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We present a successive constraint approach that makes it possible to cheaply solve large-
scale linear matrix inequalities for a large number of parameter values. The efficiency 
of our method is made possible by an offline/online decomposition of the workload. 
Expensive computations are performed beforehand, in the offline stage, so that the problem 
can be solved very cheaply in the online stage. We also extend the method to approximate 
solutions to semidefinite programming problems.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons une méthode de contraintes successives qui réduit le travail nécessaire 
pour résoudre les inégalités matricielles linéaires paramétriques de grande dimension. Une 
caractéristique importante de notre méthode est la décomposition hors ligne/en ligne du 
travail. Les calculs coûteux sont effectués à l’avance, hors ligne, pour nous permettre de 
résoudre le problème de manière très économique en ligne. La même méthode est aussi 
appliquée à l’approximation des solutions des problèmes d’optimisation SDP.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Linear matrix inequalities (LMIs) are a general type of convex constraint that includes linear as well as quadratic con-
straints [11,12] and lead to very natural formulations of a large number of problems in control and systems theory [2,4]. 
They can be solved using a wide range of existing methods [1,5,6,10], but that can be expensive for large-scale problems. 
In particular, problems resulting from the discretization of partial differential equations can be extremely expensive due to 
their high dimensionality. The computations are even more expensive if parameter-dependent problems are considered and 
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solutions are needed for a large number of parameter values. In that case traditional solution methods are extremely inef-
ficient. We propose the construction of reduced-order models that take advantage of the parametric nature of the problem 
and allow us to very cheaply produce solutions for a large number of parameter values.

Let us introduce a finite-dimensional, bounded parameter domain D ∈R
p and the parameter-dependent LMI

F (x;μ) :=
Q F∑

q=1

[
θ0

q (μ) + θ L
q (μ)x

]
Fq � 0. (L)

Here F (x; μ) ∈ R
N×N is a symmetric matrix that depends on both the parameter μ ∈ D and the decision variable x ∈ R

n

and is composed of Q F parameter-independent matrices Fq ∈ R
N×N . The parameter dependencies of F (x; μ) are given 

by the functions θ0(·) : D → R
Q F and θ L(·) : D → R

Q F ×n . We use subscripts to indicate components of a vector, such that 
θ0

q (μ) is the qth element of θ0(μ). Similarly, we write θ L
q (μ) to indicate the qth row of θ L(μ). The symbol � will be used 

in the sense that P � 0 indicates that the symmetric matrix P is positive semi-definite.
The goal of this paper is to efficiently solve the following problems for a large number of parameter values μ ∈ D:

(i) the strict feasibility problem: find an x ∈ R
n such that F (x; μ) � 0;

(ii) the semidefinite program (SDP):

minimize
x∈Rn

c(μ)Tx subject to F (x;μ) � 0. (S)

Rather than directly solving these problems for each new parameter value, we will solve them for only a small set of 
intelligently chosen parameter values. We will then use the resulting solutions to build a reduced-order model that can 
approximate the solution anywhere in D.

The method that we propose can be viewed as a generalization of the successive constraint method (SCM) [3,7], which 
is often used in the field of reduced basis methods to evaluate stability constants [9]. This method will allow us to very 
cheaply determine feasible solutions for any μ ∈ D. That is made possible by decomposing the computational workload 
into offline and online stages. All expensive computations will be performed in advance, during the offline stage. During 
the online stage the cost to solve the problem for a new parameter value will be independent of the size of the original 
constraint, N . In that way the computational cost of each new solution will remain cheap even if the original constraint 
has very large dimensions.

Our methods are applicable to a wide range of LMIs and can also be used to extend the applicability of SCM. In the con-
text of reduced basis methods, applications could involve bounding stability constants with respect to parameter-dependent 
norms or the selection of Lyapunov functions for the computation of error bounds [8]. In Section 4 we present an example 
in which we optimize a system while ensuring that it remains stable.

2. Reduced-order modeling for strict feasibility

SCM was originally designed to approximate coercivity constants. We will apply a modified version of SCM to the coer-
civity constant

α(x;μ) := inf
v∈RN

vT F (x;μ)v

vT F S v
, (1)

where F S ∈R
N×N is a fixed symmetric positive-definite matrix. From the definition it is clear that α(x; μ) ≥ 0 is equivalent 

to F (x; μ) � 0 for all symmetric positive definite matrices F S . Nevertheless, an appropriate choice of F S could be beneficial 
from a numerical point of view. If we are dealing with PDE discretizations, it can be advantageous to choose a matrix 
associated with an energy norm.

The first step in applying SCM is reformulating the coercivity constant as follows:

α(x;μ) = inf
y∈Y

[
θ0(μ) + θ L(μ)x

]T
y, where Y :=

{
y ∈R

Q F

∣∣∣yq = vT Fq v

vT F S v
, v ∈R

N
}

. (2)

This formulation has the advantage that the complexity of the problem has been shifted to the definition of the set Y . That 
allows us to compute lower and upper bounds for α(x; μ) by approximating Y .

A lower bound for α(x; μ) can be derived by approximating Y from the outside. A bounded but primitive approximation 
for Y is given by

BQ :=
Q F∏[

inf
y∈Y yq, sup

y∈Y
yq

]
⊂ R

Q F . (3)

i=1
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BQ will generally be much larger than Y so we will add constraints to restrict it and better approximate Y . Let us assume 
that we have computed lower bounds ᾱ(x̄; μ̄) ≤ α(x̄; μ̄) for each pair (x̄, μ̄) in a predetermined set R ⊂ R

n ×D. The set Y
is then contained in the set

Yout :=
{

y ∈ BQ

∣∣∣ [θ0(μ̄) + θ L(μ̄)x̄
]T

y ≥ ᾱ(x̄; μ̄), ∀ (x̄, μ̄) ∈ R
}

. (4)

Using Yout, we can define

αout(x;μ) := inf
y∈Yout

[
θ0(μ) + θ L(μ)x

]T
y, (5)

such that αout(x; μ) ≤ α(x; μ) for any x ∈ R
n and any μ ∈D.

The lower bound αout(x; μ) can be formulated as the solution to a linear programming problem. To see that we note 
that Yout is a linearly constrained subset of RQ F . As a result we can find a matrix Aout ∈R

�×Q F and a vector bout ∈ R
� such 

that Yout = {y ∈R
Q F |Aout y ≥ bout}. Here the symbol ≥ indicates a componentwise comparison of vectors and � 
 N is the 

number of constraints. The lower bound αout(x; μ) can be calculated, for any x ∈ R
n and any μ ∈ D, as the solution to the 

linear program (P) or its dual (D):

minimize
y∈RQ F

[
θ0(μ) + θ L(μ)x

]T
y

subject to Aout y ≥ bout

(P)

maximize
p∈R�

bT
out p

subject to AT
out p = θ0(μ) + θ L(μ)x

p ≥ 0

(D)

To find an optimal value of x we will maximize (D) over all x ∈ R
n using the problem

maximize
p∈R�,x∈Rn

bT
out p subject to AT

out p − θ L(μ)x = θ0(μ) and p ≥ 0. (RF)

If bT
out p is strictly greater than 0, then the associated x is guaranteed to strictly satisfy (L). Even if that is not the case, (RF)

is always feasible. To show that we note that the boundedness of Yout ⊂ BQ implies the boundedness of (P). By duality (D)
is then feasible for any x ∈ R

n and any μ ∈ D which implies that (RF) is feasible for any μ ∈ D. (RF) is also bounded if 
maxx∈Rn α(x; μ) is bounded; otherwise, we will be content with any x associated with a large, positive value of bT

out p. The 
main reason to use (RF) is that it is cheap to solve: It is a small linear program with n +� variables, Q F equality constraints, 
and � inequality constraints.

Since it is not possible to work directly with the infinite set D, we introduce a large set � ⊂ D of discrete points that 
are representative of D and a much smaller set Ck ⊂ � with cardinality k. The set R will be made up of parameter values 
μ̄ ∈ � and associated approximate solutions x̄ ∈ R

n . For parameter values μ̄ that are in Ck we will use solutions x̄ to the 
original problem (L) and set ᾱ(x̄; μ̄) = α(x̄; μ̄). For parameter values in the much larger set � \ Ck we will use solutions 
x̄ to (RF), and set ᾱ(x̄; μ̄) = αout(x̄; μ̄). The pairs (x̄, μ̄) that will be included in R will depend on the parameter μ for 
which we would like a feasible solution. For two natural numbers MC and M� we define R to be a set of MC pairs (x̄, μ̄)

with μ̄ ∈ Ck and M� pairs (x̄, μ̄) with μ̄ ∈ � \ Ck . In both cases we will choose the pairs (x̄, μ̄) with μ̄ closest to μ in a 
predetermined metric. If MC > k, we simply include all of Ck in R.

To build our model we will make use of the greedy algorithm that was introduced in the context of reduced basis 
methods [13] and plays a vital role in SCM. The algorithm is initiated by choosing a small initial set Ck . For each μ̄ ∈ Ck
the problem (L) is solved once to determine the associated values of x̄ and ᾱ(x̄; μ̄). For μ̄ ∈ � \ Ck we initially set x̄ = 0
and ᾱ(x̄; μ̄) = −∞. The model is then improved iteratively. In each iteration we will solve (RF) for each μ̄ ∈ � \ Ck and 
update the stored values of x̄ and ᾱ(x̄; μ̄). The μ̄ associated with the smallest value of ᾱ(x̄; μ̄) is then added to Ck , and (L)
is solved to update the stored values of x̄ and ᾱ(x̄; μ̄). The process terminates when the smallest value of ᾱ(x̄; μ̄) is larger 
than some positive tolerance.

Solving problems with our method involves two stages. During the offline stage the greedy algorithm builds the model. 
The expensive operations in the offline stage are k solutions of (L) and nearly k|�| solutions of (RF). Here k is the cardinality 
of the final Ck and |�| is the cardinality of �. During the online stage (RF) can be constructed and solved very cheaply for 
any new parameter value. The online computational cost is independent of N to ensure that it remains cheap even if N is 
very large.

During the greedy algorithm it is necessary to solve (L) for various parameter values. That can be done using a variety 
of methods including algorithms that solve semidefinite programming problems [1,5,6,10]. In this section we propose a 
method that is based on SCM and allows us to reuse information that we have already computed.

For a predetermined, finite subset Yin of Y we define

αin(x;μ) := inf¯

[
θ0(μ) + θ L(μ)x

]T
ȳ, (6)
y∈Yin
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such that αin(x; μ) ≥ α(x; μ) for all x ∈R
n and μ ∈D. Here we will make use of a variation of the greedy algorithm. In each 

iteration we solve maxx∈Rn αin(x; μ) to find the optimal x. For that value of x we then compute α(x; μ) and an element 
y of Y for which the infimum in (2) is reached. That y is then added to Yin to improve the upper bound αin(·; μ). The 
algorithm terminates when α(x; μ) is sufficiently large or sufficiently close to αin(x; μ).

In each iteration of the algorithm both the small linear program associated with maxx∈Rn αin(x; μ) and the N -dimen-
sional eigenvalue problem associated with α(x; μ) need to be solved once. The dominant cost is that of the eigenvalue 
problems. To reduce the number of iterations and eigenvalue solves we will store the last value of ȳ that is calculated each 
time we solve (L) for a new μ ∈ Ck . The set Yin can then be initialized using those values of ȳ .

3. The semidefinite programming problem

In this section we will show how our methods can be used to approximate solutions to the semidefinite program (S). 
The idea is to minimize c(μ)Tx over all x ∈ R

n that satisfy αout(x; μ) ≥ 0. That is done using the following problem:

minimize
x∈Rn,p∈R�

c(μ)Tx subject to
[

AT
out −θ L(μ)

][
p
x

]
= θ0(μ) and

[
I

bT
out

]
p ≥

[
0
0

]
. (RS)

Here Aout, bT
out and αout(x; μ) are all the same as in Section 2 except that the stored values of x̄ will be calculated using (S)

and (RS) rather than (L) and (RF). The new constraint bT
out p ≥ 0 guarantees that αout(x; μ) ≥ 0.

Let us write Jout and J to denote the optimal values of (RS) and (S), respectively. Based on the fact that the optimal 
x ∈ R

n for (RS) will be feasible for (S) we know that Jout ≥J . Ideally Jout will also be a good approximation to J despite 
being much cheaper to compute: It requires the solution of a linear program with n + � variables, Q F equality constraints, 
and � + 1 inequality constraints.

For any μ ∈ D, the boundedness of (S) implies the boundedness of (RS), but the question of feasibility is more compli-
cated. To ensure feasibility we first build a model (RF) to find strictly feasible solutions. We then convert that model to the 
form of (RS). In doing so we consider the stored values of x̄ ∈ R

n , which should be feasible, to be approximate solutions to 
(S) and we reinitialize Ck as an empty set. We can then improve the model using another greedy algorithm.

The goal of this greedy algorithm is to reduce the error Jout −J . Since it is too expensive to compute J online, we will 
compute a lower bound for it by considering the problem

minimize
x∈Rn

c(μ)Tx subject to αin(x;μ) ≥ 0. (ER)

Here αin(x; μ) is defined like in (6) with Yin initially being the set of ȳ ∈ Y associated with parameter values in Ck . The 
optimal value of (ER), which we will denote Jin, is by definition a lower bound for J . That allows us to bound the error 
Jout − J ≥ 0 from above using Jout − Jin. Like the previous approximations, this bound can be computed online with a 
number of computations that is independent of N . Although (ER) is always feasible, it could be unbounded. That can be 
fixed by increasing Ck and consequently Yin.

During each iteration of the greedy algorithm we will solve both (RS) and (ER), compute the difference Jout −Jin, and 
update both the estimates x̄ ∈R

n and the associated values ᾱ(x̄; μ̄) for each μ̄ ∈ � \Ck . The μ̄ that produced the maximum 
value of Jout −Jin is then added to Ck and a more accurate solution to (S) is computed. That allows us to update both (RS)
and (ER). This process terminates when the maximum value of Jout −Jin is below a desired tolerance.

The major computational burdens in the offline stage of our method are the construction of the model (RF), k solutions 
of (S), and nearly k|�| solutions of both (RS) and (ER). During the online stage an approximate solution can be determined 
for any given μ ∈D by simply constructing and solving (RS). The error can also be bounded online by solving (ER).

The more accurate solutions that we need can be computed using either general solvers for semidefinite programming 
problems [1,5,6,10] or a method that is similar to the one presented in Section 2. For the latter we will consider the 
following problem with a fixed value of μ ∈ D:

minimize
x∈Rn

c(μ)Tx subject to αin(x;μ) > αmin, (T)

where αmin > 0 is some small constant that is used as a tolerance. We again use a sort of greedy algorithm. In each iteration 
we solve (T) to get the approximate solution x and update Yin by adding the new value of y. The process is repeated until 
the stopping condition α(x; μ) > 0 is satisfied. If αmin is sufficiently small, the resulting x should be a good approximation 
to the true solution.

4. Numerical example: system stabilization

To test our method we will consider a reaction–diffusion equation on the unit square, �, depicted in Fig. 1(a). To 
facilitate the explanation we consider a problem with just one parameter μ ∈ D := [0, 3] and one decision variable x ∈ R. 
The problem is related to the following system:
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Fig. 1. Setup of the numerical example.

Fig. 1. Configuration de l’exemple numérique.

Fig. 2. Results of the numerical experiments.

Fig. 2. Résultats des espériences numériques.

ẏ = �y + μy1�1 + 1�2 u, ∀z ∈ �; ∂ y

∂η
= 0, ∀z ∈ ∂�; u = −xζ ; ζ =

∫
�2

y. (7)

Here 1S indicates the characteristic function of a set S and η is the outward-pointing unit vector on the boundary ∂�. The 
decision variable x determines the feedback gain from the system’s output ζ(t) to its input u(t) as depicted in Fig. 1(b). 
We use linear finite elements to discretize the problem in space. That gives us the following 2601-dimensional closed-loop 
semi-discrete system

M ẏ + A(x;μ)y = 0, where A(x;μ) = A0 − μA1 + xA2, with M, A0, A1, A2 ∈R
2601×2601. (8)

Here M is symmetric positive definite and A(x; μ) is symmetric. Under these assumptions the system (8) is strictly stable 
for a given μ ∈D and x ∈ R iff A(x; μ) � 0. Our goal will be to minimize the cost of the control, by keeping x small, while 
ensuring strict stability. Noting that A0, which is associated with the operator −�, is positive semidefinite and that A0 + A1
is positive definite, we define F (x; μ) := (1 − ρ)A0 + (−μ − ρ)A1 + xA2 and F S := A0 + A1 � 0 for some small ρ > 0. It 
then holds that

F (x;μ) � 0 ⇐⇒ A(x;μ) − ρ F S � 0, (9)

and hence the system in (8) is strictly stable if F (x; μ) � 0. We will search for a minimal stabilizing gain x ∈ R as the 
solution to (S).

For our model we will use values of MC = 4 and M� = 3. Ck is initialized using the smallest and the largest values in D. 
For this particular problem that guarantees that (RS) is feasible for all μ ∈ D. As a result we can start directly with (RS) and 
do not need to build the model given in (RF). Another modification of our method is that we will work with the relative 
error given by (Jout −Jin)/Jin rather than the error Jout −Jin. That is possible because Jin will always be strictly positive.

Fig. 2(a) shows the convergence of the solver described in Section 3 for the computation of more accurate solutions 
to (S). Here the error is measured as αin(x̄; μ̄) − α(x̄; μ̄). Two examples are shown as well as the worst case over 30
random parameter values. We recall that the most expensive part of this method is the eigenvalue solves and that one 
such solve is needed for each iteration. Fig. 2(b) shows the convergence of the greedy algorithm for two different parameter 
domains D. The plotted values are the worst relative errors over the respective sets �. For D = [0, 3] we set � to be 300
uniformly distributed points and for D = [0, 1.5] we use 150 points. Fig. 2(c) compares the results when Ck is constructed 
using the greedy algorithm or simply as uniformly distributed points. The plot shows the worst relative errors over 100
random values of μ ∈ D. The greedy algorithm performs slightly better than uniform distributions when Ck is large and 
also has the advantage that it is iterative.
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