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We consider a class of eigenvalue problems involving coefficients changing sign on the 
domain of interest. We describe the main spectral properties of these problems according 
to the features of the coefficients. Then, under some assumptions on the mesh, we explain 
how one can use classical finite element methods to approximate the spectrum as well as 
the eigenfunctions while avoiding spurious modes. We also prove localisation results of the 
eigenfunctions for certain sets of coefficients.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous étudions, d’un point de vue théorique et numérique, des problèmes aux valeurs 
propres mettant en jeu des coefficients dont le signe change sur le domaine d’intérêt.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Version française abrégée

Nous nous intéressons au problème aux valeurs propres (1) posé dans un domaine borné � partitionné en deux régions 
�1, �2. Le problème (1) met en jeu des coefficients ς , μ que nous supposons constants non nuls sur �1, �2. Ces constantes 
peuvent être de signes différents. Nous fournissons d’abord des critères assurant que le spectre de (1) est discret, propriété 
qui n’est pas toujours satisfaite lorsqu’à la fois ς et μ changent de signe. Lorsqu’un seul coefficient (ς ou μ) change de 
signe, on peut aussi montrer que le spectre de (1) est réel, constitué de deux suites de valeurs propres (λ±n)n≥1 telles que 
limn→+∞ λ±n = ±∞. Dans un second temps, moyennant certaines hypothèses sur le maillage, nous expliquons comment on 
peut utiliser les méthodes éléments finis classiques pour approcher le spectre ainsi que les fonctions propres. Pour ce faire, 
nous utilisons la théorie d’approximation des opérateurs compacts développée notamment par Babuška et Osborn [2]. Il est 
à noter que, lorsque ς et/ou μ change(nt) de signe, l’approximation numérique de (1) doit être réalisée avec soin pour éviter 
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la pollution spectrale [11]. Nous établissons ensuite un résultat de localisation des fonctions propres u±n associées aux λ±n

dans le cas où un seul coefficient (ς ou μ) change de signe. Plus précisément, nous prouvons que les u±n deviennent 
confinées ou bien dans �1, ou bien dans �2, lorsque n → +∞. Enfin, nous présentons des tests numériques illustrant ce 
confinement, ainsi que la convergence des valeurs propres.

1. Introduction

Consider a bounded set � ⊂ R
d , d ≥ 1, partitioned into two subsets �1, �2 such that � = �1 ∪�2 and �1 ∩�2 = ∅. We 

assume that �, �1, �2 are bounded open sets that have Lipschitz boundaries ∂�, ∂�1, ∂�2. Introduce ς , μ two functions 
such that for i = 1, 2, ς |�i = ςi , μ|�i = μi , where ςi 	= 0, μi 	= 0 are some real constants. The goal of this work is to study 
the eigenvalue problem

Find (u, λ) ∈ H1
0(�) \ {0} ×C such that − div(ς∇u) = λμu in � (1)

as well as its Finite Element (FE) approximation. In the present note, we are particularly interested in situations where ς
and/or μ change sign over �. Such problems appear for instance while considering time-harmonic Maxwell’s equations in 
structures involving negative materials (ς = ε−1 < 0 for metals at optical frequencies, ς = ε−1 < 0 and μ < 0 for some 
metamaterials). Set a(u, v) = (ς∇u, ∇v), b(u, v) = (μu, v) and using the Riesz representation theorem, define the bounded 
linear operators A, B : H1

0(�) → H1
0(�) such that, for all u, v ∈ H1

0(�), (∇(Au), ∇v) = a(u, v), (∇(Bu), ∇v) = b(u, v). In 
these definitions, (·, ·) stands indistinctly for the usual inner products of L2(�) or L2(�)d . With such a notation, (u, λ) is an 
eigenpair of Problem (1) if and only if

a(u, v) = λb(u, v) ∀v ∈ H1
0(�) ⇔ Au = λBu. (2)

When ς changes sign, properties of the operator A have been extensively studied, in particular using the T-coercivity 
approach [5,3]. It has been shown that A is a Fredholm operator if and only if the contrast κς := ς2/ς1 lies outside a 
closed interval I of (−∞; 0). For d = 1, we have I = ∅, whereas for d ≥ 2, I always contains the value −1, and its definition 
depends on the properties of the interface � := ∂�1 ∩ ∂�2. Note that when � ∩ ∂� = ∅, it holds I = {−1} if and only if �
is smooth. In the present work, we shall systematically assume that κς /∈ I so that A is a Fredholm operator. In addition, we 
shall assume that A is injective. Under these two assumptions, A is an isomorphism and (u, λ) is an eigenpair of Problem 
(1) if and only if K u = λ−1u with K = A−1 B . Since B is compact without any assumption on the sign of μ, K is compact. 
As a consequence, the spectrum of Problem (1) is discrete and made of isolated eigenvalues.

In the particular case where d = 1 and μ = ς , an explicit calculation can be done. If �1 = (a; 0) and �2 = (0; b), 
with a < 0, b > 0, we find that λ ∈ C \ {0} is an eigenvalue of Problem (1) if and only if (ς1 + ς2) sin(λ(b − a)) =
(ς2 − ς1) sin(λ(b + a)). Moreover, 0 is an eigenvalue if and only ς2/b − ς1/a = 0. When ς2 = −ς1 ⇔ κς = −1 and b = −a, 
we see that the spectrum of Problem (1) covers the whole complex plane despite the fact that A is Fredholm. However, this 
situation shall be discarded in the following analysis because we impose that A is injective (which is not the case in the 
above particular setting). With these explicit calculations, one can also verify that a complex spectrum can exist when both 
ς and μ are (real) sign changing.

In any dimension d ≥ 1 and when only one coefficient (ς or μ) changes sign, one finds that the spectrum of Prob-
lem (1) is real by taking the imaginary part of a(u, u) = λ b(u, u). Moreover, constructing functions un ∈ H1

0(�) such that 
a(un, un)/b(un, un) → ±∞ as n → +∞, one proves that it coincides with two sequences (λ±n)n�1 such that:

· · · � λ−n � · · · � λ−1 < 0 � λ1 � · · · � λn � . . . and lim
n→+∞λ±n = ±∞. (3)

The outline is as follows. In Section 2, we explain how to approximate numerically the spectrum of Problem (1) using 
classical FE methods. We prove FE convergence under some conditions on the mesh. Note that the numerical approximation 
has to be handled carefully to avoid spectral pollution [11]. Then, we show some localization results for the eigenfunctions 
in the case where only one coefficient changes sign. Finally, in Section 4, we present numerical illustrations.

2. Numerical approximation

In this section, we focus on the numerical analysis of the eigenvalue problem (1). We follow the classical approach 
developed for instance in [2] by Babuška and Osborn. Let (V h)h be a sequence of finite-dimensional subspaces of H1

0(�)

indexed by a parameter h ∈ (0; h0] tending to zero. We assume that V h approximates H1
0(�) as h tends to zero in the sense 

that for all u ∈ H1
0(�), limh→0 infuh∈V h ‖u − uh‖H1

0(�) = 0. In practice, V h will be a space of globally continuous, piecewise 
polynomial functions defined on a mesh of � of characteristic size h. Consider the family of discrete eigenvalue problems

Find (uh, λh) ∈ V h \ {0} ×C such that a(uh, vh) = λh b(uh, vh) ∀vh ∈ V h. (4)

Next we introduce some definitions. For λ an eigenvalue of Problem (1), we call ascent of λ the smallest integer α such 
that ker(λ−1 − K )α = ker(λ−1 − K )α+1 and algebraic multiplicity of λ the number m := dim ker(λ−1 − K )α ≥ 1. The elements 
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of ker(λ−1 − K )α are called the generalized eigenvectors of (1) associated with λ. In the following, we will assume that the 
form a(·, ·) satisfies a uniform discrete inf–sup condition, i.e. we will assume that

∃β > 0, ∀h ∈ (0;h0] inf
uh∈V h, ‖uh‖

H1
0(�)

=1
sup

vh∈V h, ‖vh‖
H1

0(�)
=1

|a(uh, vh)| ≥ β. (P)

Admittedly, when ς changes sign, it is not clear whether or not (P) holds. We address this issue after Proposition 2.1 below. 
When (P) is true, we can define the operator K h : H1

0(�) → V h such that a(K hu, vh) = b(u, vh) for all u ∈ H1
0(�), vh ∈ V h . 

Note that K h = P h K where P h denotes the projection of H1
0(�) onto V h such that a(P hu, vh) = a(u, vh) for all u ∈ H1

0(�), 
vh ∈ V h . Using the fact that V h approximates H1

0(�) as h → 0, we can prove that K h converges in norm to K . We deduce 
that m eigenvalues λh

1, . . . , λ
h
m converge to λ. The eigenvalues λh

j are counted according to the algebraic multiplicities of the 
(λh

j )
−1 as eigenvalues of K h . Let

M(λ) = {u | u is a generalized eigenvector of (1) associated with λ}
Mh(λ) = {u | u in the direct sum of the generalized eigenspaces of (4) corresponding

to the eigenvalues λh
j that converge to λ}.

Denote δ(M(λ), Mh(λ)) = supu∈M(λ), ‖u‖
H1

0(�)
=1 dist(u, Mh(λ)). Finally, define the quantity

εh = sup
u∈M(λ), ‖u‖

H1
0(�)

=1
inf

vh∈V h
‖u − vh‖H1

0(�).

The results of [2, Chap. II, Sect. 8] are as follows.

Proposition 2.1. Assume that κς /∈ I , that A is injective and that property (P) holds. Then, there is a constant C > 0 such that for 
all h ∈ (0; h0]

δ(M(λ), Mh(λ)) ≤ C εh,

∣∣∣λ −
( 1

m

m∑
j=1

(λh
j )

−1
)−1∣∣∣ � C (εh)2, |λ − λh

j | ≤ C (εh)2/α, for 1 ≤ j ≤ m.

From now on, we assume that (V h)h are spaces of globally continuous, piecewise polynomial functions of degree at 
most � ≥ 1, that are defined on a shape-regular family (T h)h of geometrically conformal meshes of �. In addition, every 
mesh T h is such that if τ ∈ T h , then τ ∈ �1 or τ ∈ �2 (if T h is a triangulation, no triangle crosses the interface �). 
The question of the verification of (P) has been addressed in [10,3,7,4] where the source term problem associated with 
Problem (1) has been considered. More precisely, in these works the authors provide sufficient conditions on the mesh of 
� so that (P) holds. Let us try, in short, to give an idea of the results. In [10,3], when ς changes sign and when κς /∈ I , it 
is shown how to construct bounded linear operators T : H1

0(�) → H1
0(�), based on geometrical transformations, such that 

|a(u, Tu)| ≥ β ‖u‖2
H1

0(�)
for all u ∈ H1

0(�) where β > 0. In [7], it is established that this is equivalent to prove that a(·, ·)
satisfies an inf–sup condition. And if the mesh is such that T(V h) ⊂ V h , then we infer that a(·, ·) satisfies property (P). 
Practically, this boils down to assume that the mesh of � verifies some geometrical conditions of symmetry with respect 
to the interface �. The general version is presented in [4]. In the latter article, the authors show that for (P) to hold, it is 
sufficient that the meshes satisfy some symmetry properties in a neighbourhood of �.

In order to complement the result of Proposition 2.1, it remains to assess εh . As usual in FE methods, the dependence of 
εh with respect to h varies according to the regularity of u. The latter question has been investigated in [6]. To set ideas, we 
shall assume that �1, �2 are polygons. Define P Ht(�) := {v ∈ H1(�)| vi ∈ Ht(�i), i = 1, 2}. In [6], it is proved that when 
κς /∈ I , there is some s > 0, which can be computed, such that {v ∈ H1

0(�)| div(ς∇v) ∈ L2(�)} ⊂ P H1+s(�) (algebraically 
and topologically). The exponent s > 0 depends both on the geometrical setting and on the value of κς . Moreover, it can 
be arbitrarily close to zero. For a FE approximation of degree �, one has, for h small enough εh ≤ C hmin(s,�) where C > 0 is 
independent of h.

Let us make some comments regarding this analysis. First, a direct application of the Aubin–Nitsche lemma allows 
one to derive some results of approximation of the eigenfunctions in the L2(�)-norm. Using isoparametric quadrilateral 
FEs, one can deal with curved interfaces. Recently, in [1], an alternative approach, based on an optimisation method, has 
been proposed to consider the source term problem associated with (1). It has the advantage of requiring no geometrical 
assumption on the mesh. It would be interesting to investigate if it can be employed to deal with the eigenvalue problem 
(1).
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3. Localisation results for eigenvalue problems with one sign-changing coefficient

When only one coefficient (ς or μ) changes sign, we said above that the spectrum of Problem (1) is real and coin-
cides with two sequences (λ±n)n�1 that fulfil (3). Here we prove that the normalized eigenfunctions u±n (‖u±n‖H1

0(�) = 1) 
associated with λ±n tend to be localized in one of the subdomains �1, �2 as n → +∞ (see Fig. 1 (right) for numerical 
illustrations).

Let us first consider the case where ς changes sign and μ ≡ 1 in �, that is we look at the problem − div(ς∇u) = λ u. 
To fix ideas, we assume that ς1 > 0 and ς2 < 0. Denote d� the distance to the interface such that for x ∈ �, d�(x) =
infz∈� |x − z|. Define the weight functions χ±

n such that, for α > 0,

χ+
n (x) =

{
1 in �1

eαd�(x)
√

λn/|ς2| in �2
and χ−

n (x) =
{

eαd�(x)
√|λ−n|/ς1 in �1

1 in �2.
(5)

Observe that χ+
n (resp. χ−

n ) blows up in �2 (resp. �1) as n → +∞.

Proposition 3.1. For all α ∈ (0; 1), n ∈N
∗ , we have

ς1‖∇un‖2
L2(�1)

≥ λn‖un‖2
L2(�1)

+ (1 − α) (λn‖χ+
n un‖2

L2(�2)
+ |ς2| ‖χ+

n ∇un‖2
L2(�2)

) (6)

|ς2| ‖∇u−n‖2
L2(�2)

≥ |λ−n| ‖u−n‖2
L2(�2)

+ (1 − α) (|λ−n| ‖χ−
n u−n‖2

L2(�1)
+ ς1 ‖χ−

n ∇u−n‖2
L2(�1)

). (7)

Corollary 3.1. Let ω1 ⊂ �1 , ω2 ⊂ �2 be two non-empty sets such that ω1 ∩ � = ω2 ∩ � = ∅. For β1 ∈ (0; dist(ω1, �)), β2 ∈
(0; dist(ω2, �)), there are some constants C1, C2 > 0 such that for all n ∈N

∗

‖un‖H1(ω2) ≤ C2 e−β2
√

λn/|ς2| and ‖u−n‖H1(ω1) ≤ C1 e−β1
√|λ−n|/ς1 .

Thus, the eigenfunctions associated with positive eigenvalues tend to be confined in the positive material �1 whereas 
the ones associated with negative eigenvalues become confined in the negative material �2.

Proof. In the following, we prove Estimate (6) for un . One proceeds similarly with u−n to get (7). For all v ∈ H1
0(�), we 

have (ς∇un, ∇v) = λn (un, v). Take v = (χ+
n )2un . One can show that such a v is indeed an element of H1

0(�) because χ+
n

belongs to W 1, ∞(�) (since � is a Lipschitz manifold, see [8, Chap. 6, Thm. 3.3, (vii)]). Expanding the term ∇((χ+
n )2un) and 

using that ∇χ+
n = 0 in �1, we obtain

ς1‖∇un‖2
L2(�1)

= λn‖χ+
n un‖2

L2(�)
+ |ς2| ‖χ+

n ∇un‖2
L2(�2)

+ 2|ς2|
∫
�2

χ+
n un ∇χ+

n · ∇un dx. (8)

Noticing that ∇χ+
n = α

√
λn/|ς2|χ+

n ∇d� and |∇d� | = 1 a.e. in �2, we can write∣∣∣∣∣∣∣ 2|ς2|
∫
�2

χ+
n un ∇χ+

n · ∇un dx

∣∣∣∣∣∣∣ ≤ αλn‖χ+
n un‖2

L2(�2)
+ α|ς2| ‖χ+

n ∇un‖2
L2(�2)

. (9)

Plugging (9) in (8) leads to (6). Then the first estimate of Corollary 3.1 is a direct consequence of (6) (with α =
β2/dist(ω2, �)) because χ+

n (x) ≥ eαdist(ω2,�)
√

λn/|ς2| in ω2. �
Remark 1. A result similar to the one of Proposition 3.1 can be obtained assuming only that ς ∈ L∞(�) is such that ς ≥
C > 0 a.e. in �1 and ς ≤ −C < 0 a.e. in �2 for some C > 0.

Now, we just state the results in the case where ς ≡ 1 in � and μ changes sign (−�u = λμu). To set ideas, we assume 
that μ1 > 0 and μ2 < 0. Define the weight functions ζ±

n such that, for α > 0,

ζ+
n (x) =

{
1 in �1

eαd�(x)
√

λn |μ2| in �2
and ζ−

n (x) =
{

eαd�(x)
√|λ−n| μ1 in �1

1 in �2.

Proposition 3.2. For all α ∈ (0; 1), n ∈N
∗ , we have

λn μ1 ‖un‖2
L2(�1)

≥ ‖∇un‖2
L2(�1)

+ (1 − α) (λn |μ2| ‖ζ+
n un‖2

L2(�2)
+ ‖ζ+

n ∇un‖2
L2(�2)

)

|λ−n| |μ2| ‖u−n‖2
L2(�2)

≥ ‖∇u−n‖2
L2(�2)

+ (1 − α) (|λ−n|μ1 ‖ζ−
n u−n‖2

L2(�1)
+ ‖ζ−

n ∇u−n‖2
L2(�1)

).
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Corollary 3.2. Let ω1 ⊂ �1 , ω2 ⊂ �2 be two non-empty sets such that ω1 ∩ � = ω2 ∩ � = ∅. For β1 ∈ (0; dist(ω1, �)), β2 ∈
(0; dist(ω2, �)), there are some constants C1, C2 > 0 such that for all n ∈N

∗

‖un‖H1(ω2) ≤ C2 e−β2
√

λn |μ2| and ‖u−n‖H1(ω1) ≤ C1 e−β1
√|λ−n| μ1 .

Remark 2. In [9], the authors study the asymptotic behaviour of (λ±n) as n → +∞ (Weyl formulas) in the case ς ≡ 1 and 
μ changes sign (−�u = λμu). This question in the situation when μ ≡ 1 and ς changes sign (− div(ς∇u) = λu) remains 
open.

Remark 3. In the case ς ≡ 1 and μ changes sign (−�u = λμu), using min − max formulas, one can show that for n ≥ 1, 
λn ≤ λh

n (as for the usual Dirichlet Laplacian operator) and λ−n ≥ λh−n . Here λh±n refers to an eigenvalue of (4) which con-
verges to λ±n .

4. Numerical illustrations

Let us illustrate these results on a simple example. We take � = (−1; 1) × (−1; 1), �2 = (0; 1) × (0; 1) and �1 = � \ �2. 
In this geometry, A : H1

0(�) → H1
0(�) is an isomorphism if and only κς = ς2/ς1 /∈ I = [−3; −1/3] (see [3]). Set ς1 = 1, 

ς2 = −4 and μ ≡ 1. We use meshes with symmetries like the one in Fig. 1 (left) for which we know that the uniform 
discrete inf–sup condition (P) above holds. In Fig. 1 (centre), we display the errors |λh

1 − λref
1 |/|λref

1 | versus the mesh size 
for three FE orders (� = 1, 2, 3). Here λref

1 refers to the approximation λh
1 of λ1 obtained with a very refined mesh and 

� = 4. From [6] and Section 2, one can expect a convergence order equal to 2 min(s, �) where, for this interface with a right 
angle, s = min(η, 2 − η) ≤ 1, η = 2 arccos((ς1 − ς2)/(2(ς1 + ς2)))/π. For κς = −4, we find s ≈ 0.37 so that for � = 1, 2, 3, 
we have 2 min(s, �) ≈ 0.74. In Fig. 1 (right), we display the eigenfunctions associated with λh±1, . . . , λh±4. In accordance with 
the result of Proposition 3.1, we observe that the eigenfunctions associated with λn (resp. λ−n) tend to be more and more 
localized in �1 (resp. �2) as n grows.

Fig. 1. Left: coarse symmetric mesh. Centre: relative error vs. h (log-log scale) for λ1 ≈ 13.2391. Right: eigenfunctions associated with λh
1, . . . , λh

4 (top) and 
λh−1, . . . , λh−4 (bottom).
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