Mathematical analysis/Partial differential equations

A sharp weighted anisotropic Poincaré inequality for convex domains

Une inégalité de Poincaré anisotrope pondérée pour les domaines convexes

Francesco Della Pietra, Nunzia Gavitone, Gianpaolo Piscitelli

Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli Federico II, Complesso Monte S. Angelo, via Cintia, 80126 Napoli, Italy

Article history:
Received 9 April 2017
Accepted 7 June 2017
Available online 27 June 2017

Presented by Haim Brézis

1. Introduction

In this paper, we prove a sharp lower bound for the optimal constant \(\mu_{p,\mathcal{H},\omega}(\Omega) \) in the Poincaré-type inequality

\[
\inf_{t \in \mathbb{R}} \| u - t \|_{L^p(\Omega)} \leq \frac{1}{[\mu_{p,\mathcal{H},\omega}(\Omega)]^{\frac{1}{p}}} \| \mathcal{H}(\nabla u) \|_{L^p(\Omega)},
\]

with \(1 < p < +\infty \); \(\Omega \) is a bounded convex domain of \(\mathbb{R}^n \), \(\mathcal{H} \in \mathcal{H}(\mathbb{R}^n) \), where \(\mathcal{H}(\mathbb{R}^n) \) is the set of lower semicontinuous functions, positive in \(\mathbb{R}^n \setminus \{0\} \) and positively 1-homogeneous, and \(\omega \) is a log-concave function.

If \(\mathcal{H} \) is the Euclidean norm of \(\mathbb{R}^n \) and \(\omega = 1 \), then \(\mu_p(\Omega) = \mu_{p,E,\omega}(\Omega) \) is the first nontrivial eigenvalue of the Neumann \(p \)-Laplacian:

\[
\begin{align*}
-\Delta_p u &= \mu_p |u|^{p-2} u \quad \text{in } \Omega, \\
|\nabla u|^{p-2} \frac{\partial u}{\partial \nu} &= 0 \quad \text{on } \partial \Omega.
\end{align*}
\]
Then, for a convex set Ω, it holds that
\[
\mu_p(\Omega) \geq \left(\frac{\pi_p}{D_\mathcal{E}(\Omega)} \right)^p,
\]
where
\[
\pi_p = 2 \int_0^{+\infty} \frac{1}{1 + \frac{1}{p-1}s^p} ds = 2\pi \left(\frac{p-1}{p}\right)^{\frac{1}{p}},
\]
and $D_\mathcal{E}(\Omega)$ being the Euclidean diameter of Ω.

This estimate, proved in the case $p = 2$ in [13] (see also [3]), has been generalized to the case $p \neq 2$ in [1,10,12,15] and for $p \to \infty$ in [9,14]. Moreover, the constant $\left(\frac{\pi_p}{p^{\frac{1}{p}}} \right)^p$ is the optimal constant of the one-dimensional Poincaré–Wirtinger inequality, with $\omega = 1$, on a segment of length $D_\mathcal{E}(\Omega)$. When $p = 2$ and $\omega = 1$, in [4] an extension of the estimate in the class of suitable non-convex domains has been proved.

The aim of the paper is to prove an analogous sharp lower bound for $\mu_{p, \mathcal{H}, \omega}(\Omega)$, in a general anisotropic case. More precisely, our main result is:

Theorem 1. Let $\mathcal{H} \in \mathcal{H}(\mathbb{R}^n)$, \mathcal{H}^0 be its polar function. Let us consider a bounded convex domain $\Omega \subset \mathbb{R}^n$, $1 < p < \infty$, and take a positive log-concave function ω defined in Ω. Then, given that
\[
\mu_{p, \mathcal{H}, \omega}(\Omega) = \inf_{u \in W^{1,p}(\Omega)} \int_{\Omega} \mathcal{H}(\nabla u)^p \omega \, dx
\]
and
\[
\|u\|_{W^{1,p}(\Omega)} = \left(\int_{\Omega} |u|^p \omega \, dx \right)^{\frac{1}{p}}.
\]

This result has been proved in the case $p = 2$ and $\omega = 1$, when \mathcal{H} is a strongly convex, smooth norm of \mathbb{R}^n in [17], with a completely different method than the one presented here.

In Section 2 below, we give the precise definition of \mathcal{H}^0 and give some details on the set $\mathcal{H}(\mathbb{R}^n)$. In Section 3, we give the proof of the main result.

2. Notation and preliminaries

A function
\[
\xi \in \mathbb{R}^n \mapsto \mathcal{H}(\xi) \in [0, +\infty[.
\]
belongs to the set $\mathcal{H}(\mathbb{R}^n)$ if it verifies the following assumptions:

1. \mathcal{H} is positively 1-homogeneous, that is

 if $\xi \in \mathbb{R}^n$ and $t \geq 0$, then $\mathcal{H}(t\xi) = t\mathcal{H}(\xi)$;

2. If $\xi \in \mathbb{R}^n \setminus \{0\}$, then $\mathcal{H}(\xi) > 0$;

3. \mathcal{H} is lower semi-continuous.

If $\mathcal{H} \in \mathcal{H}(\mathbb{R}^n)$, properties (1), (2), (3) give that there exists a positive constant a such that
\[
a|\xi| \leq \mathcal{H}(\xi), \quad \xi \in \mathbb{R}^n.
\]

The polar function $\mathcal{H}^0 : \mathbb{R}^n \to [0, +\infty]$ of $\mathcal{H} \in \mathcal{H}(\mathbb{R}^n)$ is defined as
\[
\mathcal{H}^0(\eta) = \sup_{\xi \neq 0} \frac{\langle \xi, \eta \rangle}{\mathcal{H}(\xi)}.
\]

The function \mathcal{H}^0 belongs to $\mathcal{H}(\mathbb{R}^n)$. Moreover, it is convex on \mathbb{R}^n, and then continuous. If \mathcal{H} is convex, it holds that
Remark the needed. Moreover, and Hardy–Sobolev norm. If \(H, H^\sigma \) for all \(\xi \in \mathbb{R}^n \), then \(H \) is a norm on \(\mathbb{R}^n \), and the same holds for \(H^\sigma \).

We recall that if \(H \) is a smooth norm of \(\mathbb{R}^n \) such that \(\nabla^2(H^2) \) is positive definite on \(\mathbb{R}^n \setminus \{0\} \), then \(H \) is called a Finsler norm on \(\mathbb{R}^n \).

If \(H \in \mathscr{H}(\mathbb{R}^n) \), by definition, we have
\[
\langle \xi, \eta \rangle \leq H(x)H^\delta(y), \quad \forall \xi, \eta \in \mathbb{R}^n.
\]

Remark 2. Let \(H \in \mathscr{H}(\mathbb{R}^n) \), and consider the convex envelope of \(H \), that is the largest convex function \(\overline{H} \) such that \(\overline{H} \leq H \). It holds that \(\overline{H} \) and \(H \) have the same polar function:
\[
\langle \overline{H}, \delta \rangle = H \quad \text{in } \mathbb{R}^n.
\]

Indeed, being \(\overline{H} \leq H \), by definition it holds that \(\langle \overline{H}, \delta \rangle \geq H \). To show the reverse inequality, it is enough to prove that \(\langle H^\sigma, \delta \rangle \leq \overline{H} \). Then, being \(\overline{H} \) the convex envelope of \(H \), it must be \(\langle H^\sigma, \delta \rangle \leq \overline{H} \), that implies \(\langle \overline{H}, \delta \rangle \leq H \). Denoting by \(G(x) = \langle H^\sigma(x), \delta \rangle \), for any \(x \) there exists \(\delta_x \) such that
\[
G(x) = \langle x, \delta_x \rangle \quad \text{and} \quad \langle x, \delta_x \rangle \leq \langle H^\sigma(\delta_x), \delta \rangle = H(\delta_x), \quad \text{that implies} \quad G(x) \leq H(x).
\]

Let \(H \in \mathscr{H}(\mathbb{R}^n) \), and consider a bounded convex domain \(\Omega \) of \(\mathbb{R}^n \). Throughout the paper \(D_H(\Omega) \subset]0, +\infty[\) will be
\[
D_H(\Omega) = \sup_{x,y \in \Omega} H^\sigma(y - x).
\]

We explicitly observe that since \(H^\sigma \) is not necessarily even, in general \(H^\sigma(y - x) \neq H^\sigma(x - y) \). When \(H \) is a norm, then \(D_H(\Omega) \) is the so-called anisotropic diameter of \(\Omega \) with respect to \(H^\sigma \). In particular, if \(H = E \) is the Euclidean norm in \(\mathbb{R}^n \), then \(E^\sigma = E \) and \(D_E(\Omega) \) is the standard Euclidean diameter of \(\Omega \). We refer the reader, for example, to \([5, 11]\) for remarkable examples of convex not even functions in \(\mathscr{H}(\mathbb{R}^n) \). On the other hand, in \([16]\) some results on isoperimetric and optimal Hardy–Sobolev inequalities for a general function \(H \in \mathscr{H}(\mathbb{R}^n) \) have been proved, by using a generalization of the so-called convex symmetrization introduced in \([2]\) (see also \([6–8]\)).

Remark 3. In general, \(H \) and \(H^\sigma \) are not rotational invariant. Anyway, if \(A \in SO(n) \), defining
\[
H_A(x) = \mathcal{H}(Ax),
\]
and being \(A^T = A^{-1} \), then \(H_A \in \mathscr{H}(\mathbb{R}^n) \) and
\[
\langle H_A, \delta \rangle = \sup_{x \in \mathbb{R}^n} H_A(x) \quad \text{and} \quad \langle H^\sigma, \delta \rangle = \sup_{y \in \mathbb{R}^n} H^\sigma(y) = \langle H^\sigma, \delta \rangle.
\]
Moreover,
\[
D_{H_A}(A^T \Omega) = \sup_{x,y \in A^T \Omega} (H^\sigma)_A(y - x) = \sup_{\tilde{x}, \tilde{y} \in \Omega} H^\sigma(\tilde{y} - \tilde{x}) = D_H(\Omega).
\]

3. Proof of the Payne–Weinberger inequality

In this section, we state and prove Theorem 1. To this aim, the following Wirtinger-type inequality, contained in \([12]\) is needed.

Proposition 4. Let \(f \) be a positive log-concave function defined on \([0, L]\) and \(p > 1 \), then
\[
\inf \left\{ \int_0^L |u'|^p f \, dx \right. \left. \quad \text{subject to} \quad \int_0^L |u|^p \, dx \right. \left. \quad \text{and} \quad \int_0^L |u|^{p-2} uf \, dx = 0 \right\} \geq \frac{\pi^p}{L^p}.
\]

The proof of the main result is based on a slicing method introduced in \([13]\) in the Laplacian case. The key ingredient is the following Lemma. For a proof, we refer the reader, for example, to \([13, 3, 12]\).
Lemma 5. Let Ω be a convex set in \mathbb{R}^n having (Euclidean) diameter $D_\mathcal{E}(\Omega)$, let ω be a positive log-concave function on Ω, and let u be any function such that $\int_{\Omega} |u|^p \omega \, dx = 0$. Then, for all positive ε, there exists a decomposition of the set Ω in mutually disjoint convex sets Ω_i ($i = 1, \ldots, k$) such that

$$\bigcup_{i=1}^k \overline{\Omega}_i = \overline{\Omega}$$

$$\int_{\Omega_i} |u|^{p-2} u \omega \, dx = 0$$

and for each i there exists a rectangular system of coordinates such that

$$\Omega_i \subset \{(x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \leq x_1 \leq d_i, \ |x_i| \leq \varepsilon, \ i = 2, \ldots, n\},$$

where $d_i \leq D_\mathcal{E}(\Omega)$, $i = 1, \ldots, k$.

Proof of Theorem 1. By density, it is sufficient to consider a smooth function u with uniformly continuous first derivatives and $\int_{\Omega} |u|^{p-2} u \omega \, dx = 0$.

Hence, we can decompose the set Ω in k convex domains Ω_i as in Lemma 5. In order to prove (1), we will show that, for any $i \in \{1, \ldots, k\}$, it holds that

$$\int_{\Omega_i} H^p(\nabla u) \omega \, dx \geq \frac{\pi_p}{D_H(\Omega)^p} \int_{\Omega_i} |u|^p \omega \, dx. \tag{5}$$

By Lemma 5, for each fixed $i \in \{1, \ldots, k\}$, there exists a rotation $A_i \in SO(n)$ such that

$$A_i \Omega_i \subset \{(x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \leq x_1 \leq d_i, \ |x_i| \leq \varepsilon, \ i = 2, \ldots, n\}.$$

By changing the variable $y = A_i x$, recalling the notation (3) and using (4), it holds that

$$\int_{\Omega_i} H^p(\nabla u(x)) \omega(x) \, dx = \int_{A_i \Omega_i} H^p_{A_i^T}(\nabla u(A_i^T y)) \omega(A_i^T y) \, dy; \quad D_H(\Omega) = D_{H_{A_i^T}}(A_i \Omega).$$

We deduce that it is not restrictive to suppose that for any $i \in \{1, \ldots, n\}$ A_i is the identity matrix, and the decomposition holds with respect to the x_1-axis.

Now we may argue as in [12]. For any $t \in [0, d_i]$ let us denote by $v(t) = u(t, 0, \ldots, 0)$, and $f_i(t) = g_i(t)\omega(t, 0, \ldots, 0)$, where $g_i(t)$ will be the $(n-1)$-volume of the intersection of Ω_i with the hyperplane $x_1 = t$. By the Brunn–Minkowski inequality, g_i, and then f_i, is a log-concave function in $[0, d_i]$. Since u, u_{x_1}, and ω are uniformly continuous in Ω, there exists a modulus of continuity $\eta(\cdot)$ with $\eta(\varepsilon) \searrow 0$ for $\varepsilon \to 0$, independent of the decomposition of Ω and such that

$$\left| \int_{\Omega_i} |u|_t^p \omega \, dx - \int_{\Omega_i} |v|_t^p f_i \, dt \right| \leq \eta(\varepsilon)|\Omega_i|,$$

$$\left| \int_{\Omega_i} |u|^p \omega \, dx - \int_{\Omega_i} |v|^p f_i \, dt \right| \leq \eta(\varepsilon)|\Omega_i|,$$

and

$$\left| \int_{\Omega_i} |v|^{p-2} v f_i \, dt \right| \leq \eta(\varepsilon)|\Omega_i|.$$
where C is a constant which does not depend on ε. Being $d_i \leq D_{\mathcal{E}}(\Omega)$, and then $d_i M \leq D_{\mathcal{H}}(\Omega)$, by letting ε to zero, we get (5). Hence, by summing over i, we get the thesis.

Remark 6. In order to prove an estimate for $\mu_{p,\mathcal{H},\omega}$, we could use directly property (2) with $v = \frac{\nu u}{|\nu u|}$, and the Payne–Weinberger inequality in the Euclidean case, obtaining that

$$
\int_{\Omega} \mathcal{H}^p(\nabla u) \omega \, dx \geq \int_{\Omega} \frac{|\nabla u|^p}{\mathcal{H}^p(v)} \omega \, dx \geq \frac{\pi_p^p}{D_{\mathcal{E}}(\Omega)^p \mathcal{H}^p(v_m)^p} \int_{\Omega} |u|^p \omega \, dx,
$$

where $\mathcal{H}^p(v_m) = \max \mathcal{H}^p(v)$. However, we have a worse estimate than (1) because $D_{\mathcal{E}}(\Omega) \cdot \mathcal{H}^p(v_m)$ is, in general, strictly larger than $D_{\mathcal{H}}(\Omega)$, as shown in the following example.

Example 1. Let $\mathcal{H}(x, y) = \sqrt{a^2 x^2 + b^2 y^2}$, with $a < b$. Then \mathcal{H} is a even, smooth norm with $\mathcal{H}^p(x, y) = \sqrt{\frac{x^2}{a^2} + \frac{y^2}{b^2}}$ and the Wulff shapes ($\mathcal{H}^p(x, y) < R$), $R > 0$, are ellipses. Clearly, we have:

$$D_{\mathcal{E}}(\Omega) = 2b \quad \text{and} \quad D_{\mathcal{H}}(\Omega) = 2.$$

Let us compute $\mathcal{H}^p(v_m)$. We have:

$$\max_{|v|=1} \mathcal{H}^p(v) = \max_{\vartheta \in [0, 2\pi]} \sqrt{\frac{(\cos \vartheta)^2}{a^2} + \frac{(\sin \vartheta)^2}{b^2}} = \mathcal{H}^p(0, \pm 1) = \frac{1}{a}.$$

Then $D_{\mathcal{E}}(\Omega) \cdot \mathcal{H}^p(v_m) = 2 \frac{b}{a} > 2$.

Acknowledgements

This work has been partially supported by MIUR (for FIRB 2013 project “Geometrical and qualitative aspects of PDE’s”) and by INdAM (for GNAMPA).

References

