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We give a sufficient condition for complex manifolds for automorphism groups to become 
Lie groups. As an application, we see that the automorphism group of any strictly pseudo-
convex domain or finite-type pseudoconvex domain has a Lie group structure.
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r é s u m é

Nous donnons une condition suffisante pour que le groupe des automorphismes d’une va-
riété complexe possède une structure de groupe de Lie. Comme application, nous obtenons 
que le groupe des automorphismes de tout domaine strictement pseudo-convexe ou de 
type pseudo-convexe fini a une structure de groupe de Lie.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let M be a complex manifold. We denote by Aut(M) the group of all holomorphic automorphisms of M , equipped 
with the compact-open topology. We are interested in the structure of automorphism groups. If � is a bounded domain 
in Cn , then, by H. Cartan, Aut(�) has a Lie group structure as follows: there exists a invariant Hermitian metric under the 
automorphism group action on �, called the Bergman metric. It is known that the isometry group of any Hermitian metric 
is a Lie group with respect to the compact-open topology, and Aut(�) is a closed subgroup of the isometry group of the 
Bergman metric. Since any closed topological subgroup of a Lie group has a Lie group structure, Aut(�) is a Lie group. 
Apart from that, it is known that the automorphism group of a compact complex manifold is a Lie group, cf. [6]. However, 
in general, Aut(M) is not a Lie group with respect to the compact-open topology. For example, Aut(Cn), n > 1, is not a 
Lie group, since it contains the space of entire holomorphic functions on Cn−1 so that Aut(Cn) is not finite-dimensional. 
Furthermore, for a Stein manifold X , if X is a homogeneous space G/H of a complex Lie group G and a closed complex 
subgroup H , then the automorphism group Aut(X) is not a Lie group [4]. In this paper, we generalize the argument for 
bounded domains above to give a sufficient condition for complex manifolds that the automorphism groups become Lie 
groups.
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Let us recall the Bergman kernel form and the Bergman pseudometric (see also [5]). Let A2(M) be the set of holomorphic 
n-forms f on M such that

in
2
∫
M

f ∧ f̄ < ∞.

With an inner product

( f , g) = in
2
∫
M

f ∧ ḡ,

A2(M) becomes a separable complex Hilbert space. Let { f j} be a complete orthonormal basis for A2(M). Then the Bergman 
kernel form K on M is defined by

K (z) =
∑

j

f j(z) ∧ f j(z),

which is an (n, n)-form. It is known that K is invariant under the automorphism group of M . Thus the zero loci of K ,

Z := {z ∈ M : K (z) = 0},
is preserved by the automorphisms. For a local coordinate z = (z1, . . . , zn), let

K (z) = K ∗(z)dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n.

Then the Bergman pseudometric ds2
M\Z on M \ Z is defined by

ds2
M\Z :=

∑ ∂2 log K ∗(z)

∂zα∂ z̄β
dzαdz̄β .

It is known that ds2
M\Z is invariant under the automorphism group of M . Thus the degenerate loci of ds2

M\Z ,

D := {z ∈ M \ Z : det

(
∂2 log K ∗(z)

∂zα∂ z̄β

)
= 0},

is also invariant under the automorphism group. Consequently, we see that any automorphism of M preserves M \ (Z ∪ D). 
If M \ (Z ∪ D) �= ∅, we have an injective continuous homomorphism

Aut(M) ↪→ Aut(M \ (Z ∪ D)), f 
→ f |M\(Z∪D).

We state the main theorems.

Theorem 1.1. Let � be a domain in Cn. If � �= Z ∪ D, then Aut(�) has a Lie group structure.

Theorem 1.2. Let M be a Stein manifold. If M �= Z ∪ D, then Aut(M) has a Lie group structure.

From the proofs of Theorems 1.1, 1.2 in the next section, we can generalize Theorem 1.1 for a domain in a Stein manifold.

Corollary 1.3. Let � be a domain in a Stein manifold. If � �= Z ∪ D, then Aut(�) has a Lie group structure.

We also give a sufficient condition for M �= Z ∪ D .

Theorem 1.4. Let M be a Stein manifold. If there exists a bounded-from-above plurisubharmonic function φ on M such that φ is strictly 
plurisubharmonic on a non-empty open set U ⊂ M and the Lelong number of φ is zero on U , then M �= Z ∪ D.

For pseudoconvex domains in Cn , Theorem 1.4 is explained in [3]. Using their results and Theorem 1.4, we can restate 
Theorem 1.2 in terms of the core c′(�).

Corollary 1.5. Let � be a Stein domain in a complex manifold. If � �= c′(�), then Aut(�) is a Lie group. In particular, if ∂� has a 
(smooth or non-smooth) strictly pseudoconvex point or a C∞-smooth boundary point of finite type in the sense of D’Angelo, then 
Aut(�) is a Lie group.

For the definition of the core c′(�) ⊆ �, see Gallagher–Harz–Herbort [3]. In fact, we can see that Z ∪ D ⊂ c′(�), and 
� �= c′(�) if ∂� has a strictly pseudoconvex point or a point of finite type (see Theorem 2 in [3]).
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2. Proofs of the theorems

Before going to prove the theorems, we give some remarks. First of all, it is obvious that Z is an analytic subset in M . 
We can see that ds2

M\Z is positive semidefinite and D is an analytic subset in M \ Z as follows: for any point p ∈ M \ Z , 
there exists j such that f j(p) �= 0. Therefore, there exists a holomorphic mapping μ : z 
→ [ f1(z) : f2(z) : · · ·] from M \ Z to a 
(finite or infinite dimensional) complex projective space. Then the Bergman pseudometric can be written as ds2

M\Z = μ∗ωF S , 
where ωF S is the Fubini–Study metric on the projective space, which is positive definite. Thus ds2

M\Z is positive semidefinite 
and D is an analytic subset in M \ Z since D coincides with the set of singular points of the holomorphic mapping μ. Finally, 
the Bergman pseudometric ds2

M\(Z∪D) on M \ (Z ∪ D) coincides with the restriction of ds2
M\Z to M \ (Z ∪ D), by Riemann’s 

removable singularity theorem. Thus ds2
M\(Z∪D) is a positive definite Kähler metric, and therefore, Aut(M \ (Z ∪ D)) has a 

Lie group structure, as we explained in Section 1.

Proof of Theorem 1.1. To show that Aut(�) has a Lie group structure, it suffices to show that Aut(�) ⊂ Aut(� \ (Z ∪ D)) is 
a closed embedding.

Take a sequence { fk} ⊂ Aut(�) such that fk converges to f ∈ Aut(� \ (Z ∪ D)) as k → ∞. Take a point p ∈ Z ∪ D . Note 
that Z and D are analytic sets. Therefore, changing the coordinate of Cn , we may assume that p is the origin in Cn and the 
connected component of (Z ∪ D) ∩ {(z1, 0, . . . , 0) ∈ C

n} including the point p is {p}. We take a simple closed curve γ in C
around the origin such that γ × {(0, . . . , 0) ∈C

n−1} ⊂ � \ (Z ∪ D). Then, by the Cauchy integral formula, we have

fk(z1, . . . , zn) = 1

2πi

∫
γ

fk(w, z2, . . . , zn)

w − z1
dw,

for z′ = (z2, . . . , zn) sufficiently small |z′|. Here we understand that fk is a tuple of holomorphic functions and the integral 
formula applies to each component. Since fk converges to f uniformly on compact sets in � \ (Z ∪ D), we have

f (z1, . . . , zn) = 1

2πi

∫
γ

f (w, z2, . . . , zn)

w − z1
dw.

Thus we see that f is holomorphic at p = (0, . . . , 0), and therefore f is a holomorphic mapping from � to �. By Hurwitz’s 
theorem, JacC f (z) �= 0 for any z ∈ �, and therefore f is an open mapping. We use the following proposition to conclude 
the proof.

Proposition 2.1. [8, Prop. 5 of Chap. 5] Let { fk} be a sequence of continuous open mappings of � ⊂ C
n into Cn. Suppose that fk

converges uniformly on compact sets in � to a map f : � → C
n. If, for p ∈ �, p is an isolated point of f −1( f (p)), then for any 

neighborhood U of p, there exists k0 such that f (p) ∈ fk(U ) for k ≥ k0 .

Thus we see that f maps � into �. Applying the same argument to { f −1
k } and f −1, we see that f ∈ Aut(�). This 

completes the proof. �
Proof of Theorem 1.2. Let M be a Stein manifold of dimension n. Then, by Bishop [1] and Narasimhan [7], there exists 
a proper holomorphic embedding F : M → C

2n+1, from M into the (2n + 1)-dimensional Euclidean space. Thus, we may 
consider M as a closed submanifold of C2n+1. Take a sequence { fk} ⊂ Aut(M) such that fk converges to f ∈ Aut(M \ (Z ∪ D))

as k → ∞. Any fk is a tuple of 2n + 1 holomorphic functions on M . Thus, as in the proof of Theorem 1.1, we can see that 
f is a tuple of 2n + 1 holomorphic functions on M , and since M ⊂ C

2n+1 is closed, for any p ∈ Z ∪ D , fk(p) converges to a 
point in M . Therefore f is a holomorphic self-mapping of M . Applying the same argument to f −1, we see that f ∈ Aut(M). 
This completes the proof. �

We now prove Theorem 1.4. To prove the theorem, we need solutions to ∂̄ with L2 estimates. According to Proposi-
tions 1.1, 1.4 and their proofs in [9], we can prove the following.

Proposition 2.2. Let (X, ω) be a complex manifold with a smooth complete Kähler metric, and ψ be a smooth plurisubharmonic 
function on X such that ψ is strictly plurisubharmonic on an open subset U ⊂ X and ω ≤ i∂∂̄ψ on U . Then for any ∂̄-closed (n, 1)-form 
f on X with supp f ⊂ U and 

∫
U | f |2ωe−ψ dVω < ∞, there exists an (n, 0)-form α such that ∂̄α = f and

∫
X

α ∧ ᾱe−ψ ≤
∫
U

| f |2ωe−ψ dVω.

Here | · |ω is the pointwise norm and dVω the volume with respect to the metric ω.
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To explain this result, we fix notations. Put

P (u)2 =
∫
X

|u|2
ω+i∂∂̄ψ

e−ψ dVω+i∂∂̄ψ ,

for u ∈ C p,q
0 (X), and denote by Lp,q

1 (X) the completion of C p,q
0 (X) with respect to the norm P . Then Lp,q

1 (X) is a separable 
complex Hilbert space with the inner product (u, v) = ∫

X 〈u, v〉ω+i∂∂̄ψ e−ψ dVω+i∂∂̄ψ . We denote the adjoint of ∂̄ by ∂̄∗ . 
Furthermore, we put

Lp,q
2 (X) = { f ∈ Lp,q

1 (X) : Q ψ( f )2 =
∫
U

| f |2
∂∂̄ψ

e−ψ dVψ < ∞}.

Note that if a measurable (n, q)-form f on U satisfies Q ψ( f ) < ∞, then the zero extension of f to X \ U is in Ln,q
1 (X) (see 

Proposition 1.1 in [9]). Then, as in the proof of Proposition 1.4 in [9], we can prove the inequality

Q ψ( f )2{P (∂̄u)2 + P (∂̄∗u)2} ≥ |(χU f , u)|2. (1)

Here χU is the characteristic function of U , q ≥ 1, u ∈ Dom(∂̄) ∩ Dom(∂̄∗) ⊂ Ln,q
1 (X), and f ∈ Ln,q

2 (X). Then it follows from 
this inequality that, for any ∂̄-closed (n, 1)-form f ∈ Ln,1

2 (X) with supp f ⊂ U , a linear functional A defined by A(∂̄∗u) =
(u, f ) on Im(Dom(∂̄∗)) ⊂ Ln,0

1 (X) is well defined, since Ker∂̄∗
(n,1)

= Im∂̄∗
(n,2)

⊕ (Ker∂̄(n,1) ∩ Ker∂̄∗
(n,1)

), and that the operator 
norm of A is bounded by Q ψ( f ). By the Hahn–Banach theorem and the Riesz representation theorem, there exists an 
element α ∈ Ln,0

1 (X) such that (∂̄∗u, α) = (u, f ) for any u ∈ Dom(∂̄∗) and P (α) = ||A||op ≤ Q ψ( f ). Thus ∂̄α = f . Note that 
P (α) = ∫

M α ∧ ᾱe−ψ for an (n, 0)-form α. As in the proof of Proposition 1.1 in [9], we have Q ψ( f ) ≤ ∫
U | f |2ωe−ψ dVω , so 

Proposition 2.2 holds.

Proof of Theorem 1.4. According to [5], it suffices to show the following: (1) for p ∈ U , there exists an (n, 0)-form f ∈ A2(M)

such that f (p) �= 0; (2) for each V ∈ T p M , there exists a g ∈ A2(M) such that g(p) = 0 and V g(p) �= 0. After coordinate 
change, we may assume that V = ∂/∂z1 for some local coordinate (Ũ , (z1, . . . , zn)) centered at p.

We assume that U (= Ũ ) ⊂⊂ M is a local coordinate with a coordinate map z. Let χ : M → [0, 1] be a C∞-smooth 
function such that suppχ ⊂ U and χ = 1 near p. We put a weight function

ψ(z) = Kφ(z) + (2n + 1)χ(z) log |z − p|,
where K > 0 is taken so that ψ is plurisubharmonic on M and strictly plurisubharmonic on U . Let ω be a Kähler form 
on M such that 3ω ≤ i∂∂̄ψ on U ; let η be a smooth strictly plurisubharmonic exhaustion function on M , and put �k =
{z ∈ M : η(z) < k} for k ∈ R; take a complete Kähler form ωk on �k such that 2(ω + ωk) ≤ i∂∂̄ψ on U . Since M is a 
Stein manifold, for each k, there exists a family of smooth strictly plurisubharmonic functions {ψε,k}ε>0 on �k+1 such that 
ψε,k(z) ↘ ψ(z) as ε → 0 for each z ∈ �k and i∂∂̄ψε,k ≥ ω + ωk on U for sufficiently small ε . Put f1 = ∂̄χdz1 ∧ . . . ∧ dzn , 
and f2 = z1∂̄χdz1 ∧ . . . ∧ dzn . Then, they are ∂̄-closed, and therefore, we can solve the equation ∂̄α

(i)
ε,k = f i on �k for each 

small ε with the estimate∫
�k

α
(i)
ε,k ∧ ᾱ

(i)
ε,ke−ψε,k ≤

∫
U

| f i |ω+ωk e−ψε,k dVω+ωk ≤
∫
U

| f i |ωe−ψε,k dVω.

Here, the first inequality follows from Proposition 2.2, and the second inequality follows from the proof of Proposition 1.1 
in [9]. Note that Lebesgue’s monotone convergence theorem implies∫

U

| f i|ωe−ψε,k dVω →
∫
U

| f i |ωe−ψ dVω < ∞.

For the finiteness of the limit, we used the condition that the Lelong number of φ is zero on U . Since ψε,k is bounded 
on �k , we have α(i)

ε,k ∈ L2
n,0(�k). Thus, letting ε → 0, we can take a weak limit α(i)

k of {α(i)
ε,k} in L2

n,0(�k). Since
∫
�k

α
(i)
k ∧ ᾱ

(i)
k e−ψε′,k ≤ lim

ε→0

∫
U

α
(i)
ε,k ∧ ᾱ

(i)
ε,ke−ψε′,k ,

for any small ε′ > 0, we have∫
α

(i)
k ∧ ᾱ

(i)
k e−ψ ≤

∫
| f i|ωe−ψ dVω < ∞.
�k U
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Take a weak limit α(i) of α(i)
k as k → ∞ in L2

n,0(M, e−ψ). It satisfies ∂̄α(i) = f i on M , and therefore α(i) is smooth. Then, 
by the singularity of ψ , we see that α(i)(p) = 0 and ∂α(i)/∂z1(p) = 0. Since ψ is bounded from above, f := χdz1 ∧ . . . ∧
dzn − α(1) and g := ziχdz1 ∧ . . . ∧ dzn − α(2) are in A2(M). Clearly, f (p) �= 0, g(p) = 0 and ∂ g/∂z1(p) �= 0. This completes 
the proof. �
3. Remarks

1) For the condition M �= Z ∪ D , we can use, the so-called pluricomplex Green function on M . By B.Y. Chen and J.H. Zhang 
[2], it gives us a slightly different condition from that of Theorem 1.4. The pluricomplex Green function gM with a logarith-
mic pole p on M is given by

gM(z, p) = sup{u(z)},
where the supremum is taken over all negative plurisubharmonic functions u such that u(z) − log |z − p| is bounded from 
above in a sufficiently small neighborhood of p. The following statement is given by the proof of Theorem 1 in [2].

Proposition 3.1. Let M be a Stein manifold. If there exists a point p ∈ M and a positive number a > 0 such that {z ∈ M : gM(z, p) <
−a} is relatively compact, then M �= Z ∪ D.

2) We would be able to use other invariant metrics to prove the existence of the Lie group structure of automorphism 
groups. For instance, if the Kobayashi metric exists on a complex manifold M , then the automorphism group is a Lie group. 
Moreover, if the set D K of degenerating points of the Kobayashi pseudometric satisfies the condition D K �= M , then we have 
a continuous inclusion

Aut(M) ↪→ Aut(M \ D K ), f 
→ f |M\D K ,

as in the Bergman pseudometric case. However, it seems that the properties of D K are not well understood. If we could 
show that the set D K is thin, then we could use the argument in Section 2.

3) If the boundary ∂� of a domain � ⊂ C
n is complicated, then it is almost sure that Aut(�) = {id}. One may think 

further that, if the boundary ∂� of a domain � ⊂ C
n is very large, then Aut(�) should be a Lie group. However, if we 

consider the class of domains with codimension 1 boundary, there exists a domain where the automorphism group is a 
huge topological group so that it is not a Lie group: consider the domain

� = {(z, w) ∈C
2 : |zw| < 1}.

Then, for any f ∈O(C), the mapping

(z, w) → (ze f (zw), we− f (zw))

is a biholomorphic self mapping of �. Therefore, Aut(�) contains the space of entire holomorphic functions on C so that 
Aut(�) is not finite-dimensional, even though this domain is not homogeneous.

For unbounded pseudoconvex domains � with � = c′(�), we need other view points for the existence of Lie group 
structures of automorphism groups. The existence of the Bergman pseudometric is neither non-trivial for such domains. 
We refer the reader to [10], where the existence of the Bergman metric for some special cases is investigated.
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