
C. R. Acad. Sci. Paris, Ser. I 355 (2017) 760–768
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Complex analysis/Differential geometry

Remarks on the canonical metrics on the Cartan–Hartogs 

domains

Remarques sur les métriques canoniques des domaines de Cartan–Hartogs

Enchao Bi a, Zhenhan Tu b

a School of Mathematics and Statistics, Qingdao University, Qingdao, Shandong 266071, PR China
b School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei 430072, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 May 2017
Accepted after revision 28 June 2017
Available online 4 July 2017

Presented by the Editorial Board

The Cartan–Hartogs domains are defined as a class of Hartogs-type domains over 
irreducible bounded symmetric domains. For a Cartan–Hartogs domain �B (μ) endowed 
with the natural Kähler metric g(μ), Zedda conjectured that the coefficient a2 of the 
Rawnsley’s ε-function expansion for the Cartan–Hartogs domain (�B (μ), g(μ)) is constant 
on �B (μ) if and only if (�B(μ), g(μ)) is biholomorphically isometric to the complex 
hyperbolic space. In this paper, following Zedda’s argument, we give a geometric proof of 
the Zedda’s conjecture by computing the curvature tensors of the Cartan–Hartogs domain 
(�B (μ), g(μ)).
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r é s u m é

Les domaines de Cartan–Hartogs sont définis comme une classe de domaines de type 
Hartogs sur les domaines symétriques bornés irréductibles. Pour un domaine de Cartan–
Hartogs �B (μ) muni de sa métrique de Kähler naturelle g(μ), Zedda a conjecturé que 
le coefficient a2 du développement de la fonction ε de Rawnsley relative au domaine de 
Cartan–Hartogs (�B (μ), g(μ)) est constant sur �B(μ) si et seulement si (�B(μ), g(μ))

est biholomorphiquement isométrique à l’espace hyperbolique complexe. Dans cet article, 
en nous appuyant sur ses arguments, nous donnons une preuve géométrique de la 
conjecture de Zedda en calculant les tenseurs de courbure du domaine de Cartan–Hartogs 
(�B (μ), g(μ)).
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1. Introduction

The expansion of the Bergman kernel has received a lot of attention recently, due to the influential work of Donaldson, 
see, e.g., [5], about the existence and uniqueness of constant scalar curvature Kähler metrics (cscK metrics). Donaldson used 
the asymptotics of the Bergman kernel proved by Catlin [4] and Zelditch [23] and the calculation of Lu [12] of the first 
coefficient in the expansion to give conditions for the existence of cscK metrics.

Assume that D is a bounded domain in Cn and ϕ is a strictly plurisubharmonic function on D . Let g be a Kähler metric 
on D associated with the Kähler form ω =

√−1
2 ∂∂ϕ . For α > 0, let Hα be the weighted Hilbert space of square integrable 

holomorphic functions on (D, g) with the weight exp{−αϕ}, that is 

Hα :=
⎧⎨
⎩ f ∈ Hol(D)

∣∣∣∣∣∣
∫
D

| f |2 exp{−αϕ}ω
n

n! < +∞
⎫⎬
⎭ ,

where Hol(D) denotes the space of holomorphic functions on D . Let Kα be the Bergman kernel (namely, the reproducing 
kernel) of Hα if Hα �= {0}. The Rawnsley’s ε-function on D (see Cahen–Gutt–Rawnsley [2] and Rawnsley [17]) associated 
with that the metric g is defined by 

εα(z) := exp{−αϕ(z)}Kα(z, z), z ∈ D.

Note the Rawnsley’s ε-function depends only on the metric g and not on the choice of the Kähler potential ϕ (which is 
defined up to an addition with the real part of a holomorphic function on D). The asymptotics of the Rawnsley’s ε-function 
εα was expressed in terms of the parameter α for compact manifolds by Catlin [4] and Zelditch [23] (for α ∈ N) and for 
non-compact manifolds by Ma–Marinescu [13,14]. In some particular cases, it was also proved by Engliš [6,7].

The Cartan–Hartogs domains are defined as a class of Hartogs-type domains over irreducible bounded symmetric do-
mains. Let � be an irreducible bounded symmetric domain in Cd of genus γ . The generic norm of � is defined by 

N(z, ξ) := (V (�)K (z, ξ))−1/γ ,

where V (�) is the total volume of � with respect to the Euclidean measure of Cd and K (z, ξ) is its Bergman kernel. Thus 
0 < N�(z, ̄z) ≤ 1 for all z ∈ � and N�(0, 0) = 1. For an irreducible bounded symmetric domain � in Cd and a positive real 
number μ, the Cartan–Hartogs domain �B (μ) is defined by 

�B(μ) :=
{
(z, w) ∈ � ×C : |w|2 < N(z, z)μ

}
.

For the Cartan–Hartogs domain �B (μ), define 


(z, w) := − log(N(z, z)μ − |w|2).
The Kähler form ω(μ) on �B(μ) is defined by 

ω(μ) :=
√−1

2
∂∂
.

We endow the Cartan–Hartogs domain �B (μ) with the Kähler metric g(μ) associated with the Kähler form w(μ). For the 
Cartan–Hartogs domain (�B (μ), g(μ)), the Rawnsley’s ε-function admits the following finite expansion (e.g., see Th. 3.1 in 
Feng–Tu [8]): 

εα(z, w) =
d+1∑
j=0

a j(z, w)αd+1− j, (z, w) ∈ �B(μ). (1.1)

By Th. 1.1 of Lu [12], Th. 4.1.2 and Th. 6.1.1 of Ma–Marinescu [13], Th. 3.11 of Ma–Marinescu [14] and Th. 0.1 of Ma–
Marinescu [15], see also Th. 3.3 of Xu [20], we have ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a0 = 1,

a1 = 1

2
kg(μ),

a2 = 1

3
�kg(μ) + 1

24
|R g(μ)|2 − 1

6
|Ricg(μ)|2 + 1

8
k2

g(μ),

(1.2)

where kg(μ) , �, R g(μ) and Ricg(μ) denote the scalar curvature, the Laplace, the curvature tensor and the Ricci curvature 
associated with the metric g(μ) on the Cartan–Hartogs domain �B (μ), respectively.
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Let Bd be the unit ball in Cd and let the metric ghyp on Bd be given by

ds2 = −
d∑

i, j=1

∂2 ln(1 − ‖z‖2)

∂zi∂z j
dzi ⊗ dz j .

We denote by (Bd, ghyp) the complex hyperbolic space. Note that ghyp = 1
d+1 gB on Bd for the Bergman metric gB of Bd . 

When � is the unit ball in Cd and μ = 1, then the Cartan–Hartogs domain (�B (μ), g(μ)) is the complex hyperbolic space 
in Cd+1. With the exception of the complex hyperbolic space which is obviously homogeneous, each Cartan–Hartogs domain 
(�B(μ), g(μ)) is a noncompact, nonhomogeneous, complete Kähler manifold. Further, for some particular value μ0 of μ, 
g(μ0) is a Kähler–Einstein metric (see Yin–Wang [21]).

Recently, Loi–Zedda [11] and Zedda [22] studied the canonical metrics on the Cartan–Hartogs domains. By calculating 
the scalar curvature kg(μ) , the Laplace �kg(μ) of kg(μ) , the norm |R g(μ)|2 of the curvature tensor R g(μ) and the norm 
|Ricg(μ)|2 of the Ricci curvature Ricg(μ) of a Cartan–Hartogs domain (�Bd0

(μ), g(μ)), Zedda [22] has proved that if the 
coefficient a2 of the Rawnsley’s ε-function expansion for the Cartan–Hartogs domain (�B (μ), g(μ)) is constant on �B (μ), 
then (�B(μ), g(μ)) is Kähler–Einstein. Moreover, Zedda [22] conjectured that the coefficient a2 of the Rawnsley’s ε-function 
expansion for the Cartan–Hartogs domain (�B (μ), g(μ)) is constant on �B (μ) if and only if (�B (μ), g(μ)) is biholomor-
phically isometric to the complex hyperbolic space.

In 2014, Feng–Tu [8] proved this conjecture by giving the explicit expression of the Rawnsley’s ε-function expansion for 
the Cartan–Hartogs domain (�B (μ), g(μ)). The methods in Feng–Tu [8] are very different from the argument in Zedda [22]. 
In this paper, following the framework of Zedda [22], we give a geometric proof of Zedda’s conjecture by computing the 
curvature tensors of the Cartan–Hartogs domain (�B (μ), g(μ)). We will prove the following result:

Theorem 1.1. Let (�B(μ), g(μ)) be a Cartan–Hartogs domain endowed with the canonical metric g(μ). Then the coefficient a2 of the 
Rawnsley’s ε-function expansion for the Cartan–Hartogs domain (�B(μ), g(μ)) is constant on �B(μ) if and only if (�B(μ), g(μ))

is biholomorphically isometric to the complex hyperbolic space.

Let � be the irreducible bounded symmetric domain endowed with its Bergman metric gB and let R gB denote the curva-
ture tensor associated with (�, gB ). When the coefficient a2 of the Rawnsley’s ε-function expansion for the Cartan–Hartogs 
domain (�B(μ), g(μ)) is constant on �B (μ), we will use the curvature tensor R gB on � to determine �B(μ), which means, 
in this case, that (�B (μ), g(μ)) must be biholomorphically isometric to the complex hyperbolic space.

For general references for this paper, see Feng–Tu [8] and Zedda [22]. For the sake of simplicity, similar to Zedda [22], 
the Cartan–Hartogs domains in this paper will be restricted to the Hartogs-type domains over the irreducible bounded 
symmetric domains only with one-dimensional fibers.

2. Preliminaries

Let � be an irreducible bounded symmetric domain of Cd of genus γ and let N(z, z) denote the generic norm of �. 
Define 

g�(μ) := μ

γ
gB , (2.1)

where gB is the Bergman metric of �. Then, from Zedda [22], we have the following results.

Lemma 2.1 (Zedda [22], Lemma 4). The scalar curvature kg(μ) of the Cartan–Hartogs domain (�B(μ), g(μ)) is given by 

kg(μ) = d(μ(d + 1) − γ )

μ

Nμ − |w|2
Nμ

− (d + 2)(d + 1). (2.2)

Lemma 2.2 (Zedda [22], Lemma 8). The norm with respect to g(μ) of the curvature tensor R g(μ) of the Cartan–Hartogs domain 
(�B(μ), g(μ)) when evaluated at any point (0, w) ∈ �B(μ) ⊆ � ×C is given by 

[|R g(μ)|2]z=0 = (1 − |w|2)2|R g�(μ) |2 − 4|w|2(1 − |w|2)kg�(μ) + 2d(d + 1)|w|4 + 4(d + 1), (2.3)

where kg�(μ) is the scalar curvature of (�, g�(μ)) and |R g�(μ) | is the norm with respect to g�(μ) of the curvature tensor R g�(μ) of 
(�, g�(μ)).

Lemma 2.3 (Zedda [22], (39) and (40)). For the Cartan–Hartogs domain �B(μ) endowed with the Kähler metric g(μ), we have the 
following identities 

[�kg(μ)]z=0 = − d(μ(d + 1) − γ )
(1 − |w|2)((d − 1)|w|2 + 1), (2.4)
μ
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[|Ricg(μ)|2]z=0 = d(
d(μ(d + 1) − γ )

μ
)2(1 − |w|2)2+

− 2d(d + 2)
d(μ(d + 1) − γ )

μ
(1 − |w|2) + (d + 1)(d + 2)2.

(2.5)

3. The proof of the main theorem

In this section, we will give the proof of the main theorem. Firstly, by (1.2), we have 

a2(z, w) = 1

3
�kg(μ) + 1

24
|R g(μ)|2 − 1

6
|Ricg(μ)|2 + 1

8
k2

g(μ). (3.1)

For convenience, denote 

c := μ(d + 1) − γ

μ
. (3.2)

If a2(z, w) is a constant, then a2(0, w) is also a constant on |w| < 1. Then by (2.2), (2.3), (2.4) and (2.5), after a straight-
forward computation, we have the following result.

Proposition 3.1. Let � be an irreducible bounded symmetric domain of Cd of genus γ . Assume that (�B(μ), g(μ)) is a Cartan–
Hartogs domain endowed with the canonical metric g(μ). If the coefficient a2 of the Rawnsley’s ε-function expansion for the Cartan–
Hartogs domain (�B(μ), g(μ)) is constant on �B(μ), then we have 

μ = γ

d + 1
, [|R gB |2]z=0 = 2d

d + 1
, (3.3)

where gB is the Bergman metric of �.

Proof. Firstly, by (2.4), we have 

1

3
[�kg(μ)]z=0 =1

3
d · c(d − 1)|w|4 − 1

3
d · c(d − 2)|w|2 − 1

3
dc. (3.4)

Since |R g�(μ) |2 = |R gB |2 γ 2

μ2 by the definition of g�(μ) (see (2.1)), from (2.3), we get 

1

24
[|R g(μ)|2]z=0 = 1

24
[γ

2

μ2
|R gB |2 − 4d

γ

μ
+ 2d(d + 1)]|w|4 + 1

24
[−2

γ 2

μ2
|R gB |2 + 4d

γ

μ
]|w|2

+ 1

24
[γ

2

μ2
|R gB |2 + 4(d + 1)].

(3.5)

Similarly, from (2.5), one rewrite the − 1
6 [|Ricg(μ)|2]z=0 in |w|4 and |w|2 as follows 

−1

6
[|Ricg(μ)|2]z=0 = −1

6
d · c2|w|4 − 1

6
[2d(d + 2)c − 2dc2]|w|2+

− 1

6
[dc2 + (d + 1)(d + 2)2 − 2d(d + 2)c].

(3.6)

Lastly, from (2.2), we have 

1

8
[k2

g(μ)]z=0 = 1

8
d2c2|w|4 + 1

8
[2d(d + 1)(d + 2)c − 2d2c2]|w|2 + 1

8
[d2c2 + (d + 2)(d + 1)2]. (3.7)

Combining (3.1), (3.4), (3.5), (3.6) and (3.7), we have 

[a2(z, w)]z=0 = c0|w|4 + c1|w|2 + c2,

where

c0 := 1

3
dc(d − 1) + 1

24

γ 2

μ2
|R gB |2 + 1

12
d(d + 1) − 1

6
d
γ

μ
− 1

6
dc2 + 1

8
d2c2, (3.8)

c1 := −1
dc(d − 2) − 1 γ 2

2
|R gB |2 + 1

d
γ − 1

cd(d + 2) + 1
d(d + 1)(d + 2)c − 1

d2c2. (3.9)

3 12 μ 6 μ 3 4 4
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Since a2(z, w) is a constant, we get that a2(0, w) is a constant, and thus c0 = c1 = 0. Hence, from 2c0 + c1 = 0, we have

2

3
dc(d − 1) + 1

6
dc = 2

3
d2c − 1

4
dc(d + 1)(d + 2),

in which we use the fact γ
μ = (d + 1) − c (see (3.2)). If c �= 0, then we have 

2

3
(d − 1) + 1

6
= 2

3
d − 1

4
(d + 1)(d + 2).

Thus d = 0 or d = −3, which is impossible. Therefore, we have c = 0, and furthermore, from (3.2), we have 

μ = γ

d + 1
. (3.10)

By putting c = 0 and γ
μ = d + 1 into c0 = 0, we get 

1

24
(d + 1)2|R gB |2 − 1

12
d(d + 1) = 0.

That is 

[|R gB |2]z=0 = 2d

d + 1
. (3.11)

This proves the proposition. �
Now we will use (3.3) to determine the Cartan–Hartogs domain (�B (μ), g(μ)).

Case 1. For � = D I
m,n := {z ∈ Mm×n : I − zz̄t > 0} (1 ≤ m ≤ n), we have 

[|R gB |2]z=0 = 2mn(mn + 1)

(m + n)2
.

By (3.11) (note d = mn and γ = n + m in this case), we get (mn + 1)
2mn(mn+1)

(m+n)2 = 2mn, which implies m = 1 or n = 1. So we 
get m = 1. Then γ = n + 1, and by (3.10), μ = 1. Hence the Cartan–Hartogs domain is the complex hyperbolic space.

Case 2. For � = DII
n := {z ∈ Mn,n : zt = −z, I − zz̄t > 0} (n ≥ 4), we have 

[|R gB |2]z=0 = n(n + 1)(n2 − 5n + 12) − 16n

4(n − 1)2
.

By (3.11) (note d = n(n − 1)/2 in this case), we have n5 − 5n4 + 5n3 + 5n2 − 6n = 0, which has no positive integer solution 
for n ≥ 4 (note that n5 − 5n4 + 5n3 + 5n2 − 6n = n(n − 1)(n − 2)(n + 1)(n − 3) has no positive integer zero for n ≥ 4).

Case 3. For � = DIII
n := {z ∈ Mn,n : zt = z, I − zz̄t > 0} (n ≥ 2), we have 

[|R gB |2]z=0 = n(n + 1)(n2 + 19n − 60) + 96n

4(n + 1)2
.

By (3.11) (note d = n(n + 1)/2 in this case), we have n5 + 21n4 − 27n3 + 11n2 − 70n + 64 = 0, which has no positive integer 
solution for n ≥ 2 (note that n5 + 21n4 − 27n3 + 11n2 − 70n + 64 = (n − 1)(n4 + 22n3 − 5n2 + 6n − 64) has no positive integer 
zero for n ≥ 2).

Case 4. For � = DIV
n := {z ∈C

n : 1 − 2zz̄t + |zzt|2 > 0, zz̄t < 1} (n ≥ 5), we have 

[|R gB |2]z=0 = 3n − 2

n
.

By (3.11), we get n2 + n − 2 = 0, which has no positive integer solution for n ≥ 5.

Cases 5 and 6. For an irreducible bounded symmetric domain �, we have that |[R gB ]αβυδ(0)|2 is an integer with respect to 
(�, gB) and 

[|R gB |2]z=0 = 1

γ 4

∑
|[R gB ]αβυδ(0)|2.
α,β,υ,δ
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For � = D V (16) = E6/Spin(10) × T 1 (in this case, d = 16 and γ = 12), by (3.11), we have 

[|R gB |2]z=0 = 32

17
.

So 32
17 γ 4 = ∑

α,β,υ,δ

|[R gB ]αβυδ(0)|2 is an integer, which is impossible for γ = 12.

For � = DVI(27) = E7/E6 × T 1 (in this case, d = 27 and γ = 18), by (3.11), we have 

[|R gB |2]z=0 = 27

14
.

So 27
14 γ 4 = ∑

α,β,υ,δ

|[R gB ]αβυδ(0)|2 is an integer, which is impossible for γ = 18.

Combining the above results, we get that if a2 is a constant, then the Cartan–Hartogs domain is the complex hyperbolic 
space.

Since the complex hyperbolic space is the unit ball equipped with the hyperbolic metric, we have that a2(z, w) is a 
constant for the complex hyperbolic space. So we have proved the main theorem.
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Appendix A

For completeness, we will give [|R gB |2]z=0 for a classical symmetric domain � with the Bergman metric gB and prove 
|[R gB ]αβυδ(0)|2 is an integer with respect to (�, gB) for an irreducible bounded symmetric domain �. In fact, they can be 
found in some standard literatures (e.g., Helgason [9] and Mok [16]).

I. Here, we will give [|R gB |2]z=0 for a classical symmetric domain � with the Bergman metric gB . By definition (see (13) 
in [22] for reference), we have 

|R gB |2 =
∑

α,β,η,θ,ζ,ν,ξ,τ

gαζ̄
B gβν̄

B gηξ̄

B gθτ̄
B Rαβ̄ηθ̄ Rζ ν̄ξ τ̄ .

The curvature tensor R gB of (�, gB) at 0 can be found in section 2 in Calabi [3].

Case 1. For � = D I
m,n := {z ∈ Mm×n : I − zz̄t > 0} (here γ = m + n, d = mn). Furthermore, we can give the following identity 

log K (z, z) = log
1

V (�)
det(I − zz̄t)−(n+m)

= log
1

V (�)
+ (m + n)

∑
α,β

|zαβ |2 + m + n

2

∑
α,β,υ,λ

z̄αυ zαλ z̄βλzβυ

+ higher-order terms.

Therefore we get [gB ]αβ,λσ (0) = (m + n)δα
λ δ

β
σ . Moreover, we have [R gB ]αυ,βρ,λσ ,μτ (0) = −(m + n)(δα

β δλ
μδυ

τ δ
ρ
σ + δα

μδ
β
λ δυ

ρ δσ
τ ). 

Hence, the following identity is established 

[|R gB |2]z=0 =
m∑

α,β,λ,μ=1

n∑
υ,ρ,σ ,τ=1

1

(m + n)2
(δα

β δλ
μδυ

τ δ
ρ
σ + δα

μδ
β
λ δυ

ρ δσ
τ )2

= 2mn(mn + 1)

(m + n)2
.

Case 2. For � = DII
n := {z ∈ Mn,n, zt = −z, I − zz̄t > 0} (n ≥ 4) (here γ = 2(n − 1), d = 1

2 n(n − 1)). Similar to Case 1, we have 

log K (z, z) = log
1

V (�)
det(I − zz̄t)−(n−1)

= − log V (�) + (n − 1)
∑
α<β

2|zαβ |2 + n − 1

2

∑
α,β,υ,λ

z̄αυ zαλ z̄βλzβυ

+ higher-order terms.
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Hence we get [gB ]αβ,λσ (0) = 2(n − 1)δα
λ δ

β
σ (α < β, λ < σ) and similar to (3.9) in Calabi [3], we have 

[R gB ]αυ,βρ,λσ ,μτ (0) = 2(n − 1)(−δ
βρ
ασ δ

μτ
λυ − δ

μτ
βσ δ

βρ
λυ + δ

βρ
αλ δ

μτ
συ + δ

μτ
αλ δ

βρ
συ),

where the precise definition of δαβ
ρσ (= ∂zαβ

∂zρσ
= δα

ρ δ
β
σ − δα

σ δ
β
ρ) can be found in Calabi [3]. Here we must note that zαβ = −zβα

and ρ < σ . Hence, a long computation yields the following result 

[|R gB |2]z=0 =
∑

α<υ β<ρ λ<σ μ<τ

gαυ,αυ
B gβρ,βρ

B gλσ ,λσ
B gμτ,μτ

B [R gB ]αυ,βρ,λσ ,μτ [R gB ]αυ,βρ,λσ ,μτ

= n(n + 1)(n2 − 5n + 12) − 16n

4(n − 1)2
.

Therefore, we have 

[|R gB |2]z=0 = n(n + 1)(n2 − 5n + 12) − 16n

4(n − 1)2
.

Case 3. For � = DIII
n := {z ∈ Mn,n, zt = z, I − zz̄t > 0} (n ≥ 2) (here γ = n + 1, d = 1

2 n(n + 1)). Similarly, log K (z, z) is given by 

log K (z, z) = log
1

V (�)
det(I − zz̄t)−(n+1)

= − log V (�) + (n + 1)
∑
α<β

2|zαβ |2 + (n + 1)
∑
α=β

|zαβ |2

+ n + 1

2

∑
α,β,λ,υ

z̄αυ zαλ z̄βλzβυ + higher-order terms.

Hence we have 

[gB ]αβ,λσ (0) =
{

2(n + 1)δα
λ δ

β
σ , α < β, λ < σ ,

(n + 1)δα
λ , α = β, λ = σ .

Similar to (3.12) in Calabi [3], we have [R gB ]αυ,βρ,λσ ,μτ (0) equals 

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2(n + 1)(eβρ
ασ eμτ

λυ + eβρ
λυ eμτ

ασ + eβρ
αλeμτ

συ + eβρ
συeμτ

αλ ), α < υ,β < ρ,λ < σ,μ < τ,

−2(n + 1)(eαυ
βτ eλσ

μβ + eαυ
μβeλσ

βτ ), α < υ,β = ρ,λ < σ ,μ < τ,

−2(n + 1)δ
β
α(eμτ

αλ + eμτ
σα), α = υ,β = ρ,λ < σ ,μ < τ,

−(n + 1)(eαυ
βμeλσ

μβ + eαυ
μβeλσ

βμ), α < υ,β = ρ,λ < σ ,μ = τ ,

0, α < υ,β = ρ,μ = τ ,λ = σ ,

−2(n + 1), α = υ,β = ρ,μ = τ ,λ = σ ,

where the exact description of eαβ
ρσ (= ∂zαβ

∂zρσ
) can also be consulted in Calabi [3]. Here zαβ = zβα and ρ ≤ σ . Hence, after a 

complicated computation, we have

[|R gB |2]z=0 =
∑

α≤υ β≤ρ λ≤σ μ≤τ

gαυ,αυ
B gβρ,βρ

B gλσ ,λσ
B gμτ,μτ

B [R gB ]αυ,βρ,λσ ,μτ [R gB ]αυ,βρ,λσ ,μτ

=n(n + 1)(n2 + 19n − 60) + 96n

4(n + 1)2
.

Case 4. For � = DIV
n := {z ∈ C

n : 1 − 2zz̄t + |zzt|2 > 0, zz̄t < 1} (n ≥ 5) (here γ = n, d = n). Moreover, log K (z, z) can be 
expressed by

log K (z, z) = log
1

V (�)
(1 − 2zz̄t + |zzt|2)−n

= − log V (�) + 2n
∑

i

|zi|2 − n|
∑

i

z2
i |

2 + 2n(
∑

i

|zi|2)2 + higher-order terms.
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Hence, we have [gB ]αβ(0) = 2nδα
β and [R gB ]αρ̄βσ̄ (0) = −4n(δα

ρ δ
β
σ + δα

σ δ
β
ρ − δα

β δ
ρ
σ ). Hence

[|R gB |2]z=0 = 1

16n4

∑
α,β,ρ,σ

16n2(δα
ρ δ

β
σ + δα

σ δ
β
ρ − δα

β δ
ρ
σ )2 = 3n − 2

n
.

II. Here, for an irreducible bounded symmetric domain �, we will prove that |[R gB ]αβυδ(0)|2 is an integer with respect 
to (�, gB) and 

[|R gB |2]z=0 = 1

γ 4

∑
α,β,υ,δ

|[R gB ]αβυδ(0)|2.

Firstly, we will express the curvature tensor in terms of Lie brackets of root vectors. All the following conventions can be 
found in Siu [18], Borel [1] and the book by Helgason [9]. So we will not explain it explicitly, and we will just compute the 
curvature tensor of the irreducible compact Hermitian symmetric manifold G/K , which will not affect our conclusions.

Let � denote the set of nonzero roots of gc with respect to tc . Write � to denote that of nonzero noncompact roots and 
�+ that of all positive noncompact roots. Moreover, there exists a set � of strongly orthogonal noncompact positive roots. 
For every α ∈ �+ , let eα denote the root vector for the root α, e−a = eα denotes the root vectors for the root −α. Then we 
have the (direct sum) root space decomposition 

gc = tc +
∑
α∈�

Ceα.

This decomposition is orthogonal with respect to the Killing form B(·, ̄·). Since the Killing form on g is negative definite, 
then we can modify [9] (p. 176), Thm. 5.5 by the following results.

Theorem 4.1 (see also [19], Lemma 4.3.22 and Thm. 4.3.26). For each α ∈ �+ , let Xα be any root vector, then we have

[Xα, X−β ] =

⎧⎪⎨
⎪⎩

Nα,−β Xα−β, α − β ∈ �, α �= β,

0, α − β /∈ �, α �= β,

B(Xα, X−α)Hα ∈ tc, α = β,

N2
α,−β = − q(1 − p)

2
(α,α)B(Xα, X−α),

where nα − β(p ≤ n ≤ q) is the α-series containing β and (α, α) = B(Hα, Hα).

Let p+ = ⊕
α∈�+

Ceα and p− = ⊕
−α∈�+

Ceα . Then from [18], we have 

T 1,0
p � = p+, T 0,1

p � = p−.

Moreover, −B(·, ·) induces an invariant metric on �. Thus the Hermitian metric 〈·, ·〉 on T 1,0
p � is defined by 

〈eα, eβ〉 = 〈eα, eβ〉R = −B(eα, e−α) (α,β ∈ �+).

The curvature tensor R is given by R(X, Y )Z = −[[X, Y ], Z ]. The paper [18] also tells us that Rαβυδ with respect to the 〈·, ·〉
can be expressed by 

Rαβυδ = −〈[eα, e−β ], [eδ, e−υ ]〉. (4.1)

It is well known that the Bergman metric is an invariant metric. Hence, by [16] (Chapter 3, 2.1), we have gB = a〈·, ·〉, 
where a is a positive constant. By the Proposition 2 in [10], we know that [R gB ]αααα(0) = −2γ (α ∈ �) and [gB ]αβ(0) =
γ δαβ . Thus, by the definition, we have 

[|R gB |2]z=0 = 1

γ 4

∑
α,β,υ,δ

|[R gB ]αβυδ(0)|2.

Without loss of generality, we can assume that {eα} constitutes the corresponding basis. Hence, we have 

[gB ]αβ(0) = a〈eα, eβ〉 = γ δαβ. (4.2)

Thus we get |[R gB ]αβυδ |2(0) = a2|Rαβυδ(0)|2. Now combined with [1], Lemma 2.1, we have the following result

Theorem 4.2. For an irreducible bounded symmetric domain �, we have |[R gB ]αβυδ(0)|2 is an integer with respect to (�, gB).
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Proof. Firstly, by the [1], Lemma 2.1, Theorem 4.1 and (4.1), it is not hard to get that, for any α, β, υ, δ ∈ �+ , 

|[R gB ]αβυδ|2(0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

γ 2N2
α,−β N2

δ,−υ, α − β = δ − υ, δ �= υ,

0, α − β �= δ − υ,

γ 2N4
α,−υ, α = β,υ = δ,α �= υ,

a2 B(eα, e−α)4〈Hα, Hα〉2, α = β = υ = δ.

(4.3)

For the classical irreducible bounded symmetric domains, we have that |[R gB ]αβυδ(0)|2 is an integer with respect to 
(�, gB) by the above arguments. For the two exceptional bounded symmetric domains, by Helgason [9] (p. 523.7), we know 
that (α, α) = B(Hα, Hα) = 1

γ for all α ∈ �+ . What’s more, by (4.2), we know that B(eα, e−α) = − γ
a . Hence, combined 

with [10], Proposition 2 and (4.3), for α ∈ �, we have 

|[R gB ]αβυδ|2(0) = a2 γ 4

a4
B(Hα, Hα)2 = 4γ 2. (4.4)

Since B(Hα, Hα) = −B(Hα, Hα) = − 1
γ . Hence, we have a = 1

2 and |[R gB ]αβυδ|2(0) = 4γ 2 for α ∈ �+ .
Furthermore, by Theorem 4.1, we know that 

N2
α,−β = −q1(1 − p1)

2
α(Hα)B(eα, e−α) = q1(1 − p1)

2γ
2γ = q1(1 − p1).

Hence we have N2
α,−β is an integer. Similarly, we have N2

δ,−υ and N2
α,−υ are integers. Then, combined with (4.3) and (4.4), it 

is easy to show that |[R gB ]αβυδ |2(0) is an integer for the two exceptional bounded symmetric domains. So far we complete 
the proof. �
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