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We deal with the behaviour of Ulrich bundles with respect to push-forward and pull-back 
via blowing-up points. We also correct a wrong statement in [11].
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r é s u m é

Nous décrivons le comportement des faisceaux d’Ulrich en ce qui concerne leur image 
directe et réciproque par rapport aux éclatements des points. Nous corrigeons aussi un 
énoncé incorrect dans [11].

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and notation

Throughout this note, we will work on an algebraically closed field k of characteristic 0, and PN will denote the projective 
space over k of dimension N . A surface is a smooth connected projective scheme of dimension 2.

Let X ⊆ PN be a smooth n-dimensional variety, i.e. a closed integral subscheme, and set OX (h) := OPN (1) ⊗ OX . We 
are interested in studying vector bundles on X ⊆ PN . Recently, many authors focused their attention on Ulrich bundles (with 
respect to OX (h)), i.e. vector bundles on X such that

Hi(X,F(−ih)
) = H j(X,F(−( j + 1)h)

) = 0

for each i > 0 and j < n.
Serre duality immediately yields that F is Ulrich if and only if F∨(K X + (n + 1)h) is Ulrich as well (here K X denotes 

the canonical divisor on X). Moreover, each Ulrich bundle F is globally generated and aCM, i.e. hi
(

X, F(th)
) = 0 for each 

i = 1, . . . , n − 1 and t ∈ Z: we refer the interested reader to the paper by D. Eisenbud, F.-O. Schreyer, and J. Weyman [8].
It is clear that each direct summand of an Ulrich bundle is also Ulrich. Thus, one can restrict the attention to inde-

composable bundles, i.e. bundles that do not split as direct sum of bundles of smaller ranks. The study of indecomposable 
Ulrich bundles is a particularly intriguing problem that could give some suggestions on the complexity of the embedding 
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X ⊆ PN . For instance, it is natural to ask whether a bound on the dimensions of the families of indecomposable Ulrich bun-
dles supported on X actually exists. Indeed, the known examples suggest that a lot of varieties are Ulrich-wild, i.e. support 
p-dimensional families of pairwise non-isomorphic, indecomposable Ulrich bundles for arbitrary large p.

In the present paper, we slightly improve some results from [11] (see Theorem 0.1 and Corollary 0.2), also correcting a 
wrong statement about Ulrich bundles on smooth surfaces (see Theorem 0.3), whose proof contains a gap pointed out by 
the first author.

More precisely, in Section 2 we prove some general facts about the push-forward and the pull-back of a vector bundle via 
a blow-up map σ : X̃ → X at a point P ∈ X . The proofs are quite standard, and generalize some results due to P. Coronica 
and R.L.E. Schwarzenberger (see [7], [13]).

In Section 3, we use Theorem 0.1 of [11] to prove that all the surfaces of degree at least 4 in P4, which are obtained 
by inner projection (i.e. by projecting a surface in P5 from one of its points: see [3] for details), are Ulrich-wild, with the 
possible exception of some special K 3 surfaces. This result extends a similar one, proved by the first author in [5] for 
rational surfaces.

In Section 4, we show that if E is an Ulrich bundle such that E(E) is trivial on E , then σ∗E(E) is also Ulrich, where 
E = σ−1(P ) is the exceptional divisor. This result has been proved in [11] when n = r = 2 and E satisfies another technical 
restriction without the triviality hypothesis. Nevertheless, the proof therein contains a gap, and we show with two examples 
that we cannot remove the hypothesis from our corrected statement.

2. General results

Let X be a smooth variety of dimension n, and let σ : X̃ → X be the blow up at P ∈ X . When n = 1, σ is an isomorphism, 
hence we will assume n ≥ 2 in the following lines.

We have Pic( X̃) ∼= σ ∗ Pic(X) ⊕ ZO X̃ (E). Moreover, the exceptional divisor E := σ−1(P ) is isomorphic to Pn−1, hence 
Pic(E) is principal and generated by an ample line bundle isomorphic to OPn−1 (1). If we denote by I the ideal sheaf of E
inside X̃ , then I/I2 ∼=O X̃ (−E) ⊗OE ∼=OPn−1(1), hence En = (−1)n−1 and Im/Im+1 ∼=OPn−1(m) for each m ≥ 1. Finally

O X̃ (K X̃ ) = σ ∗OX (K X ) ⊗O X̃ ((n − 1)E) (1)

(see [9], Exercise II.8.5). We deduce that O X̃ (K X̃ ) ⊗OE ∼=OPn−1 (1 − n).
Let E be a vector bundle on X̃ . In general E ⊗ OE could be indecomposable (e.g., see Example 2 below) unless n = 2. 

Indeed, in this case, a theorem of Grothendieck yields E ⊗OE ∼= ⊕r
i=1 OP1 (αi).

The result below extends [7], Section 1.3 (see also Theorem 5 of [13] and its proof).

Theorem 2.1. Let X be a smooth variety and let E be a vector bundle of rank r on ̃X.
Assume E ⊗OE ∼= ⊕r

i=1 OPn−1(αi), where −n ≤ αi ≤ αi+1 for i = 1, . . . , r − 1, and denote by s the maximum integer such that 
αs ≤ 0. Then R jσ∗E = 0 for j ≥ 1 and

dimk(x)(σ∗E ⊗ k(x)) =

⎧⎪⎨
⎪⎩

r if x �= P ,

s +
r∑

i=s+1

(
αi + n − 1

n − 1

)
if x = P . (2)

Proof. If n = 1, the statement is trivial. Thus we assume n ≥ 2 from now on.
Since σ induces an isomorphism X̃ \ E ∼= X \ {P }, it suffices to check that (R jσ∗E)P = 0 for j ≥ 1 and

dimk(P )(σ∗E ⊗ k(P )) = s +
r∑

i=s+1

(
αi + n − 1

n − 1

)
.

The proof of the above facts runs along the same lines of the proof of Proposition 1.3.8 in [7].
First we have to show that (R jσ∗E)P = 0 for each j ≥ 1. To this purpose, we use the isomorphism

̂(R jσ∗E)P
∼= lim←− H j(Em,E ⊗OEm

)
where O := OX,P , m ⊆ O is the maximal ideal and Em := X̃ ×X Spec(O/mm): hence E1 = E ∼= Pn−1. We have an exact 
sequence:

0 −→ OPn−1(m) −→ OEm+1 −→ OEm −→ 0. (3)

For each t ∈ Z, we have

H0(E1,E ⊗OE1(t)
) =

r⊕
k[x0, . . . , xn−1]t+αi ,
i=1
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H j(E1,E ⊗OE1(t)
) = 0, j ≥ 1, j �= n − 1,

Hn−1(E1,E ⊗OE1(t)
) =

r⊕
i=1

k[x0, . . . , xn−1]−n−t−αi ,

where the images of x0, . . . , xn−1 inside O is a system of regular local parameters generating m.
Tensoring Sequence (3) by E , we obtain that

h j(Em,E ⊗OEm

) = h j(E1,E ⊗OE1

) = 0, j = 1, . . . ,n − 2.

By the induction on m, we deduce that

H0(Em,E ⊗OEm

) =
r⊕

i=1

m−1⊕
t=0

k[x0, . . . , xn−1]t+αi ,

H j(Em,E ⊗OEm

) = 0, j = 1, . . . ,n − 2.

Moreover, the hypothesis on the αi ’s implies that Hn−1
(

E1, E ⊗OE1(t)
) = 0 for every positive t , hence

Hn−1(Em,E ⊗OEm

) =
r⊕

i=1

m−1⊕
t=0

k[x0, . . . , xn−1]−n−t−αi .

Trivially ̂(R jσ∗E)P = 0 for j = 1, . . . , n − 2. A case by case analysis shows that

(̂σ∗E)P
∼=

⎛
⎝⊕

αi≤0

k ⊕
⊕
αi≥1

(x0, . . . , xn−1)
αi

⎞
⎠ ⊗ k[[x0, . . . , xn−1]],

̂(Rn−1σ∗E)P
∼=

⊕
αi≤−n−1

k[x0, . . . , xn−1]/(x0, . . . , xn−1)
−αi−n.

Thanks to the hypothesis on the αi ’s, we have (R jσ∗E)P = 0 for each j ≥ 1. Finally, the statement on σ∗E ⊗ k(P ) is an 
easy computation. �
Corollary 2.2. Let X be a smooth variety and let E be a vector bundle of rank r on ̃X.

Assume E ⊗ OE ∼= ⊕r
i=1 OPn−1(αi), where −n ≤ αi for i = 1, . . . , r. Then σ∗E is a vector bundle on X if and only if αi ≤ 0 for 

i = 1, . . . , r.

Proof. Thanks to Nakayama’s lemma, σ∗E is a vector bundle if and only if dimk(x)(σ∗E ⊗ k(x)) = r for each x ∈ X . Thus the 
statement is an immediate consequence of Equalities (2). �
Corollary 2.3. Let X be a smooth variety and let E be a vector bundle of rank r on ̃X.

Assume E ⊗OE ∼= ⊕r
i=1 OPn−1 (αi), where −n ≤ αi ≤ 0 for i = 1, . . . , r. Then the following assertions are equivalent.

(a) E ∼= σ ∗F where F is a vector bundle on X.
(b) αi = 0 for i = 1, . . . , r.
(c) The natural morphism σ ∗σ∗E → E is an isomorphism.

Proof. Notice that σ∗E is a vector bundle, thanks to Corollary 2.2. If E ∼= σ ∗F for some bundle F on X , then E ⊗ OE ∼=
σ ∗F ⊗ σ ∗k(P ) ∼= σ ∗k(P )⊕r ∼=O⊕r

Pn−1 .

Let E ⊗OE ∼= O⊕r
Pn−1 . The morphism σ ∗σ∗E → E is trivially an isomorphism outside E . By the hypothesis, its restriction 

to E is an isomorphism. Thus it is surjective at each point of E , hence the assertion follows because a surjective map of 
vector bundles of the same rank is an isomorphism.

Finally, if σ ∗σ∗E → E is an isomorphism, then E ∼= σ ∗F where F := σ∗E . �
3. Pulling back Ulrich bundles

If X ∼= Pn and OX (h) ∼= OPn (1), the unique Ulrich bundle on X is OX , thanks to the Horrocks theorem. Thus, from now 
on we will assume that deg(X) ≥ 2.

Let h0
(

X, OX (h)
) = N +1: we will always assume that O X̃ (̃h) := σ ∗OX (h) ⊗O X̃ (−E) is very ample: then X̃ is embedded 

in PN−1.
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Example 1. If F is Ulrich with respect to OX (h), it is not true in general that σ ∗F is Ulrich with respect to O X̃ (̃h).
Indeed, let X be a surface, F an Ulrich bundle of rank r on X and set E := σ ∗F . Consider the standard sequence

0 −→ O X̃ (−E) −→ O X̃ −→ OE −→ 0. (4)

Tensoring Sequence (4) by E(E) ⊗ σ ∗OX (−2h) and E(−2̃h), we obtain two exact sequences

0 −→ E ⊗ σ ∗OX (−2h) −→ E(E) ⊗ σ ∗OX (−2h) −→ OP1(−1)⊕r −→ 0,

0 −→ E(E) ⊗ σ ∗OX (−2h) −→ E(−2̃h) −→ OP1(−2)⊕r −→ 0.

We obtain hi
(

X̃, E(E) ⊗ σ ∗OX (−2h)
) = 0 for i ≥ 0, from the cohomology of the first sequence and the projection formula. 

Thus h1
(

X̃, E(−2̃h)
) = h1

(
P1, OP1 (−2)⊕r

) = r �= 0 from the cohomology of the second exact sequence.

If F is any bundle on X , then F̃ := σ ∗F(−E) is trivially a bundle on X̃ . Notice that σ∗F̃(E) ∼= F . For the following 
result, see Theorem 0.1 of [11].

Theorem 3.1. Let X be a smooth variety endowed with a very ample line bundle OX(h). Assume that O X̃ (̃h) is also very ample. If F is 
an Ulrich bundle with respect to OX (h), then F̃ is an Ulrich bundle with respect to O X̃ (̃h).

Below we deal with a by-product of the above theorem. Recall that a surface X̃ ⊆ P4 is said to be obtained by inner 
projection if there is a surface X ⊆ P5 and P ∈ X such that X̃ is the closure of the image of X via the projection from P5 to 
P4 with centre P . A surface X̃ ⊆ P4 is said non-degenerate if it is not contained in any hyperplane.

Proposition 3.1. Every non-degenerate surface of degree at least 4 in P4 obtained by an inner projection is Ulrich-wild, possibly except 
for some special K 3 surfaces.

Proof. A surface X̃ as in the statement is abstractly isomorphic to the blow up of a surface X at P ∈ X . The rational 
projection map π : X ��� X̃ inverts the blow-up map σ outside the exceptional divisor E . These surfaces are described in 
Table A of [3], where they are classified in the eight classes (I), (II), (III), (IV), (V), (VI), (VII), and (VIII).

The surfaces in classes (II), (III), (IV), (V), and (VII) are rational, linearly normal and non-special (see [1], Théorème 1), 
hence they are Ulrich-wild thanks to [5], Example 5.1. Thus it remains to consider surfaces of types (VIII) and (VI).

Each surface in the class (VIII) is obtained by blowing up a point on an Enriques surface X ⊆ P5 of degree 10, which is 
again Ulrich-wild, thanks to Corollary 5.1 of [5].

Finally, let us examine the surfaces in the class (VI). They are obtained by blowing up a point on the complete intersec-
tion X ⊆ P5 of three quadrics, hence such X are K 3 surfaces and pg(X) = 1, q(X) = 0. In particular, surfaces in class (VI) 
have degree 7 and sectional genus 5 (see Table A of [3]). Thus, they correspond to the points of a subset H0 of the Hilbert 
scheme H of subschemes of P4 with the Hilbert polynomial (7t2 − t + 4)/2. We will show below that H0 is irreducible, 
and that its generic point (which corresponds to a surface in class (VI)) is Ulrich-wild.

Let G be the Grassmannian of subspaces � of dimension 2 of |OP5(2)| ∼= P20. We define

V := { (P ,�) | P ∈ D, ∀D ∈ � } ⊆ P5 × G γ−−→ G.

The fibre of the projection on P5 over P ∈ P5 is the Grassmannian GP of subspaces of dimension 2 of the hyperplane inside 
|OP5(2)| of quadrics through P . Since GP is irreducible, it follows that V is irreducible as well.

Let U0 ⊆ G be the subset of points � such that X� := ⋂
Q ∈� Q is a smooth surface: notice that in this case X� , being a 

complete intersection, is also connected. The scheme V0 := γ −1(U0) is naturally endowed with a flat family X ⊆ P5 ×V0 of 
pointed surfaces, whose fibre over (P , �) is (X�, P , �). The projection from P induces a natural map X ��� P4 × V0 with 
image X̃ , which can be still viewed as a family over V0.

Let V ′
0 ⊆ V0 be the open subset over which the fibres of such a family are smooth: thus the fibres of X̃ are in H, hence 

the family X̃ is flat over V ′
0 (see [9], Theorem III.9.9). Thanks to the universal property of the Hilbert scheme, we know the 

existence of a morphism v : V ′
0 → H0, which is surjective due to the definition of H0. We deduce that H0 is irreducible, 

thus its closure H0 inside H is a projective variety.
Let U1 ⊆ U0 ⊆ G be the subset of points � such that the corresponding surface X� has Picard group generated by the 

hyperplane class. The set U1 is the intersection of a countable family of open sets (see [12], Lemma III.2.2), hence it is 
dense and non-empty. Moreover, every surface represented by a point in U1 is Ulrich-wild, thanks to Theorem 2.7 of [2]. 
Thus V1 := γ −1(U1) is the intersection of a countable family of open sets, hence it is dense and non-empty. On the other 
hand, by Corollary III.10.7 of [9], there is a non-empty open subset W ⊆ H0 such that v |v−1(W) is smooth, hence flat and 
open. We infer that H1 := v(V1 ∩ v−1(W)) is dense and non-empty inside H0. It follows that each surface of class (VI) 
corresponding to a point of the dense subset H1 ⊆H0 is the blow up of an Ulrich-wild surface.

Now let us fix a X̃ ⊆ P4 either in class (VIII) or in class (VI) obtained by inner projection from an Ulrich-wild surface 
X ⊆ P5. If F → B is a family of indecomposable and pairwise non-isomorphic Ulrich bundles on X , then X̃ supports a family 
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F̃→ B of Ulrich bundles on X̃ , thanks to Theorem 3.1: if F is the fibre of F over b ∈ B , then the fibre of ̃F over b is F̃ . If F̃
is decomposable, then the isomorphism F ∼= σ∗F̃(E) would imply that F should also split. Similarly, one can easily check 
that if the bundles in F → B are pairwise non-isomorphic, then the same is true for the bundles in F̃ → B .

Since the dimension of F → B can be arbitrarily large, the same is true for the family F̃ → B . We deduce that X̃ is 
Ulrich-wild also in this case. �
Remark 1. Notice that each complete intersection X ⊆ P5 of three quadrics supports an Ulrich bundle thanks to Theorem 
2.5 of [10]. It follows that every surface in the class (VI) always supports Ulrich bundles by Theorem 3.1.

4. Pushing forward Ulrich bundles

In this section, we will study the behaviour of the functor E �→ σ∗E(E), where E is an Ulrich bundle on X̃ , which is the 
natural left inverse of F �→ F̃ .

We start with some comments that partially motivate the assumption E ⊗OE ∼= OPn−1 (1)⊕r that we often make in the 
statements.

Lemma 4.1. Let X be a smooth variety of dimension n ≥ 2 endowed with a very ample line bundle OX (h). Assume that O X̃ (̃h) is very 
ample too.

Let E be an Ulrich bundle on ̃X such that E ⊗OE ∼= ⊕r
i=1 OPn−1(αi). Then 0 ≤ αi ≤ 2 for i = 1, . . . , n and 

∑r
i=1 αi = r.

Proof. Since E is globally generated, it follows that αi ≥ 0 for i = 1, . . . , r. Moreover, E∨((n + 1)̃h + K X̃ ) is Ulrich too, hence 
globally generated. Thanks to the definition of ̃h and to Equality (1), we have

E∨((n + 1)̃h + K X̃ ) ⊗OE ∼=
r⊕

i=1

OPn−1(2 − αi), (5)

hence αi ≤ 2 for i = 1, . . . , r.
Consider Sequence (4) and let C be the intersection of X ⊆ PN with a general linear subspace of dimension N − n + 1. 

Since C E = h̃n−1 E = (−1)n−1 En = 1, it follows that the restriction to C of the above sequence tensored by E and the 
equalities c1(E )̃hn−1 = c1(E ⊗OC ), c1(E(−E)) = c1(E) − rE yield 

∑r
i=1 αi = r. �

When n = 2, E ⊗ OE certainly splits and the above lemma implies that the numbers of 0’s and of 2’s in the sequence 
α1, . . . , αr must coincide.

Example 2. It is not true in general that E ⊗OE is a sum of line bundles on E when n ≥ 3.
Indeed, let X = P3 be the Veronese threefold in P9 embedded via OX (h) := OP3 (2). Consider the blow up σ : X̃ → X of 

a point P ∈ X with the exceptional divisor E .
It is well known that the threefold X̃ is isomorphic to a del Pezzo threefold of degree 7 in P8 embedded via the linear 

system σ ∗OX (h) ⊗O X̃ (−E).
As pointed out in [6], the threefold X̃ is endowed with a natural isomorphisms X̃ ∼= P(OP2 ⊕ OP2 (1)), thus there is a 

projection map π : X̃ → P2. The group Pic( X̃) is freely generated by the classes ξ and f of OP(O
P2 ⊕O

P2 (1))(1) and π∗OP2 (1), 
respectively. The intersection theory on X̃ is given by ξ3 = ξ2 f = ξ f 2 = 1 and f 3 = 0. Thus the class of E is ξ − f , h = ξ + f
and the class of a line � on E is Eh = ξ2 − f 2.

According to [6], there is an Ulrich bundle E of rank 2 with c1(E) = 2ξ + 2 f and c2(E) = 3ξ2 + 3 f 2. The Chern classes 
of E ⊗OE are c1(E ⊗OE) = 2ξ2 − 2 f 2 = 2� and c2(E ⊗OE ) = 3. If E ⊗OE ∼= OP2 (α1) ⊕OP2 (α2) splits, then α1 + α2 = 2
and α1α2 = 3, which is obviously impossible.

The following result inverts partially Theorem 3.1.

Theorem 4.2. Let X be a smooth variety of dimension n ≥ 2 endowed with a very ample line bundle OX (h). Assume that O X̃ (̃h) is 
also very ample. If E is an Ulrich bundle with respect to O X̃ (̃h) such that E ⊗OE ∼=OPn−1(1)⊕r , then σ∗E(E) is Ulrich with respect to 
OX (h).

Proof. Since E(E) ⊗OE ∼=O⊕r
Pn−1 by hypothesis, it follows that F := σ∗E(E) is a vector bundle (see Corollary 2.2) and E ∼= F̃

(see Corollary 2.3).
We will show that

hi(X,σ∗E(E) ⊗OX (−th)
) = 0, i = 0, . . . ,n, t = 1, . . . ,n. (6)
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Recall that Riσ∗E(E) = 0 for i ≥ 1, thanks to Theorem 2.1. It follows that for t = 1, . . . , n and i ≥ 0,

hi(X,σ∗E(E) ⊗OX (−th)
) = hi( X̃,E(−t̃h − (t − 1)E)

)
(7)

whence we immediately deduce Equalities (6) when t = 1.
Now let us restrict to the case t = 2, . . . , n. Recall that E ′ := E∨(K X̃ + (n + 1)̃h) is also Ulrich, hence

hi( X̃,E ′(−t̃h)
) = 0, i = 0, . . . ,n, t = 1, . . . ,n. (8)

Equalities (7) and the Serre duality on X̃ give

hi(X,σ∗E(E) ⊗OX (−th)
) = hn−i( X̃,E ′(−(n + 1 − t )̃h + (t − 1)E)

)
, (9)

for t = 2, . . . , n and i ≥ 0.
It follows from Equality (5) that E ′(E) ⊗OE ∼=O⊕r

Pn−1 . Thus for each t and λ

E ′(−(n + 1 − t )̃h + λE) ⊗OE ∼= OPn−1(t − λ − n)⊕r,

hence hn−i
(

X̃, E ′(−(n + 1 − t )̃h + λE) ⊗OE
) = 0 in the range t = 2, . . . , n and λ = 1, . . . , t − 1 because E ∼= Pn−1.

The cohomology of Sequence (4) tensored by E ′(−(n + 1 − t )̃h + λE) yields that

hn−i( X̃,E ′(−(n + 1 − t )̃h + (λ − 1)E)
) = hn−i( X̃,E ′(−(n + 1 − t )̃h + λE)

)
for each i ≥ 0, t = 2, . . . , n and λ = 1, . . . , t − 1. It follows that

hn−i( X̃,E ′(−(n + 1 − t )̃h + (t − 1)E)
) = hn−i( X̃,E ′(−(n + 1 − t )̃h)

)
.

By combining the above identity with Equalities (8) and (9), we finally deduce that Equalities (6) hold also for t =
2, . . . , n. �
Example 3. The restriction E ⊗OE ∼=OPn−1 (1)⊕r cannot be removed from the hypothesis of the above theorem.

Indeed, let 3 ≤ d ≤ 9. Recall that a del Pezzo surface Xd of degree d is the blow up of P2 at a set of 9 − d points 
P1, . . . , P9−d in general position. In particular, Xd−1 is the blow up X̃d of Xd at a single point P := P10−d , and we will 
denote by σd−1 : Xd−1 = X̃d → Xd such a blow-up map.

We recall that the linear system of cubics through P1, . . . , P9−d is very ample and gives an embedding Xd ⊆ Pd with 
hyperplane class h. Moreover, each Xd contains a finite number of lines with respect to such an embedding. The group 
Pic(Xd) is freely generated by the class � of the pull-back of a general line in P2 and by the classes e1, . . . , e9−d of the 
exceptional divisors on Xd . In particular e9−d is the class of the exceptional divisor E of σd . From now on, we will omit d
in the subscripts, because we assume it fixed.

There exists a stable Ulrich bundle E of rank 2 fitting into an exact sequence

0 −→ O X̃ (3� −
8−d∑
i=1

ei − 2 e9−d) −→ E −→ IQ | X̃ (3� −
8−d∑
i=1

ei) −→ 0,

where Q is a point in X̃ not lying on any line (see Example 6.4 of [4]). Thus, restricting the above sequence to E ∼= P1, 
whose class is e9−d , we obtain an exact sequence of the form

OE(2) −→ E ⊗OE −→ OE −→ 0,

which is trivially exact also on the left, because the kernel of E ⊗ OE → OE is an invertible sheaf. We conclude that 
E ⊗ OE ∼= OPn−1 ⊕ OPn−1(2) since Ext1

Pn−1

(
OPn−1 , OPn−1 (2)

) ∼= H1
(
Pn−1, OPn−1(2)

) = 0. It follows that σ∗E(E) is not locally 
free, due to Corollary 2.2.

Remark 2. Theorem 0.3 of [11] states that if σ : X̃ → X is a blow up at P ∈ X and E is an Ulrich bundle of rank 2 which is 
special in the sense of [8] (i.e. E ∼= E∨(3̃h + K X̃ )), then σ∗E(E) is a special Ulrich bundle on S .

The proof therein contains a gap which cannot be overcome. For example, the bundle E described in the example satisfies 
c1(E) =O X̃ (2h) ∼=O X̃ (3̃h + K X̃ ), hence E is a special Ulrich bundle, but σ∗E(E) is not locally free.
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