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Let f : X → A be an abelian cover from a complex algebraic variety with quotient 
singularities to an abelian variety. We show that f ∗ induces an isomorphism between 
the rational cohomology rings H•(A, Q) and H•(X, Q) if and only if f ∗ induces an 
isomorphism between the Chow rings with rational coefficients CH•(A)Q and CH•(X)Q .
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r é s u m é

Soit f : X → A un revêtement abélien d’une variété algébrique complexe à singularités-
quotient dans une variété abélienne. Nous montrons que f ∗ induit un isomorphisme entre 
les anneaux de cohomologie rationnelle H•(A, Q) et H•(X, Q) si et seulement si f ∗ induit 
un isomorphisme entre les anneaux de Chow à coefficients rationnels CH•(A)Q et CH•(X)Q .

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Rational cohomology tori and the Chow ring

A complex algebraic variety X is called a rational cohomology torus if X is normal and

H•(X,Q) � ∧•H1(X,Q).

In [3], the authors studied properties of rational cohomology tori. They showed that if X is a rational cohomology torus, 
then there exists a finite cover aX : X → A to an abelian variety such that a∗

X : H•(A, Q) → H•(X, Q) is an isomorphism. 
The morphism aX is the universal morphism to an abelian variety and is called the Albanese morphism of X .

It is a general principle that Hodge structures control Chow groups. Hence it makes sense to ask the following question.
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Question 1.1. Let f : X → A be a finite morphism from a variety with quotient singularities to an abelian variety. Assume 
that f ∗ : H•(A, Q) → H•(X, Q) is an isomorphism. Does f ∗ induce an isomorphism of Chow rings with rational coefficients 
between A and X?

A variety is said to have quotient singularities if it is étale-locally the quotient of a smooth variety by a finite group. 
For such varieties there is a well-defined intersection theory with Q-coefficients (see [7]). Note that a smooth rational 
cohomology torus cannot be of general type, but in every dimension > 2, there exist rational cohomology tori of general 
type with quotient singularities (see [3]). Hence it is more interesting to consider the Chow ring of rational cohomology tori 
with quotient singularities.

Despite several constraints on aX found in [3], we do not have a thorough classification of rational cohomology tori. 
Hence it seems difficult to answer the above question in general. But all known rational cohomology tori are actually 
abelian covers of abelian varieties (see [3, Section 4]). The goal of this note is to answer affirmatively the above question in 
the case of abelian covers of abelian varieties.

Let f : X → A be an abelian cover from a normal variety to an abelian variety with Galois group G . Then we have (see 
for instance [6])

f∗OX =
⊕
χ∈G∗

L−1
χ ,

where Lχ is a line bundle on A and G acts on L−1
χ via the character χ . Assume further that X has quotient singularities. 

Define for each character χ ∈ G∗ the projector

[�X
χ ] := 1

|G|
∑
g∈G

χ−1(g)[�X
g ] ∈ CHdim X (X × X)C,

where �X
g is the graph of g . The image of CH•(X)C under [�X

χ ] is

CH•(X)
χ
C

:= {α ∈ CH•(X)C : g∗(α) = χ(g)α for all g ∈ G}.
We have a decomposition

CH•(X)C =
⊕
χ∈G∗

CH•(X)
χ
C
.

Theorem 1.2. Let f : X → A be an abelian cover from a variety with quotient singularities to an abelian variety with Galois group G. 
Then the following statements are equivalent:

(1) X is a rational cohomology torus;
(2) hi(A, Lχ ) = 0 for all i ∈ Z and non-trivial χ ∈ G∗;
(3) [�X

χ ] = 0 ∈ CHdim X (X × X)C for all non-trivial χ ∈ G∗; in particular,

f ∗ : CH•(A)Q → CH•(X)Q

is an isomorphism.

The implications (1) ⇒ (2) and (3) ⇒ (1) are straightforward. Indeed, if X is a rational cohomology torus, then f ∗ :
H•(A, Q) → H•(X, Q) is an isomorphism of Q-Hodge structures. We have for all i ∈ Z,

hi(A,OA) = h0,i(A) = h0,i(X) = hi(X,OX ) =
∑
χ∈G∗

hi(A, L−1
χ ).

Hence hi(A, L−1
χ ) = 0 for all i ∈ Z and non-trivial χ ∈ G∗ . We also have hi(A, Lχ ) = 0 by Serre duality.

If [�X
χ ] = 0 ∈ CHdim X (X × X)C for all non-trivial χ ∈ G∗ , then by applying [�X

χ ] to H•(X, C), we find H•(X, C) =
H•(X, C)G . Hence f ∗ : H•(A, Q) → H•(X, Q) is an isomorphism and X is a rational cohomology torus.

The proof of (2) ⇒ (3) will occupy the next section.

Remark 1.3. Since Lχ is semi-ample (see Step 1 in the proof of Proposition 2.2), condition (2) in Theorem 1.2 is also 
equivalent to the condition that h0(A, Lχ ) = 0 for all non-trivial χ ∈ G∗ . Hence, under the assumption of Theorem 1.2, we 
know that X is a rational cohomology torus if and only if pg(X) = 1.
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2. Proof of Theorem 1.2

Lemma 2.1. Let A be an abelian variety and let t : A → A be the translation by a torsion element. Then [�A
t ] −[�A] = 0 ∈ CHdim A(A ×

A)Q , where �A
t is the graph of t and �A is the diagonal.

Proof. Let m ∈ Z>0 be the order of t . Recall that m∗ : CH•(A × A)Q → CH•(A × A)Q is an isomorphism (see [1]). Since 
m∗[�A

t ] = m∗[�A] ∈ CHdim A(A × A)Q , we conclude that [�A
t ] − [�A] = 0 ∈ CHdim A(A × A)Q . �

Proposition 2.2. Let ρ : Y → A be a cyclic cover from a variety with quotient singularities to an abelian variety with Galois group H. 
We write

ρ∗OY =
⊕
χ∈H∗

L−1
χ .

If hi(A, Lχ ) = 0 for all i ∈ Z and non-trivial χ ∈ H∗ , then for all non-trivial χ ∈ H∗ ,
∑
h∈H

χ−1(h)[�Y
h ] = 0 ∈ CHdim Y (Y × Y )C.

Proof. We proceed by induction on the dimension of Y . The statement in dimension 0 is trivial. We then assume that 
Proposition 2.2 holds in dimensions < dim Y .

Step 1. Reduction to lower dimensions.

Let χ be a generator of H∗ . Since hi(A, Lχ ) = 0 for all i ∈ Z, the line bundle Lχ is not ample. Let K denote the neutral 
component of the morphism ϕLχ : A → Pic0(A) induced by Lχ , and let p : A → B be the quotient by K . Then we have

Lχ = p∗H + Q ,

where H is an ample line bundle on B and Q is a torsion line bundle such that Q |K �=OK (see for instance [2, Section 3.3]). 
As ρ is a cyclic cover and χ is a generator of H∗ , for each k ∈ Z, there exists an effective divisor Dk whose components are 
irreducible components of the branched divisor D such that

kLχ = Lχk + Dk.

Moreover, for m = |H |, we know that mLχ = Dm and that Dm − D is effective (see [6]). In particular, we have D = p∗D B for 
some ample divisor D B on B .

Consider the Stein factorization of the natural morphism ϕ = p ◦ ρ : Y → B ,

ϕ : Y
ϕ′
−→ Z

ϕ′′
−−→ B.

A general fiber of ϕ′ is an étale cover of K , which is an abelian variety that we denote by K̃ . Hence ϕ′ is the Iitaka fibration 
of Y in the sense of [5, Theorem 13].

Let Y ′ := Z ×B A. Then we have a factorization

ρ : Y
ρ ′
−→ Y ′ ρ ′′

−−→ A.

Both ρ ′ and ρ ′′ are cyclic covers with respective Galois groups H ′ ⊂ H and H ′′ := H/H ′ . Hence the morphism ϕ′′ : Z → B is 
also an H ′′-cover. Moreover, we write

ϕ′′∗OZ =
⊕

ι∈H ′′ ∗
L−1
ι,Z .

Then we have p∗Lι,Z = Lχι , where χι is the induced character of H . Hence Hi(B, Lι,Z ) = 0 for all i ∈ Z and non-trivial 
ι ∈ H ′′ ∗ .

Further, we show that Y ′ and Z have quotient singularities. Recall from [7, Proposition 2.8] that Y is the coarse moduli 
space of a canonical smooth Deligne–Mumford stack Y . By the universal property of the canonical stack (see [4, Theo-
rem 4.6]), the action of H ′ on Y induces an action on Y . The quotient Y ′ = Y /H ′ is the coarse moduli space of the smooth 
Deligne–Mumford stack [Y/H ′], and hence has quotient singularities.

We take a quotient A → K such that A → B × K is an isogeny. Each connected component of a general fiber of the 
induced morphism Y ′ → K is an étale cover of Z . Hence Z also has quotient singularities.

Since dim Z < dim Y , the induction hypothesis implies that for all non-trivial ι ∈ H ′′ ∗ ,∑
h∈H ′′

ι−1(h)[�Z
h ] = 0 ∈ CHdim Z (Z × Z)C.
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Step 2. Proof that 
∑

h∈H ′′ ι−1(h)[�Y ′
h ] = 0 ∈ CHdim Y ′

(Y ′ × Y ′)C for all non-trivial ι ∈ H ′′ ∗ .

Consider the quotient A → K such that A → B × K is an isogeny with Galois group L. Then the induced morphism 
π : Y ′ = Z ×B A → Z × K is also an étale cover with Galois group L.

Note that for all h ∈ H ′′ ,

(π × π)∗[�Z
h × �K ] =

∑
l∈L

[�Z
h ×�B �A

l ] ∈ CHdim Y ′
(Y ′ × Y ′)Q.

Consider for each l ∈ L the embeddings � Z
h ×�B �A

l ⊂ � Z
h ×�B (A ×B A) ⊂ Y ′ × Y ′ . By Lemma 2.1, we have [�A

l ] = [�A] ∈
CHdim Y ′ (A ×B A)Q . Hence

[�Z
h ×�B �A

l ] = [�Z
h ×�B �A] ∈ CHdim Y ′(�Z

h ×�B (A ×B A))Q.

In particular,

[�Z
h ×�B �A

l ] = [�Z
h ×�B �A] ∈ CHdim Y ′

(Y ′ × Y ′)Q.

Then we find

(π × π)∗
( ∑

h∈H ′′
ι−1(h)[�Z

h × �K ]) =
∑

h∈H ′′
ι−1(h)

(∑
l∈L

[�Z
h ×�B �A

l ])

= |L|
∑

h∈H ′′
ι−1(h)[�Z

h ×�B �A]

= |L|
∑

h∈H ′′
ι−1(h)[�Y ′

h ] ∈ CHdim Y ′
(Y ′ × Y ′)C.

As 
∑

h∈H ′′ ι−1(h)[� Z
h × �K ] = 0 ∈ CHdim Y ′

(Z × Z × K × K )C , we also have

∑
h∈H ′′

ι−1(h)[�Y ′
h ] = 0 ∈ CHdim Y ′

(Y ′ × Y ′)C.

Step 3. Proof that 
∑

h∈H ′ χ−1(h)[�Y
h ] = 0 ∈ CHdim Y (Y × Y )C for all non-trivial χ ∈ H ′ ∗ .

By Kawamata’s theorem [5, Theorem 13], there exists an étale cover μ : Ỹ → Y with Galois group J induced by an étale 
cover of A, such that the following holds: consider the Stein factorization of the natural morphism ν = ϕ′ ◦ μ : Ỹ → Z ,

ν : Ỹ
ν ′−→ Ẑ

ν ′′−→ Z .

Then we have Ỹ � Ẑ × K̃ with ν ′ the projection, J acts on Ẑ faithfully and on K̃ faithfully by translation, and Y � ( Ẑ × K̃ )/ J . 
We put everything into a commutative diagram:

Ỹ

ν ′

μ
Y

ρ

ρ ′

ϕ′

Y ′ ρ ′′
A

p

Ẑ ν ′′
Z

ϕ′′
B.

Since μ is induced by an étale cover of A, we know that ρ ′ ◦ μ : Ỹ → Y ′ is still an abelian cover. It is clear that the 
Galois group of ρ ◦ μ is J × H and hence the Galois group of ρ ′ ◦ μ is J × H ′ . Let q : J × H ′ → H ′ be the projection.

Consider the morphism μ × μ : Ỹ × Ỹ → Y × Y . Note that for all h ∈ H ′ ,

(μ × μ)∗[�Y
h ] =

∑
g∈q−1(h)

[�Ỹ
g ] ∈ CHdim Ỹ (Ỹ × Ỹ )Q.

Hence for all non-trivial χ ∈ H ′ ∗ ,

(μ × μ)∗(
∑
h∈H ′

χ−1(h)[�Y
h ]) =

∑
(g,h)∈ J×H ′

χ−1(h)[�Ỹ
(g,h)] ∈ CHdim Y (Ỹ × Ỹ )C.

Under the isomorphism Ỹ � Ẑ × K̃ , we have
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[�Ỹ
(g,h)] = [� Ẑ

g × � K̃
(g,h)] ∈ CHdim Y ( Ẑ × Ẑ × K̃ × K̃ )Q.

Then we find

(μ × μ)∗(
∑
h∈H ′

χ−1(h)[�Y
h ]) =

∑
(g,h)∈ J×H ′

χ−1(h)[� Ẑ
g × � K̃

(g,h)]

=
∑
g∈ J

([� Ẑ
g ] × (

∑
h∈H ′

χ−1(h)[� K̃
(g,h)])) ∈ CHdim Y ( Ẑ × Ẑ × K̃ × K̃ )C.

By Lemma 2.1, we have [� K̃
(g,h)

] = [�K̃ ] ∈ CHdim K̃ (K̃ × K̃ )Q . Hence

∑
h∈H ′

χ−1(h)[� K̃
(g,h)] = 0 ∈ CHdim K̃ (K̃ × K̃ )C,

and thus (μ × μ)∗(
∑

h∈H ′ χ−1(h)[�Y
h ]) = 0 ∈ CHdim Y (Ỹ × Ỹ )C . By the projection formula,

∑
h∈H ′

χ−1(h)[�Y
h ] = 0 ∈ CHdim Y (Y × Y )C.

Step 4. Conclusion.

Let χ ∈ H∗ be a non-trivial character. If the restriction of χ to H ′ is trivial, then χ is the pull-back of a non-trivial 
character ι of H ′′ . As before,

∑
h∈H

χ−1(h)[�Y
h ] = (ρ ′ × ρ ′)∗(

∑
h∈H ′′

ι−1(h)[�Y ′
h ]) ∈ CHdim Y (Y × Y )C.

By Step 2, we see that 
∑

h∈H χ−1(h)[�Y
h ] = 0 ∈ CHdim Y (Y × Y )C .

If the restriction of χ to H ′ is non-trivial, we take a subset V of H consisting of representatives of each coset of H ′ . 
Then we have∑

h∈H

χ−1(h)[�Y
h ] = (

∑
h∈H ′

χ−1(h)[�Y
h ]) ◦ (

∑
g∈V

χ−1(g)[�Y
g ]) ∈ CHdim Y (Y × Y )C.

By Step 3, we also know that 
∑

h∈H χ−1(h)[�Y
h ] = 0 ∈ CHdim Y (Y × Y )C . �

We are now ready to prove Theorem 1.2. Let χ ∈ G∗ be a non-trivial character. Consider

G ′ := Ker(χ : G →C∗) ⊂ G.

We take X ′ := X/G ′ which has quotient singularities (see Step 1 in the proof of Proposition 2.2), and we have a factorization

f : X
f ′

−→ X ′ f ′′
−→ A.

Then f ′′ is a cyclic cover with Galois group G ′′ := G/G ′ ⊂ C∗ . Moreover, the character χ is the pull-back of a non-trivial 
character ι of G ′′ . It is straightforward to verify that the assumption of Proposition 2.2 is satisfied by X ′ and G ′′ . Hence

∑
g∈G ′′

ι−1(g)[�X ′
g ] = 0 ∈ CHdim X ′

(X ′ × X ′)C.

As before,
∑
g∈G

χ−1(g)[�X
g ] = ( f ′ × f ′)∗(

∑
g∈G ′′

ι−1(g)[�X ′
g ]) = 0 ∈ CHdim X (X × X)C,

and thus

[�X
χ ] = 1

|G|
∑
g∈G

χ−1(g)[�X
g ] = 0 ∈ CHdim X (X × X)C. �
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