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We prove that entire, complex valued solutions to the Ginzburg–Landau system with pos-
itive real and imaginary parts are constant in any spatial dimension. This property was 
shown very recently only in the planar case.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous prouvons que des solutions complexes au système de Ginzburg–Landau dans l’espace 
entier avec des parties réelles et imaginaires positives sont constantes dans toute dimen-
sion spatiale. Cette propriété a été démontrée très récemment, mais seulement dans le cas 
planaire.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and proof of the main result

We consider (classical) solutions (u, v) : RN →R
2, with u, v > 0 and N ≥ 2, to the Ginzburg–Landau system

−�u = u − u3 − uv2,

−�v = v − v3 − vu2.
(1)

In this short note, we will establish the following Liouville-type property, which was shown very recently in [4] only for 
N ≤ 2 with an argument that does not work in higher dimensions (see Theorem 1.7 therein). More precisely, this property 
for N ≤ 2 was derived in the aforementioned reference as a direct consequence of the observation that the first inequality 
in (2) implies that the components of such solutions are super-harmonic (for any N ≥ 1), a fact that we will also use to 
reach (3).

Theorem 1.1. Under the above assumptions, it holds that u, v are constants such that u2 + v2 = 1.
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Proof. We recall from Theorems 1.3 and 1.11 in [4] that

u2 + v2 ≤ 1 and u + v > 1 in R
N . (2)

In passing, we point out that the first inequality in the above relation holds for any entire solution to (1), see also [2].
Arguing as in the proof of Theorem 1.1 in [3] (componentwise, see also [5, Thm. 3.2]), we deduce that there exists a 

constant C > 0 such that∫
B R

|∇u|2dx ≤ C R N−2 and
∫
B R

|∇v|2dx ≤ C R N−2 for all R > 1, (3)

(where B R denotes the ball with center at the origin and radius R). In the sequel, abusing notation, we will progressively 
increase the value of the generic constant C .

Next, we will use a family of smooth cutoffs 0 ≤ φR ≤ 1 such that

φR = 1 in B R; φR = 0 in R
N \ B2R; |∇φR | ≤ C R−1, (4)

for R > 1. We test (1) by (φR u, φR v), and integrate by parts, to arrive at∫
B2R

(u2 + v2)(1 − u2 − v2)φR dx =
∫

B2R

(
|∇u|2 + |∇v|2

)
φR dx +

∫
B2R

(u∇u∇φR + v∇v∇φR)dx. (5)

By virtue of (2), (3), (4) and the Cauchy–Schwartz inequality, we find that∣∣∣∣∣∣∣
∫

B2R

u∇u∇φR dx

∣∣∣∣∣∣∣
≤ C R N−2 for R > 1.

Analogously we can estimate the remaining terms in the righthand side of (5) to deduce that∫
B2R

(u2 + v2)(1 − u2 − v2)φR dx ≤ C R N−2 for R > 1.

In turn, via (2) and (4), we infer that∫
B R

(1 − u2 − v2)2 dx ≤ C R N−2 for R > 1.

Consequently, recalling (3), we have the following upper bound for the local energy:

E R(u, v) =
∫
B R

{ |∇u|2
2

+ |∇v|2
2

+ (1 − u2 − v2)2

4

}
dx ≤ C R N−2 for R > 1.

The assertion of the theorem now follows readily from the famous η-ellipticity theorem (see Theorem 2 in [1] and Theo-
rem A.1 below), see also the proof of Theorem 1.1 in [6] for a similar argument.

The proof of the theorem is complete.
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Appendix A. The η-ellipticity theorem

For the reader’s convenience, we include below the η-ellipticity theorem from [1] in the scaled form that we employed 
above. This follows at once by setting ε = R−1 in the assertion of [1, Thm. 2] and stretching coordinates.

Theorem A.1. Suppose that u, v ∈ C2
(
R

N ;R)
, N ≥ 2, solve (1) and satisfy

E R(u, v) =
∫
B R

{ |∇u|2
2

+ |∇v|2
2

+ (1 − u2 − v2)2

4

}
dx ≤ η(ln R)R N−2

for some R > 2 and η > 0. Then, it holds
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|(u(0), v(0))| ≥ 1 − Kηα

for some K , α > 0 that depend only on the dimension N.
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