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A basic question concerning indecomposable Soergel bimodules is to understand their en-
domorphism rings. In characteristic zero all degree-zero endomorphisms are isomorphisms 
(a fact proved by Elias and the second author) which implies the Kazhdan–Lusztig conjec-
tures. More recently, many examples in positive characteristic have been discovered with 
larger degree zero endomorphisms. These give counter-examples to expected bounds in 
Lusztig’s conjecture. Here we prove the existence of indecomposable Soergel bimodules in 
type A having non-zero endomorphisms of negative degree. This gives the existence of a 
non-perverse parity sheaf in type A.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

L’étude de l’anneau des endomorphismes des bimodules de Soergel indécomposables est 
une question importante. En caractéristique zéro, tous les endomorphismes de degré zero 
sont des isomorphismes (comme démontré par Elias et le deuxième auteur). Ceci implique 
les conjectures de Kazhdan–Lusztig. Plus récemment, en caractéristique positive, de nom-
breux exemples ont été trouvés d’endomorphismes de degré zero qui ne sont pas des 
isomorphismes. Ceci donne des contre-exemples aux bornes dans la conjecture de Lusz-
tig. Dans cette Note, nous prouvons l’existence de bimodules de Soergel indécomposables, 
de type A, ayant un endomorphisme de degré négatif. Ceci prouve l’existence d’un faisceau 
de parité non pervers de type A.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Kazhdan–Lusztig polynomials play a central role in highest weight representation theory. It is gradually becoming clear 
that in modular (i.e. characteristic p) representation theory a similarly central role is played by p-Kazhdan–Lusztig polyno-
mials [12,9,16,15,1]. Just as Kazhdan–Lusztig polynomials describe the stalks of intersection cohomology complexes on flag 
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varieties, p-Kazhdan–Lusztig polynomials describe the stalks of parity sheaves with coefficients in a field of characteristic p
[12, Part 3].

Kazhdan–Lusztig polynomials are characterised by a self-duality condition and a degree bound, which mimics the defin-
ing properties of the intersection cohomology sheaf. Currently there exists no similar combinatorial characterisation of 
p-Kazhdan–Lusztig polynomials, however they always satisfy the self-duality condition. An important problem concerning 
p-Kazhdan–Lusztig polynomials is whether the degree bound for p-Kazhdan–Lusztig polynomials can “fail by more than 
one”. In the language of parity sheaves, this translates into the question as to whether an indecomposable parity sheaf is 
necessarily perverse. In the language of Soergel bimodules, it translates into the question as to whether an indecompos-
able Soergel bimodule can have non-zero (and necessarily nilpotent) endomorphisms of negative degree. In this paper an 
indecomposable Soergel bimodule possessing such an endomorphism is called non-perverse.

Since the beginning of the theory of parity sheaves, it was known that parity sheaves need not be perverse on nilpotent 
cones and on the affine flag variety (see [7, §4.3] and [8, Lemma 3.7]). In 2009, the second author found an example of 
a parity sheaf on a finite flag variety of type C3 in characteristic 2 which is not perverse [9, §5.4]. Moreover, a recent 
conjecture of Lusztig and the second author implies that parity sheaves can be arbitrarily far from being perverse on the 
affine flag manifold of SL3 [10]. However, in [8,11] it is proved that parity sheaves on the affine Grassmannian are perverse 
as long as p is a good prime. (Recall that a prime p is good for a fixed root system if it does not divide any coefficient 
of the highest root when expressed in the simple roots.) Extensive calculations on finite flag varieties have suggested that 
parity sheaves are perhaps perverse in good characteristic. Recently, Achar and Riche proved that this would have nice 
consequences (existence of “Koszul like gradings”) on modular category O [2].

In this note we prove the existence of a parity sheaf in characteristic p = 21 on the flag variety GL15/B which is not 
perverse. In other words, non-perverse Soergel bimodule for S15 exist. Our construction is a variation of the method of [16]. 
We expected to be able to produce many examples in this way (and thus obtain results similar to [16] for non-perverse 
Soergel bimodules), however extensive computer calculations only produced a few more examples, all in characteristic 2.

Another interesting consequence of our construction is that it gives a Schubert variety for the general linear group with 
no semi-small (generalised) Bott–Samelson resolution. More generally, the Schubert variety in question admits no semi-small 
even (in the sense of [7, §2.4]) resolution. Probably the Schubert variety admits no semi-small resolution at all.

2. Soergel and singular Soergel diagrammatics

2.1. Hecke algebra and spherical module

Fix n ≥ 0. Let W := Sn denote the symmetric group on n letters, viewed as a Coxeter group (W , S) where S = {si}1≤i≤n−1
is the set of simple transpositions (i.e. si := (i, i + 1)), with length function � and Bruhat order ≤. Let H denote the Hecke 
algebra of (W , S) with standard Z[v±1]-basis {hx}x∈W and Kazhdan–Lusztig basis {bx}x∈W (e.g., bs = hs + vhid for all s ∈ S). 
We write bx := ∑

βy,xhy (so βy,x are Kazhdan–Lusztig polynomials). For any expression x := (s1, s2, . . . , sm) we set bx :=
bs1 bs2 . . .bsm .

For any subset A ⊂ S we denote by W A the (standard parabolic) subgroup it generates, by w A ∈ W A the longest element 
and by W A the minimal coset representatives for W /W A . Corresponding to A we have the spherical (left) module M
with its standard basis {mx}x∈W A and Kazhdan–Lusztig basis {cx}x∈W A (see [13, §3], note however that we work with left 
modules throughout). We write cx := ∑

y,x∈W A γy,xmy (so γy,x are spherical Kazhdan–Lusztig polynomials). The map mx �→
hxw A gives an embedding φ : M ↪→ H of left H-modules mapping cx �→ bxw A [13, Proposition 3.4]. Given any expression 
x := (s1, s2, . . . , sm) we set cx := bs1 bs2 . . .bsm · mid ∈ M .

2.2. Diagrammatic Soergel bimodules

Fix a field k of characteristic p ≥ 0 and let R := k[x1, . . . , xn] be graded with deg xi = 2. The symmetric group W
acts naturally on R via permutation of variables. With W and R one may associate an additive graded and Karoubian 
monoidal category H of “diagrammatic Soergel bimodules” as in [5]. We denote the shift functor on H by B �→ B(i)
for i ∈ Z. For any expression x we denote by Bx the corresponding Bott–Samelson object in H and (if x is reduced) by 
Bx its maximal indecomposable summand. By [5, Theorem 6.26] the set {Bx | x ∈ W } is a complete set of isomorphism 
classes of indecomposable objects in H, up to shift and isomorphism. We denote by [H] the split Grothendieck ring 
of H (a Z[v±1]-module via v · [M] := [M(1)]) and by ch : H → H the character [5, §6.5] (ch is uniquely characterised 
by ch(Bx) = bx and ch(M(1)) = v ch(M)). It induces an isomorphism ch : [H] ∼→ H . We denote by pbx := ch(Bx) ∈ H the 
character of Bx . The set {pbx}x∈W only depends on the characteristic p of k and yields the p-canonical basis of H . We have 
0bx = bx for all x ∈ W . The expression pbx = ∑ pβy,xhy defines the p-Kazhdan–Lusztig polynomials pβy,x .

1 Note that p = 2 is good for GLn .
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2.3. Diagrammatic Spherical category

For any subset A ⊂ S we denote by M the spherical category associated with A (see [3, §5]). It is a graded additive 
Karoubian left H-module category with shift functor C �→ C(m). We denote by C id the “identity” of M (in the notation 
of [3], C id is given by the empty diagram consisting only of the A-colored membrane). For any expression x we denote 
by Cx the object Bx · C id and (if x is a reduced expression for x ∈ W A ) by Cx its maximal indecomposable summand. The 
set {Cx | x ∈ W A} is a complete set of isomorphism classes of indecomposable objects in M, up to shift and isomorphism. 
We denote by [M] the split Grothendieck group of M (a Z[v±1]-module as above) and by ch : M → M the character (it 
is uniquely characterised by ch(Cx) = cx and ch(C(1)) = v ch(C)). The character map satisfies ch(BC) = ch(B) ch(C) for all 
B ∈ H and C ∈ M, and induces an isomorphism ch : [M] ∼→ M of left H∼=[H]-modules. We denote by pcx := ch(Cx) ∈ M
the character of Cx . The set {pcx}x∈W A yields the p-canonical basis of M . We have 0cx = cx for all x ∈ W A . The expression 
pcx = ∑

y∈W A
pγy,xmy defines the spherical p-Kazhdan–Lusztig polynomials pγy,x .

There is a functor � :M →H of left H-module categories which sends C id to B w A (see [3, Definition 5.4]) and satisfies 
�(Cx) = Bxw A for all x ∈ W A . Passing to split Grothendieck groups as above it realises the embedding φ : M ↪→ H . In 
particular φ(pcx) = pbxw A and hence

pγy,x = pβyw A ,xw A (2.1)

for all x, y ∈ W A .

2.4. Soergel’s hom formulas

Consider the bilinear form (−, −) : H × H → Z[v±1] on H defined in [5, §2.4]. It satisfies (ph, qh′) = pq(h, h′), (bsh, h′) =
(h, bsh′) and (hbs, h′) = (h, h′bs) for all p, q ∈ Z[v±1], h, h′ ∈ H and s ∈ S (see [5, §2.4]). Similarly, there is a unique bilinear 
form (−, −) : M × M → Z[v±1] defined by (m, m′) := (φ(m), φ(m′))/̃π(A) ∈ Z[v±1], where ̃π(A) := ∑

x∈W A
v2�(x) . It satisfies 

(pm, qm′) = pq(m, m′) and (bsm, m′) = (m, bsm′) for all p, q ∈ Z[v±1], m, m′ ∈ M and s ∈ S . (It is not immediately obvious 
that (φ(m), φ(m′))/̃π(A) always belongs to Z[v±1], but this is the case by [14, (2.9)].)

Given B, B ′ ∈H we denote by Hom•(B, B ′) := ⊕
n∈Z HomH(B, B ′(n)), which is naturally a graded R-bimodule. Similarly, 

given C, C ′ ∈M we denote by Hom•(C, C ′) := ⊕
n∈Z HomM(C, C ′(n)), which is naturally a graded (R, R A)-bimodule (see [3, 

Definition 5.1]). Soergel’s hom formulas (crucial below) are the statements:

For B, B ′ ∈ H, Hom•(B, B ′) is graded free as a left R-module,

of graded rank (ch(B), ch(B ′)).
(2.2)

For C, C ′ ∈ M, Hom•(C, C ′) is graded free as a left R-module,

of graded rank (ch(C), ch(C ′)).
(2.3)

As in the introduction, we say that an indecomposable object X ∈ H (resp. X ∈ M) is perverse if it has no non-zero 
endomorphisms of negative degree. (This terminology comes from [4], where such bimodules play a key role in the proof 
of Soergel’s conjecture.) The following lemmas are a direct consequence of the hom formulas above (see [4, (6.1)]):

Lemma 2.1. A self-dual Soergel bimodule B is perverse ⇔ ch(B) = ⊕
z∈W Zbz.

Lemma 2.2. A self-dual element C ∈M is perverse ⇔ ch(C) = ⊕
z∈W A Zcz.

Below we will prove that there exists a non-perverse object in M. By (2.1) non-perverse objects in M produce non-
perverse objects in H by application of the functor �.

2.5. Intersection forms in M

In what follows we identify W A and W /W A via the canonical isomorphism given by the composition W A ↪→ W �
W /W A . If I ⊂ W /W A is an ideal (i.e. x ≤ y ∈ I ⇒ x ∈ I) we denote by MI the ideal of M generated by all morphisms 
which factor through an object C y , for any reduced expression y for y ∈ I .

Given x ∈ W A we denote by M≥x the quotient category M/M�≥x where �≥x := {y ∈ W A | y �≥ x}. We write Hom≥x

for (degree zero) morphisms in M≥x . All objects Cx corresponding to reduced expressions x for x become canonically 
isomorphic to Cx in M≥x . For C ∈M and any x ∈ W A the spaces

Hom•≥x(Cx, M) =
⊕

Hom≥x(Cx, M(i)) and Hom•≥x(M, Cx) =
⊕

Hom≥x(M, Cx(i))

are free as graded left R-modules of graded rank px where ch(M) = ∑
x∈W A pxmx . In particular, we have End≥x(Cx) = R . 

Given an expression w and an element x ∈ W A , the intersection form is the canonical pairing
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Ikx,w,d : Hom≥x(Cx(d), C w) × Hom≥x(C w , Cx(d)) → k = End≥x(Cx(d))/(R+)

where R+ ⊂ R denotes the ideal of elements of positive degree.

Lemma 2.3. The multiplicity of Cx(d) as a summand of C w equals the rank of Ikx,w,d.

Proof. This claim is standard for a k-linear Krull–Schmidt category with finite dimensional Hom spaces. For one proof see 
[7, Lemma 3.1]. �
2.6. Parabolic defect

Fix a word y = si1 . . . sim in S representing an element y ∈ W . A subexpression of y is a sequence e = e1 . . . em with 
ei ∈ {0, 1} for all i. We set ye := se1

i1
. . . sem

im
∈ W . Any subexpression e determines a sequence y0, y1, . . . , ym ∈ W via y0 := id , 

y j := s
em+1− j

im+1− j
y j−1 for 1 ≤ j ≤ m (so ym = ye). Given a subexpression e we associate a sequence d j ∈ {U , D, S} (for Up, Down, 

Stay) via

d j :=

⎧⎪⎨
⎪⎩

U if ym− j < si j ym− j ∈ W /W A ,

D if ym− j > si j ym− j ∈ W /W A ,

S if si j ym− j = ym− j in W /W A .

We usually view e as the decorated sequence (d1e1, . . . , dmem). The parabolic defect of e is

pdf(e) := |{i | diei = U 0 or S1}| − |{i | diei = D0 or S0}|.
One can see readily from the formula for bscx (see [13, §3] for example) the following formula of Dehodar

mx =
∑
e⊂x

vpdf(e)mxe , (2.4)

where xe is viewed as an element of W /W A .

3. Existence of a non-perverse indecomposable Soergel bimodule

3.1. Strategy of the proof

Consider a reduced expression w representing an element w ∈ W A and another element x ∈ W A , such that

rk(IQx,w,−1) = 1 , rk(IF2
x,w,−1) = 0 and (3.1)

mw ∈
⊕

x<z≤w

Z[v]mz ⊕
⊕
x≮z

Z[v, v−1]mz. (3.2)

Lemma 3.1. If the above hypotheses are satisfied, then there is a non-perverse indecomposable object in M over the field F2 .

Proof. Suppose, for contradiction, that there is no non-perverse indecomposable object in M over the field F2. By 
Lemma 2.2 we have

2my ∈
⊕

z∈W A

Zmz for all y < w. (3.3)

By Lemma 2.3 we have the following formulae

cw = mw −
∑
x<w

x∈W A

(∑
d∈Z

rk(IQx,w,d)vd
)

cx and 2cw = mw −
∑
x<w

x∈W A

(∑
d∈Z

rk(IF2
x,w,d)vd

)
2cx.

By Equations (3.1), (3.2) and (3.3) we have that v−1mx appears in the expansion of 2cw in the standard basis. Now apply 
Lemma 2.2 again. �
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Fig. 1. The reduced expression w .

3.2. The elements w and x

Consider the string diagram in Fig. 1. We denote the corresponding reduced expression (obtained by reading from bottom 
to top) by w , so that

w = (s1, s2, . . . , s14, s2, s3, . . . , s13, s4, s5, . . . , s12, s3, s4, . . . , s11, . . .) =: (t1, . . . , t78).

Let w ∈ W A be the element represented by w . By [16, Lemma 5.5] (or by simple inspection), w is reduced. Let us define 
x := w B ∈ W A .

3.3. Proof of equations (3.1) and (3.2)

If e = (e1, e2, . . . , e78) is a reduced expression of w with we ∈ w B W A , then, by [16, Lemma 5.6] ti = s4 =⇒ ei = 0 and 
for length reasons one has that if ti = s j with j ≥ 5 then ei = 1. In both these cases di is U . So a subexpression e of w for x
is completely determined by its “y-part” (see Fig. 1). In other words, it is determined by the sets I0 := {i | ti = s j with j ≤ 3
and ei = 0} and I1 := {i | ti = s j with j ≤ 3 and ei = 1} (in these cases di = S). By the definition of the parabolic defect, one 
has that

pdf(e) = 11 − |I0| + |I1|.
With this formula we see that if e is a subexpression of w for x we have pdf(e) = −1 ⇔ |I0| = 12, and thus there is only 
one subexpression satisfying this. On the other hand, pdf(e) = 1 ⇔ |I0| = 11, thus there are 12 subexpressions satisfying 
this. Thus, in this case, the intersection form IQx,w,−1 is a 1 × 12-matrix. One can calculate explicitly that this matrix is given 
by

(−2,−2,0,−2,−2,0,−2,−2,−2,2,0,0).

To perform this calculation one uses the main result of [6] together with the same reductions used at the end of [16, 
§5]. For 1 ≤ i < 15 let αi := xi+1 − xi ∈ R denote the simple root and let ∂i : R → R(−2) : f �→ ( f − si( f ))/αi denote the 
Demazure operator. Each of the 12 entries above is the result of erasing one ∂i from the following expression (which is 
equal to 0 for degree reasons)

∂1∂2∂3(α4∂2∂3(α
2
4∂3(α

2
4∂1∂2∂3(α

2
4∂2∂3(α

2
4∂3(α

2
4)))))).

For example, if we erase the fourth ∂ (i.e. ∂2), we obtain the fourth entry of the intersection form

∂1∂2∂3(α4∂3(α
2
4∂3(α

2
4∂1∂2∂3(α

2
4∂2∂3(α

2
4∂3(α

2
4)))))) = −2.

Note that this matrix has rank 1 over Q, but rank 0 over a field of characteristic 2. This proves (3.1).
To check (3.2) one needs to do a big computer check. But there is one point that needs explanation about this calculation. 

If one considers all the subexpressions of w one has 278 possibilities. This is too big even for our computer! Suppose 
e = (e1, e2, . . . , e78) is a subexpression such that we W A belongs to the interval [xW A, wW A], then for any i such that 
ti ∈ W B we must have ei = 1. Thus we “only” need to check 223 subexpressions, which is feasible by computer (and takes 
our machine 20 minutes).
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