ) of pmp actions of � on the standard probability 
space (X, μ) is endowed with a canonical standard Borel structure. In this setting, one of the most basic questions one can 
ask is whether this relation, or its restriction to the Borel set of free ergodic actions, is Borel as a subset of the product 
space Act�(X, μ)×Act�(X, μ) endowed with the product Borel structure.

Since the influential work of Dye, the notion of orbit equivalence has become one of the most relevant notions of equiv-
alence in ergodic theory. Two free pmp actions (of possibly different groups) on a standard probability space (X, μ) are 
orbit equivalent if there is a measure-preserving transformation of the space that maps orbits of one action to orbits of 
the other action. Orbit equivalence admits a natural operator-algebraic reformulation: two pmp actions are orbit equivalent 
if and only if there is an isomorphism of the corresponding (von Neumann algebraic) crossed products that respects the 
canonical copies of L∞(X, μ). The more generous notion of stable orbit equivalence is defined in a similar fashion, where 
one is moreover allowed to restrict oneself to a non-null Borel subset of the space. Dye showed [3] that any two free ergodic 
pmp actions of Z on the standard atomless probability space are orbit equivalent. Later on, Ornstein and Weiss showed [12]
that any free, ergodic pmp action of an amenable group is orbit equivalent to a free, ergodic pmp action of Z. It follows that 
any two free ergodic pmp actions of an amenable group are orbit equivalent.

In recent years, the study of orbit equivalence has focused on pmp actions of nonamenable groups. In this setting, it 
is often possible to obtain rigidity results, showing that under certain assumptions on the group or on the action, orbit 
equivalence implies conjugacy, or at least that at most countably many nonconjugate pmp actions can be orbit equivalent. 
Towards this goal, cocycle superrigidity theory, as pioneered by Zimmer, has played a pivotal role. In recent years, the 
infusion of techniques from operator algebras, such as Popa’s deformation/rigidity theory, has given new impetus to this 
field. This has led to the solution to many long-standing open problems, including the following strong converse to the 
results of Dye and Ornstein–Weiss, due to Epstein and Ioana: for any nonamenable group �, there exists a continuum 
of pairwise non-orbit-equivalent free ergodic pmp actions of � on the standard atomless probability space [4,9]. This has 
motivated Kechris to ask in [11] what is the complexity of the relation of orbit equivalence of free ergodic pmp actions of 
�, and in particular whether such a relation is Borel. Our main result is the following answer to Kechris’ question.

Theorem 1.1. Let � be a nonamenable countable discrete group. The relations of conjugacy and (stable) orbit equivalence of free ergodic 
pmp actions of � on the standard atomless probability space are not Borel.

We also show that the same conclusions as in Theorem 1.1 hold if one considers the relation of (stable) von Neumann 
equivalence, where two actions are (stably) von Neumann equivalent if they have (stably) isomorphic crossed product. In 
fact, we show that the result applies even to the more restrictive class of free weak mixing actions.

The proof of Theorem 1.1 relies on Popa’s cocycle superrigidity theorem for malleable actions of “rigid” groups, and it 
also builds on previous work by Epstein and Törnquist, who proved it under the additional assumption that � contains a 
copy of the free group F2 as an almost normal subgroup [5].

The assertion about conjugacy in Theorem 1.1 also holds when � is the group of integers. This has been shown by 
Foreman, Rudolph, and Weiss, with completely different methods, by encoding trees within invertible pmp transformations, 
in such a way that a given tree has an infinite branch if and only if the corresponding transformation is conjugate to its 
inverse. It is an open problem whether the assertion about conjugacy in Theorem 1.1 holds for an arbitrary countably infinite 
group.

2. Cocycle superrigidity

In cocycle superrigidity theory, one of the main sources of rigidity is Kazhdan’s property (T) for (pairs of) groups. We 
consider the following natural generalization to the case of triples of groups.

Definition 2.1. A triple � ≤ � ≤ � of countable discrete groups has property (T) if every unitary representation of � with 
almost invariant vectors which are also �-invariant, has a �-invariant vector.

Consider a triple of groups � ≤ � ≤ �. An action ζ of � on (X, μ) is malleable in the sense of Popa if the flip map of 
(X × X, μ × μ) belongs to the connected component of the identity within the centralizer of the diagonal product action 
ζ × ζ . The latter is the group of measure-preserving automorphisms of X × X that intertwine ζ × ζ with itself. (Here and in 
the following, we canonically identify ζ with an action on L∞(X, μ).) A cocycle for ζ is a function w from � to the unitary 
group of L∞(X, μ) satisfying wγ ζγ (wσ ) = wγ σ for all γ , σ ∈ �. A cocycle is �-invariant if wδ = 1 and ζδ(wγ ) = wγ for all 
δ ∈ � and γ ∈ �. Two cocycles w and w ′ are �-relatively weakly cohomologous if there exists a unitary v in L∞(X, μ) such 
that w ′

γ is a scalar multiple of v∗ wγ ζγ (v) for every γ ∈ �. The �-invariant �-relative 1-cohomology group H1: �,�,w(ζ )

of ζ is the group of �-invariant cocycles modulo the relation of being �-relatively weakly cohomologous, endowed with 
the group operations defined by the pairing (w, w ′) �→ w w ′ where (w w ′)γ = wγ w ′

γ .
The methods used in the proof of Popa’s cocycle superrigidity theorem for malleable actions [15] can be adapted to show 

the following.
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Theorem 2.2 (Popa). Let � ≤ � ≤ � be a triple of groups with property (T), and let ζ be a free malleable action of � on a standard 
probability space (X, μ). If ζ |� is weak mixing, then H1: �,�,w(ζ ) is trivial.

Our main application of Theorem 2.2 is in a situation where � = � and � is a normal subgroup of �. Proving this 
particular case is, however, not any easier than the general statement.

3. Actions of nonamenable groups

Suppose that E and F are equivalence relations on standard Borel spaces X and Y . A countable-to-one Borel homomor-
phism from E to F is a Borel function f : X → Y that maps E-classes to F -classes, and with the property that any collection 
of pairwise not E-equivalent elements of X that are mapped by f to the same F -class is at most countable. The proof 
of Theorem 1.1 relies on the following criterion, established by Epstein and Törnquist in [5, Theorem 5.1]: if there is a 
countable-to-one Borel homomorphism from the relation of isomorphism of countably infinite abelian groups to an equiva-
lence relation F on a standard Borel space Y , then F is not Borel. The proof of Theorem 1.1 then consists in assigning, in a 
Borel fashion, to each countably infinite abelian group a free weak mixing action of �, in such a way that isomorphic groups 
yield conjugate actions, and at most countably many pairwise nonisomorphic groups yield stably orbit equivalent actions.

To this purpose, in a first instance, one needs a way to encode a given countably infinite abelian group in the conjugacy 
class of a free weak mixing action of F∞ , through a construction that goes back to Popa [13], and was later used by 
Törnquist and Epstein–Törnquist. Fix a countably infinite discrete group A, and a normal subgroup � of F∞ containing one 
of the free generators such that F∞/� is an infinite group with property (T). One can consider F∞ as a subgroup of SL2(Z). 
This gives a canonical action of F∞ on Z2 by group automorphisms, as well as its dual action ρ on the dual group T2. This 
is a free weak mixing action preserving the Haar measure of T2 that satisfies remarkable rigidity properties, as established 
by Popa [14] and Ioana [8]; see also [11, Section 16].

Let A be a countably infinite abelian discrete group, and denote by G its dual group, endowed with its Haar (probability) 
measure. Consider the Bernoulli action β : F∞ � GF∞/� associated with the left translation action of F∞ on F∞/�, and 
then the product action β × ρ : F∞ � GF∞/� ×T

2. At the same time, one can consider the continuous action of G on itself 
by left translation. This induces an action δ of G on GF∞/� × T

2 obtained by letting G act coordinatewise on GF∞/� and 
trivially on T2. Since δ and β ×ρ commute, the orbit space X A of GF∞/� ×T

2 by δ is endowed with a canonical action αA

of F∞ , which is free and weak mixing.
The hypothesis that � is nonamenable is used at this point, by applying the Gaboriau–Lyons measurable solution to the 

von Neumann problem for Bernoulli actions [6]. Let θ� denote the Bernoulli shift of � on [0, 1]� , and find a free ergodic 
action θF∞ of F∞ on [0,1]� endowed with the product measure, such that almost every θF∞ -orbit is contained in the 
corresponding θ�-orbit. By Dye’s theorem, one can moreover choose θF∞ in such a way that one of the free generators 
of F∞ contained in � acts in a mixing way. At this point, one can consider the coinduced action θA = CIndθ�

θF∞ (αA) of αA

modulo (θF∞ , θ�) in the sense of Epstein [4]; see also [10, Section 2]. This action is automatically free, since it has αA as 
a factor. Moreover, an analysis of the Koopman representation of ρ shows that θA is weak mixing. To conclude the proof of 
Theorem 1.1, we must argue that the assignment A �→ θA is a countable-to-one Borel homomorphism from the relation of 
isomorphism of a countably infinite abelian group to the relations of conjugacy, (stable) orbit equivalence, and (stable) von 
Neumann equivalence of free weak mixing actions of �.

The fact that the construction of θA is explicit shows that this assignment is given by a Borel map. The functoriality 
of the construction allows one to conclude that isomorphic groups give rise to conjugate actions. Suppose now that A is 
a collection of pairwise nonisomorphic countably infinite abelian groups such that the actions {θA : A ∈ A} are pairwise 
(stably) orbit equivalent—or even just (stably) von Neumann equivalent. We want to show that A is countable. In order to 
reach a contradiction, assume that A is uncountable. This part takes some work, and we need some additional tools, which 
we proceed to describe.

Let R and R̂ be countable pmp equivalence relations on standard probability spaces X and X̂ . Then R̂ is a class-bijective 
extension of R if there is a Borel factor map π : X̂ → X that maps, for almost every x ∈ X̂ , the R̂-class [x]R̂ bijectively onto 
[π (x)]R . For example, the orbit equivalence relation R A of θA is a class-bijective pmp extension of the orbit equivalence 
relation R� of θ� . Since almost every θF∞ -orbit is contained in the corresponding θ�-orbit, the orbit equivalence relation 
RF∞ of θF∞ is a subequivalence relation of R� . This allows one to identify F∞ with a subgroup of the full group of RF∞ , 
which is in turn a subgroup of the full group of R� , which is in turn a subgroup of the full group of R A . Hence F∞ is a 
subgroup of R A , and we denote by ζA the induced action of F∞ .

By the rigidity properties of ρ [1, Lemma 7.4], after passing to an uncountable subcollection of A, one can assume that 
the actions {ζA : A ∈A} are pairwise conjugate. In order to reach a contradiction, it suffices to show that, for any countably 
infinite abelian group A, one can reconstruct A from the conjugacy class of ζA . We do this by showing that H1

: �,F∞,w(ζA)

is isomorphic to A. To this purpose, one should notice that, since αA is a factor of β × ρ , the action θA = CIndθ�

θF∞ (αA) is a 
factor of CIndθ�

θF∞ (β × ρ), which is conjugate to CIndθ�

θF∞ (β) × CIndθ�

θF∞ (ρ). Reasoning as above, one can identify F∞ with a 
subgroup of the full groups of the orbit equivalence relations of CIndθ�

F∞ (β) and CIndθ�

F∞ (ρ). This gives actions β̂ and ρ̂ of 

θ θ
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F∞ such that β̂ × ρ̂ has ζA as a factor. Furthermore, the action δ of G on GF∞/� × T
2 canonically extends to an action δ̂

commuting with β̂ × ρ̂ .
An analysis of the Koopman representation of ρ shows that ρ̂|� is weak mixing. Now, a �-invariant cocycle w for ζA

gives rise to a �-invariant cocycle ŵ for (β̂ × ρ̂)|F∞ . Since ρ̂|� is weak mixing, ŵ is necessarily a �-invariant cocycle 
for β̂ . One can show that β̂ is weak mixing and malleable. Since the quotient group F∞/� has property (T), the triple 
� ≤ F∞ ≤ F∞ has property (T). Therefore by Theorem 2.2, the cocycle ŵ is weakly cohomologous to the trivial one. Thus 
there exists a T-valued function v such that ŵγ = vγ β̂γ (v) modulo scalars for γ ∈ F∞ . One can then see that v is an 
eigenfunction for δ̂, that is, there exists a character χw of G such that δ̂g(v) = χw(g)v for all g ∈ G . Since G is the dual 
group of A, we regard χw naturally as an element of A. This gives an assignment w �→ χw from �-invariant cocycles for 
(β̂ × ρ̂)|F∞ to A. It can be verified that this induces a group isomorphism from H1

: �,F∞,w(ζA) to A, which completes the 
proof.

The general idea described above can also be adapted to deal with the more general setting of class-bijective extensions 
of a given countable pmp equivalence relation on a standard probability space. In this case, one can use the Bowen–Ioana–
Hoff measurable solution [1, Theorem A] to the von Neumann problem for Bernoulli extensions of nonamenable countable 
pmp equivalence relations.

Theorem 3.1. Let R be a nonamenable ergodic countable pmp equivalence relation. The relations of (stable) isomorphism and (stable) 
von Neumann equivalence of free ergodic class-bijective pmp extensions of R are not Borel.

When R is amenable, all the ergodic class-bijective extensions are also amenable, and hence isomorphic, by classical 
results of Dye [3] and Connes, Feldman, and Weiss [2].
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