Group theory/Differential geometry

On the irreducible action of PSL(2, \(\mathbb{R} \)) on the 3-dimensional Einstein universe

Sur l’action irréductible de PSL(2, \(\mathbb{R} \)) sur l’univers d’Einstein de dimension 3

Masoud Hassani \(^{a,b}\)

\(^{a}\) Université d’Avignon, Campus Jean-Henri-Fabre, 301, rue Baruch-de-Spinoza, BP 21239, 84916 Avignon cedex 9, France

\(^{b}\) University of Zanjan, Faculty of Science, Department of Mathematics, University Blvd, Zanjan, Iran

Abstract

In this paper, we study the irreducible representation of PSL(2, \(\mathbb{R} \)) in PSL(5, \(\mathbb{R} \)). This action preserves a quadratic form with signature (2, 3). Thus, it acts conformally on the 3-dimensional Einstein universe \(\text{Ein}^{1, 2} \). We describe the orbits induced in \(\text{Ein}^{1, 2} \) and its complement in \(\mathbb{R}^4 \). This work completes the study in [2], and is one element of the classification of cohomogeneity one actions on \(\text{Ein}^{1, 2} \) [5].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

RÉSUMÉ

Dans cet article, nous étudions l’action irréductible de PSL(2, \(\mathbb{R} \)) dans PSL(5, \(\mathbb{R} \)). Cette action préserve une forme quadratique de signature (2, 3). Elle agit donc conformément sur l’univers d’Einstein \(\text{Ein}^{1, 2} \) de dimension 3, ainsi que sur son complément dans \(\mathbb{R}^4 \). Ce travail complète l’étude préliminaire dans [2], et est un élément de la classification des actions sur \(\text{Ein}^{1, 2} \) de cohomogénéité un [5].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

1.1. The irreducible representation of PSL(2, \(\mathbb{R} \))

Let \(V \) denote an \(n \)-dimensional vector space. A subgroup of GL(V) is irreducible if it preserves no proper subspace of \(V \).

It is well known that, for every integer \(n \), up to isomorphism, there is only one \(n \)-dimensional irreducible representation of PSL(2, \(\mathbb{R} \)). For \(n = 5 \), this representation is the natural action of PSL(2, \(\mathbb{R} \)) on the vector space \(V = \mathbb{R}_4[X, Y] \) of homogeneous polynomials of degree 4 in two variables \(X \) and \(Y \). This action induces three types of orbits in the 4-dimensional...
projective space $\mathbb{RP}^4 = \mathbb{P}(V)$: an 1-dimensional orbit, three 2-dimensional orbits, and the orbits on which $\text{PSL}(2, \mathbb{R})$ acts freely.

The irreducible action of $\text{PSL}(2, \mathbb{R})$ on V preserves the following quadratic form

$$q(a_4 x^4 + a_3 x^3 y + a_2 x^2 y^2 + a_1 xy^3 + a_0 y^4) = 2a_4 a_0 - \frac{1}{2} a_1 a_3 + \frac{1}{6} a_2^2.$$

The quadratic form q is non-degenerate and has signature $(2, 3)$. This induces an irreducible representation $\text{PSL}(2, \mathbb{R}) \to O(2, 3) \subset \text{PSL}(5, \mathbb{R})$ [2]. On the other hand, by [3, Theorem 1], up to conjugacy, $SO_+(1, 2) \simeq \text{PSL}(2, \mathbb{R})$ is the only irreducible connected Lie subgroup of $O(2, 3)$.

1.2. Einstein’s universe

Let $\mathbb{R}^{2,3}$ denote a 5-dimensional real vector space equipped with a non-degenerate symmetric bilinear form q with signature $(2, 3)$. The null cone of $\mathbb{R}^{2,3}$ is

$$\mathfrak{N} = \{v \in \mathbb{R}^{2,3} \setminus \{0\} : q(v) = 0\}.$$

The 3-dimensional Einstein universe $\text{Ein}^{1,2}$ is the image of the null cone \mathfrak{N} under the projectivization:

$$\mathbb{P} : \mathbb{R}^{2,3} \setminus \{0\} \longrightarrow \mathbb{RP}^4.$$

The degenerate metric on \mathfrak{N} induces a $O(2, 3)$-invariant conformal Lorentzian structure on the Einstein universe. The group of conformal transformations on $\text{Ein}^{1,2}$ is $O(2, 3)$ [4].

A light-like geodesic in Einstein’s universe is a photon. A photon is the projectivization of an isotropic 2-plane in $\mathbb{R}^{2,3}$. The set of photons through a point $p \in \text{Ein}^{1,2}$ denoted by $L(p)$ is the lightcone at p. The complement of a lightcone $L(p)$ in Einstein’s universe is the Minkowski patch at p and we denote it by $\text{Mink}(p)$. A Minkowski patch is conformally equivalent to the 3-dimensional Minkoski space $\mathbb{R}^{1,2}$ [1].

The complement to the Einstein universe in \mathbb{RP}^4 has two connected components: the 3-dimensional Anti de-Sitter space $\text{AdS}^{1,2}$ and the generalized hyperbolic space $\mathbb{H}^{2,2}$: the first (respectively the second) is the projection of the domain $\mathbb{R}^{2,3}$ defined by $\{q < 0\}$ (respectively $\{q > 0\}$).

An immersed submanifold S of $\text{AdS}^{1,2}$ or $\mathbb{H}^{2,2}$ is of signature (p, q, r) (respectively $\text{Ein}^{1,2}$) if the restriction of the ambient pseudo-Riemannian metric (respectively the conformal Lorentzian metric) is of signature (p, q, r), meaning that the radical has dimension r, and that maximal definite negative and positive subspaces have dimensions p and q, respectively. If S is nondegenerate, we forgot r and simply denote its signature by (p, q).

Theorem 1. The irreducible action of $\text{PSL}(2, \mathbb{R})$ on the 3-dimensional Einstein universe $\text{Ein}^{1,2}$ admits three orbits:

- a 1-dimensional light-like orbit, i.e. of signature $(0, 0, 1)$,
- a 2-dimensional orbit of signature $(0, 1, 1)$,
- an open orbit (hence of signature $(1, 2)$) on which the action is free.

The 1-dimensional orbit is light-like, homeomorphic to \mathbb{RP}^1, but not a photon. The union of the 1-dimensional orbit and the 2-dimensional orbit is an algebraic surface, whose singular locus is precisely the 1-dimensional orbit. It is the union of all projective lines tangent to the 1-dimensional orbit. Fig. 1 describes a part of the 1 and 2-dimensional orbits in the Minkowski patch $\text{Mink}((Y^4))$.

Fig. 1. Two partial views of the intersection of the 1 and 2-dimensional orbits in Einstein’s universe with $\text{Mink}((Y^4))$. **Red:** Part of the 1-dimensional orbit in Minkowski patch. **Green:** Part of the 2-dimensional orbit in Minkowski patch.
We will also describe the actions on the Anti de-Sitter space and the generalized hyperbolic space $\mathbb{H}^{2,2}$:

Theorem 1.2. The orbits of $\text{PSL}(2, \mathbb{R})$ in the Anti de-Sitter component $\text{AdS}^{1,3}$ are Lorentzian, i.e. of signature $(1, 2)$. They are the leaves of a codimension-1 foliation. In addition, $\text{PSL}(2, \mathbb{R})$ induces three types of orbits in $\mathbb{H}^{2,2}$: a 2-dimensional space-like orbit (of signature $(2,0)$) homeomorphic to the hyperbolic plane \mathbb{H}^2, a 2-dimensional Lorentzian orbit (i.e. of signature $(1,1)$) homeomorphic to the de-Sitter space $\text{dS}^{1,1}$, and four kinds of 3-dimensional orbits where the action is free:

- a one-parameter family of orbits of signature $(2,1)$, consisting of elements with four distinct non-real roots,
- a one-parameter family of Lorentzian (i.e. of signature $(1,2)$) orbits consisting of elements with four distinct real roots,
- two orbits of signature $(1,1,1)$,
- a one-parameter family of Lorentzian (i.e. of signature $(1,2)$) orbits consisting of elements with two distinct real roots, and two distinct complex conjugate roots so that the cross-ratio of the four roots has an argument strictly between $-\pi/3$ and $\pi/3$.

2. Proofs of the theorems

Let f be an element in $\mathbb{C}[V]$. We consider it as a polynomial function from \mathbb{C}^2 into \mathbb{C}. Actually, by specifying $Y = 1$, we consider f as a polynomial of degree at most 4. Such a polynomial is determined, up to a scalar, by its roots z_1, z_2, z_3, z_4 in \mathbb{C}^1 (some of these roots can be ∞ if f can be divided by Y). It provides a natural identification between $\mathbb{P}(V)$ and the set of 4-tuples (up to permutation) (z_1, z_2, z_3, z_4) of \mathbb{C}^1 such that if some z_i is not in \mathbb{R}^1, then its conjugate \bar{z}_i is one of the z_j’s. This identification is $\text{PSL}(2, \mathbb{R})$-equivariant, where the action of $\text{PSL}(2, \mathbb{R})$ on \mathbb{C}^1 is simply the one induced by the diagonal action on $\mathbb{P}(\mathbb{C}^1)^4$.

Actually, the complement of \mathbb{R}^1 in \mathbb{C}^1 is the union of the upper half-plane model \mathbb{H}^2 of the hyperbolic plane, and the lower half-plane. We can represent every element of \mathbb{C}^1 by a 4-tuple (up to permutation) (z_1, z_2, z_3, z_4) such that:

- either every z_i lies in \mathbb{R}^1,
- or z_1, z_2 lies in \mathbb{R}^1, z_3 lies in \mathbb{H}^2 and $z_4 = \bar{z}_3$,
- or z_1, z_2 lies in \mathbb{H}^2 and $z_3 = \bar{z}_1, z_4 = \bar{z}_2$.

Theorems 1.1 and 1.2 will follow from the proposition below.

Proposition 2.1. Let $[f]$ be an element of $\mathbb{P}(V)$. Then:

- it lies in $\mathbb{E}^{1,2}$ if and only if it has a root of multiplicity at least 3, or two distinct real roots z_1, z_2, and two complex roots $z_3, z_4 = \bar{z}_3$, with z_3 in \mathbb{H}^2 and such that the argument of the cross-ratio of z_1, z_2, z_3, z_4 is $\pm \pi/3$;
- it lies in $\text{AdS}^{1,3}$ if and only if it has two distinct real roots z_1, z_2, and two complex roots $z_3, z_4 = \bar{z}_3$, with z_3 in \mathbb{H}^2 and such that the argument of the cross-ratio of z_1, z_2, z_3, z_4 has absolute value $> \pi/3$;
- it lies in $\mathbb{H}^{2,2}$ if and only if it has no real roots, or four distinct real roots, or a root of multiplicity exactly 2, or it has two distinct real roots z_1, z_2, and two complex roots $z_3, z_4 = \bar{z}_3$, with z_3 in \mathbb{H}^2 and such that the argument of the cross-ratio of z_1, z_2, z_3, z_4 has absolute value $< \pi/3$.

Proof of Proposition 2.1. Assume that f has no real root. Hence we are in the situation where z_1, z_2 lie in \mathbb{H}^2 and $z_3 = z_1, z_4 = z_2$. By applying a suitable element of $\text{PSL}(2, \mathbb{R})$, we can assume $z_1 = i$, and $z_2 = ri$ for some $r > 0$. In other words, f is in the $\text{PSL}(2, \mathbb{R})$-orbit of $(X^2 + Y^2)(X^2 + r^2Y^2)$. The value of q on this polynomial is $2 \times 1 \times r^2 + \frac{1}{6}(1 + r^2)^2 > 0$, hence $[f]$ lies in $\mathbb{H}^{2,2}$.

Hence, we can assume that f admits at least one root in \mathbb{R}^1, and by applying a suitable element of $\text{PSL}(2, \mathbb{R})$, one can assume that this root is ∞, i.e. that f is a multiple of Y.

We first consider the case where this real root has multiplicity at least 2:

$$f = Y^2(aX^2 + bXY + cY^2)$$

Then, $q(f) = \frac{1}{6}r^2$: it follows that if f has a root of multiplicity at least 3, it lies in $\mathbb{E}^{1,2}$, and if it has a real root of multiplicity 2, it lies in $\mathbb{H}^{2,2}$.

We assume from now on that the real roots of f have multiplicity 1. Assume that all roots are real. Up to $\text{PSL}(2, \mathbb{R})$, one can assume that these roots are 0, 1, r and ∞ with $0 < r < 1$.

$$f(X, Y) = XY(X - Y)(X - rY) = X^3Y - (r + 1)X^2Y^2 + rXY^3.$$

Then, $q(f) = -\frac{1}{2}r + \frac{1}{6}(r + 1)^2 = \frac{1}{6}(r^2 - r + 1) > 0$. Therefore, f lies in $\mathbb{H}^{2,2}$ once more.

The only remaining case is the case where f has two distinct real roots, and two complex conjugate roots z, \bar{z} with $z \in \mathbb{H}^2$. Up to $\text{PSL}(2, \mathbb{R})$, one can assume that the real roots are $0, \infty$, hence:
where \(z = |z|e^{i\theta} \). Then:

\[
q(f) = \frac{2|z|^2}{3} (\cos^2 \theta - \frac{3}{4}).
\]

Hence \(f \) lies in \(\text{Ein}^{1,2} \) if and only if \(\theta = \pi/6 \) or \(5\pi/6 \). The proposition follows easily.

Remark 1. F. Fillastre indicated to us that our description of the open orbit in \(\text{Ein}^{1,2} \) appearing in the first item of Proposition 2.1 has an alternative and more elegant description: this orbit corresponds to polynomials whose roots in \(\mathbb{C}P^1 \) are ideal vertices of a regular ideal tetraedra in \(\mathbb{H}^3 \).

Remark 2. In order to determine the signature of the orbits induced by \(\text{PSL}(2, \mathbb{R}) \) in \(\mathbb{P}(\mathbb{V}) \), we consider the tangent vectors induced by the action of 1-parameter subgroups of \(\text{PSL}(2, \mathbb{R}) \). We denote by \(E \), \(P \), and \(H \), the 1-parameter elliptic, parabolic and hyperbolic subgroups stabilizing \(i \), \(\infty \) and \((0, \infty) \), respectively.

Proof of Theorem 1.1. It follows from Proposition 2.1 that there are precisely three \(\text{PSL}(2, \mathbb{R}) \)-orbits in \(\text{Ein}^{1,2} \):

- one orbit \(\mathcal{N} \) comprising polynomials with a root of multiplicity 4, i.e. of the form \((sY - tX)^4 \) with \(s, t \in \mathbb{R} \). It is clearly 1-dimensional, and equivariantly homeomorphic to \(\mathbb{R}P^1 \) with the usual projective action of \(\text{PSL}(2, \mathbb{R}) \). Since

\[
\frac{d}{d|t|=0}(Y - tX)^4 = -4XY^3
\]

is a q-null vector, this orbit is light-like (but cannot be a photon since the action is irreducible);

- one orbit \(\mathcal{L} \) comprising polynomials with a real root of multiplicity 3, and another real root. These are the polynomials of the form \((sY - tX)^3 (s'Y - t'X) \) with \(s, t, s', t' \in \mathbb{R} \). It is 2-dimensional, and it is easy to see that it is the union of the projective lines tangent to \(\mathcal{N} \). The vectors tangent to \(\mathcal{L} \) induced by the 1-parameter subgroups \(P \) and \(E \) at \([XY^3] \in \mathcal{L} \) are \(v_P = -3Y^2 + Y^4 \) and \(v_E = 3X^2Y^2 + Y^4 \). Obviously, \(v_P \) is orthogonal to \(v_E \) and \(v_P + v_E \) is space-like. Hence \(\mathcal{L} \) is of signature \((0, 1, 1) \);

- one open orbit comprising polynomials admitting two distinct real roots and a root in \(\mathbb{H}^2 \) such that the action of the cross-ratio of the four roots is \(\pi/3 \). The stabilizers of points in this orbit are trivial, since an isometry of \(\mathbb{H}^2 \) preserving a point in \(\mathbb{H}^2 \) and one point in \(\partial \mathbb{H}^2 \) is necessarily the identity. □

Proof of Theorem 1.2. According to Proposition 2.1, the polynomials in AdS\(^{1,3} \) have two distinct real roots, and a complex root \(\mathbb{H}^2 \) (and its conjugate) such that the action of the cross-ratio of the four roots has absolute value \(> \pi/3 \). It follows that the action in AdS\(^{1,3} \) is free, and that the orbits are the level sets of the function \(\theta \). Suppose that \(M \) is a \(\text{PSL}(2, \mathbb{R}) \)-orbit in AdS\(^{1,3} \). There exists \(r \in \mathbb{R} \) such that \([f] = [XY(X^2 + Y^2)(X - rY)] \in M \). The orbit induced by the 1-parameter subgroup \(E \) at \([f] \) is:

\[
\gamma(t) = [(X^2 + Y^2)((\sin t \cos t - r \sin^2 t)X^2 - (\sin t \cos t + r \cos^2 t)Y^2 + (\cos^2 t - \sin^2 t + 2r \sin t \cos t)XY)].
\]

Then

\[
\frac{d\gamma}{dt}\bigg|_{t=0} = -2 - 2r^2 < 0.
\]

This implies, as for any submanifold of a Lorentzian manifold admitting a time-like vector, that \(M \) is Lorentzian, i.e., of signature \((1, 2) \).

The case of \(\mathbb{H}^2 \) is the richest one. According to Proposition 2.1, there are four cases to consider.

- **No real roots.** Then \(f \) has two complex roots \(z_1, z_2 \) in \(\mathbb{H}^2 \) (and their conjugates). It corresponds to two orbits: one orbit corresponding to the case \(z_1 = z_2 \); it is space-like and has dimension 2. It is the only maximal \(\text{PSL}(2, \mathbb{R}) \)-invariant surface in \(\mathbb{H}^2 \) described in [2, Section 5.3]. The case \(z_1 \neq z_2 \) provides a one-parameter family of 3-dimensional orbits on which the action is free (the parameter being the hyperbolic distance between \(z_1 \) and \(z_2 \)). One may assume that \(z_1 = i \) and \(z_2 = ri \) for some \(r > 0 \). Denote by \(M \) the orbit induced by \(\text{PSL}(2, \mathbb{R}) \) at \([f] = [(X^2 + Y^2)(X^2 + 2r^2Y^2)] \). The vectors tangent to \(M \) at \([f] \) induced by the 1-parameter subgroups \(H, P \) and \(E \) are:

\[
\begin{align*}
\nu_H &= -4X^4 + 4r^2Y^4, \\
\nu_P &= -4X^3Y - 2(r^2 + 1)XY^3, \\
\nu_E &= 2(r^2 - 1)X^3Y + 2(r^2 - 1)Y^3,
\end{align*}
\]

respectively. The time-like vector \(\nu_H \) is orthogonal to both \(\nu_P \) and \(\nu_E \). It is easy to see that the 2-plane generated by \(\nu_P, \nu_E \) is of signature \((1, 1) \). Therefore, the tangent space \(T_{[f]}M \) is of signature \((2, 1) \).

- **Four distinct real roots.** This case provides a one-parameter family of 3-dimensional orbits on which the action is free – the parameter being the cross-ratio between the roots in \(\mathbb{R}P^1 \). Denote by \(M \) the \(\text{PSL}(2, \mathbb{R}) \)-orbit at \([f] = [XY(X - Y)(X - rY)] \) (here as explained in the proof of Proposition 2.1, we can restrict ourselves to the case \(0 < r < 1 \). The vectors tangent to \(M \) at \([f] \) induced by the 1-parameter subgroups \(H, P \), and \(E \) are:

\[
\begin{align*}
\nu_H &= -rY^4 + 2(r + 1)XY^3 - 3X^2Y^2, \\
\nu_P &= -2X^3Y + 2rXY^3, \\
\nu_E &= X^4 - rY^4 + 3(r - 1)X^2Y^2 + 2(r + 1)XY^3 - 2(r + 1)X^3Y,
\end{align*}
\]
respectively. A vector \(x = a v_H + b v_P + c v_E \) is orthogonal to \(v_P \) if and only if \(2ra + b(r + 1) + c(r + 1)^2 = 0 \). Set \(a = \frac{(b(r + 1) + c(r + 1)^2)}{-2r} \)

\[
q(x) = 2ra^2 + \frac{3}{2}b^2 + \left(\frac{7}{2}(r^2 + 1) - r \right)c^2 + 2(r + 1)ab + 2(r + 1)^2 + ac(2r^2 - r + 5).
\]

Consider \(q(x) = 0 \) as a quadratic polynomial \(F \) in \(b \). Since \(0 < r < 1 \), the discriminant of \(F \) is non-negative and it is positive when \(c \neq 0 \). Thus, the intersection of the orthogonal complement of the space-like vector \(v_P \) with the tangent space \(T_{(f)}M \) is a 2-plane of signature \((1, 1)\). This implies that \(M \) is Lorentzian, i.e. of signature \((1, 2)\).

- **A root of multiplicity 2**. Observe that if there is no non-real root of multiplicity 2, when we are in the first “no real root” case. Hence we consider here only the case where the root of multiplicity 2 lies in \(\mathbb{R}P^1 \). Then, we have three subcases to consider:
 - two distinct real roots of multiplicity 2: The orbit induced at \(X^2Y^2 \) is the image of the \(\text{PSL}(2, \mathbb{R}) \)-equivariant map
 \[
 dS^{1,1} \subset \mathbb{P}(\mathbb{R}_2(X, Y)) \rightarrow \mathbb{H}^{2,2}, \quad [L] \mapsto [L^2],
 \]
 where \(\mathbb{R}_2(X, Y) \) is the vector space of homogeneous polynomials of degree 2 in two variables \(X \) and \(Y \), endowed with discriminant as a \(\text{PSL}(2, \mathbb{R}) \)-invariant bilinear form of signature \((1, 2)\) [2, Section 5.3]. (Here, \(L \) is the projective class of a Lorentzian bilinear form on \(\mathbb{R}^2 \).) The vectors tangent to the orbit at \(X^2Y^2 \) induced by the 1-parameter subgroups \(P \) and \(E \) are \(v_P = -2XY^3 \) and \(v_E = 2X^3 - 2XY^3 \), respectively. It is easy to see that the 2-plane generated by \(\{v_P, v_E\} \) is of signature \((1, 1)\). Hence, the orbit induced at \(X^2Y^2 \) is Lorentzian.
 - three distinct real roots, one of them being of multiplicity 2; denote by \(M \) the orbit induced by \(\text{PSL}(2, \mathbb{R}) \) at \([f] = [XY^2(X - Y)]\). The vectors tangent to \(M \) at \([f] \) induced by the 1-parameter subgroups \(H, P \) and \(E \) are:
 \[
 v_H = -2XY^3, \quad v_P = Y^4 - 2XY^3, \quad v_E = Y^4 - 2X^2Y^2 + X^3Y - XY^3,
 \]
 respectively. Obviously, the light-like vector \(v_H + v_P \) is orthogonal to \(T_{(f)}M \). Therefore, the restriction of the metric on \(T_{(f)}M \) is degenerate. It is easy to see that the quotient of \(T_{(f)}M \) by the action of the isotropic line \(\mathbb{R}(v_H + v_P) \) is of signature \((1, 1)\). Thus, \(M \) is of signature \((1, 1, 1)\).
 - one real root of multiplicity 2, and one root in \(\mathbb{H}^2 \): Denote by \(M \) the orbit induced by \(\text{PSL}(2, \mathbb{R}) \) at \([f] = [Y^2(X^2 + Y^2)]\). The vectors tangent to \(M \) at \([f] \) induced by the 1-parameter subgroups \(H, P \) and \(E \) are \(v_H = 4Y^4, v_P = -2XY^3 \), and \(v_E = 2X^3 + 2XY^3 \), respectively. Obviously, the light-like vector \(v_H \) is orthogonal \(T_{(f)}M \). Therefore, the restriction of the metric on \(T_{(f)}M \) is degenerate. It is easy to see that the quotient of \(T_{(f)}M \) by the action of the isotropic line \(\mathbb{R}(v_H) \) is of signature \((1, 1)\). Thus \(M \) is of signature \((1, 1, 1)\).
 - **Two distinct real roots, and a complex root in \(\mathbb{H}^2 \) (and its conjugate) such that the argument of the cross-ratio of the four roots has absolute value \(< \pi/3 \).** Denote by \(M \) the orbit induced by \(\text{PSL}(2, \mathbb{R}) \) at \([f] = [Y(X^2 + Y^2)(X - rY)]\). The vectors tangent to \(M \) at \([f] \) induced by the 1-parameter subgroups \(H, P \) and \(E \) are:
 \[
 v_H = -4rY^4 - 2X^3Y + 2XY^3, \quad v_P = -3X^2Y^2 + 2rXY^3 - Y^4, \quad v_E = X^4 - Y^4 - 2rX^3Y - 2rXY^3,
 \]
 respectively. The following set of vectors is an orthogonal basis for \(T_{(f)}M \) where the first vector is time-like and the two others are space-like.
 \[
 \{(7r + 3r^2)v_H + (6 - 2r^2)v_P + (5 + r^2)v_E, 4v_P + v_E, v_H\}.
 \]
 Therefore, \(M \) is Lorentzian, i.e. of signature \((1, 2)\). □

References