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W. Thurston constructed a combinatorial model of the Mandelbrot set M2 such that 
there is a continuous and monotone projection of M2 to this model. We propose the 
following related model for the space MD3 of critically marked cubic polynomials with 
connected Julia set and all cycles repelling. If (P , c1, c2) ∈ MD3, then every point z in 
the Julia set of the polynomial P defines a unique maximal finite set Az of angles on the 
circle corresponding to the rays, whose impressions form a continuum containing z. Let 
G(z) denote the convex hull of Az . The convex sets G(z) partition the closed unit disk. 
For (P , c1, c2) ∈ MD3 let c∗

1 be the co-critical point of c1. We tag the marked dendritic 
polynomial (P , c1, c2) with the set G(c∗

1) × G(P (c2)) ⊂ D × D. Tags are pairwise disjoint; 
denote by MDcomb

3 their collection, equipped with the quotient topology. We show that 
tagging defines a continuous map from MD3 to MDcomb

3 so that MDcomb
3 serves as a 

model for MD3.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

W. Thurston a construit un modèle combinatoire de l’ensemble de Mandelbrot M2 tel 
qu’il y ait une projection monotone et continue de M2 sur ce modèle. En relation avec 
ceci, nous proposons le modèle lié suivant pour l’espace MD3 des polynômes cubiques 
à points critiques marqués, avec ensemble de Julia connexe et tous les cycles répulsifs. Si 
(P , c1, c2) ∈ MD3, alors chaque point z dans l’ensemble de Julia du polynôme P définit 
un unique ensemble fini maximal Az d’angles sur le cercle correspondant aux rayons, 
dont les impressions forment un continuum contenant z. Soit G(z) l’enveloppe convexe 
de Az . Les ensembles convexes G(z) définissent une partition du disque unité fermé. Pour 
(P , c1, c2) ∈ MD3, soit c∗

1 le point co-critique de c1. Nous balisons le polynôme dendritique 
marqué (P , c1, c2) avec l’ensemble G(c∗

1) × G(P (c2)) ⊂ D×D. Les balises sont deux à deux 
disjointes ; désignons par MDcomb

3 leur collection, équipée de la topologie quotient. Nous 
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montrons que le balisage définit une application continue de MD3 dans MDcomb
3 de sorte 

que MDcomb
3 est un modèle pour MD3.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let D be the open disk {z ∈ C | |z| < 1} in the plane, D be its closure, and S be its boundary circle. Let P be a polynomial 
of degree d with connected Julia set J (P ). We write �P for the conformal isomorphism between C \ D and the comple-
ment U of the filled Julia set K (P ) asymptotic to the identity at infinity. By a theorem of Carathéodory, if J (P ) is locally 
connected, then �P can be extended to a continuous map �P : C \ D → U , under which S maps onto J (P ). Define the 
lamination generated by P as the equivalence relation ∼P on S identifying points of S if and only if �P sends them to the 
same point of J (P ).

By Thurston [7], the map P restricted to its locally connected Julia set J (P ) is topologically conjugate to a self-mapping 
f∼P of the quotient space S/ ∼P = J∼P induced by zd|S = σd; denote this conjugacy by �P : J (P ) → J∼P . The mapping 
f∼P is called a topological polynomial. The quotient map of S onto S/ ∼P is denoted by π∼P . Given a point z ∈ J (P ), we 
let G P (z) = G(z) denote the convex hull of the set π−1∼P

(�P (z)). In other words, we represent z by the point �P (z) of the 
model topological Julia set J∼P and then take all angles associated with �P (z) in the sense of the lamination ∼P . By [7], 
for two points z and w , the sets G(z) and G(w) either coincide or are disjoint.

The geolamination (from geodesic or geometric lamination) of P is the collection of chords, each of which is an edge of the 
convex hull of a ∼P -class. Geolaminations geometrically interpret and “topologize” laminations, reflecting limit transitions 
among them. Both laminations and their geolaminations can be defined intrinsically (without polynomials). Then some 
geolaminations will not directly correspond to an equivalence relation on S, but the family of all geolaminations will be 
closed. This allows one to work with limits of geolaminations and limits of polynomials (which might have non-locally 
connected Julia sets).

Thurston [7] models polynomials by their geolaminations, and families of quadratic polynomials by families of quadratic 
geolaminations. He “tags” quadratic geolaminations with their minors which form the quadratic minor geolamination QML and 
generate the corresponding lamination ∼QML. The quotient space S/∼QML models the boundary of the Mandelbrot set M2

(this is the set of all parameters c such that polynomials z2 + c have connected Julia set; it is also called the quadratic 
connected locus). The induced quotient space of D serves as a model for M2. Conjecturally, it is homeomorphic to M2.

Call a polynomial with connected Julia set dendritic if all its periodic points are repelling. By [5], for any dendritic polyno-
mial P , even if J (P ) is not locally connected, there is a lamination ∼P such that there exists a monotone semi-conjugacy �P

between P | J (P ) and the topological polynomial f∼P . Thus the sets G P (z) = π−1∼P
(�P (z)) are well defined for every dendritic 

polynomial P and every point z ∈ J (P ). As we will see, these nice properties of individual dendritic polynomials result in 
nice properties of families of cubic dendritic polynomials.

Let D2 ⊂M2 be the set of all parameters c ∈M2 such that the polynomial Pc(z) = z2 + c is dendritic. Set Hc = G Pc (c), 
and let H stand for the collection of all sets Hc , c ∈ D2. We denote the union 

⋃
c∈D2

Hc by H+ (in what follows, for any 
collection A of sets, we write A+ for the union of all sets in A). By a part of a major result of [7], for two parameter 
values c, c′ ∈ D2, the sets Hc and Hc′ are either disjoint or equal. Moreover, the mapping c �→ Hc from D2 to H is upper 
semi-continuous (if a sequence of dendritic parameters cn converges to a dendritic parameter c, then lim supn→∞ Gcn ⊂ Gc). 
The set D2 (or, equivalently, the set of all dendritic quadratic polynomials defined up to a Moebius change of coordinates) 
projects continuously onto the quotient space of H+ defined by the partition of H+ into sets Hc with c ∈D2.

We propose a related model for the space MD3 of marked dendritic cubic polynomials (P , c1, c2) with connected Julia 
set (c1, c2 are the critical points of P ). Define the co-critical point associated with a critical point τ of P as the only 
point τ ∗ such that P (τ ∗) = P (τ ), τ ∗ 
= τ unless P has a unique critical point, in which case τ = τ ∗ . Then, with every 
marked dendritic cubic polynomial (P , c1, c2), we associate the corresponding mixed tag Tag(P , c1, c2) = G(c∗

1) × G(P (c2)) ⊂
D×D. This defines the mixed tag Tag(P , c1, c2) for all marked dendritic cubic polynomials. Our choice of tags is based on the 
following two requirements. Firstly, the tag of Tag(P , c1, c2) must determine ∼P . Secondly, different tags must be disjoint. 
It is easy to see that the post-critical tag G(P (c1)) × G(P (c2)) does not determine G(c1) and G(c2). Hence it does not 
determine ∼P either. Co-critical tags G(c∗

1) × G(c∗
2) do not satisfy our requirements either since these tags may intersect 

without being the same (this happens, e.g., for unicritical polynomials). For this reason, we use mixed tags.

Theorem 1.1. Mixed tags of elements in MD3 are disjoint or coincide so that sets Tag(P , c1, c2) form a partition of the set 
Tag(MD3)

+ ⊂ D × D and generate the corresponding quotient space of Tag(MD3)
+ denoted by MDcomb

3 . Then MDcomb
3 is a 

separable metric space and the map Tag :MD3 →MDcomb is continuous.
3
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There are few papers studying the parameterization of geolaminations of higher degree. One of them is due to D. Schle-
icher [6], who extended Thurston’s results to geolaminations of any degree with one critical set. We have also heard of an 
old preprint of D. Ahmadi and M. Rees, in which they study cubic laminations.

The results of this paper are based upon [2], which in fact applies to laminations of any degree. An extended version of 
the present paper can be found in [3].

2. Main ideas of the proof

Let us begin with the notions and tools developed for polynomials of any degree. If G is the convex hull of some set 
G ′ ⊂ S, then we write σd(G) for the convex hull of the set σd(G ′).

Definition 2.1 (Geolaminations). Two distinct chords of D are said to be linked if they intersect in D. A geolamination L is a 
collection of pairwise unlinked chords in D, called leaves of L, such that the union L+ of all leaves is compact, and every 
point in S is a degenerate leaf of L. A gap of L is the closure of a component of D \L+ . A chord of L is a chord of D that 
is either a leaf of L or is disjoint from L+ in D.

In the dynamical context, we use Definition 2.2, slightly different from Thurston’s [7].

Definition 2.2 (Invariant geolaminations [1]). A chord (leaf) of a geolamination L is critical if its two distinct endpoints are 
mapped to the same point under σd . A geolamination L is σd-invariant if for any � ∈ L there exists �∗ ∈ L such that 
σd(�

∗) = �, and, if � is non-critical and non-degenerate, then σd(�) ∈L and there exist d pairwise disjoint leaves �1 = �, �2, 
. . . , �d in L with σd(�i) = σd(�) for all i = 1, . . . , d.

In the sequel, by invariant laminations we always understand the above-defined notion. Below we use the positive 
(counter-clockwise) circular order on S.

Definition 2.3 (Critical quadrilaterals). A critical quadrilateral is a circularly ordered quadruple of points a, b, c, d in S, not 
necessarily different, such that a 
= c are mapped to the same point under σd , and the same is true for the pair b 
= d. We 
refer to chords and polygons just by listing their vertices. Also, we identify quadrilaterals abcd, bcda, cdab and dabc, and 
call the chords ac and bd diagonals of the critical quadrilateral abcd.

A critical chord xy can be viewed as a critical quadrilateral xxyy. A triangle abc with critical edges can be viewed as a 
critical quadrilateral abbc, or bcca, or caab.

Definition 2.4 (Strong linkage). Let A and B be two quadrilaterals. Say that A and B are strongly linked if the vertices of A
and B can be numbered so that

a0 � b0 � a1 � b1 � a2 � b2 � a3 � b3 � a0

with respect to the circular order of points on S, where ai , 0 � i � 3, are vertices of A and bi , 0 � i � 3, are vertices of B .

We now consider geolaminations with sufficiently many critical quadrilaterals.

Definition 2.5 (Qc-portraits). An ordered (d − 1)-tuple QCP of critical quadrilaterals Q 1, . . . , Q d−1 is called a quadratically 
critical portrait (qc-portrait) if there is a geolamination L such that every Q i is a gap or a leaf of L and any collection 
�i ⊂ Q i , 1 � i � d − 1 of diagonals of Q i ’s contains no loops (call such collections full). The pair (L, QCP) is then called 
a geolamination with qc-portrait. The space of all qc-portraits is denoted by QCPd; the space of all geolaminations with 
qc-portraits is denoted by LQCPd . Here both spaces are equipped with the topology induced by the Hausdorff metric on 
sets QCP+ (in the case of QCPd) or (L+, QCP+) (in the case of LQCPd).

If an invariant geolamination L has a gap whose boundary maps forward k-to-1 with ∞ > k > 1 as a covering, then there 
is no qc-portrait for L. In the term “quadratically critical portrait”, the word “quadratic” refers to the analogy between a 
critical quadrilateral and a simple (quadratic) critical point. Quadrilaterals Q i and Q j from a qc-portrait for L cannot share 
a diagonal, as otherwise the two coinciding diagonals form a degenerate loop. The “no-loop” condition in Definition 2.5
guarantees that a qc-portrait captures all critical objects of L: if, say, L is a degree-4 lamination with a triangle � formed 
by critical leaves and another critical leaf c, then any qc-portrait of L must contain c; the collection of all edges of � is 
not a qc-portrait exactly because the edges form a loop. A condition equivalent to the “no-loop” condition can be stated as 
follows: for each component E of the closed disk minus the union of sets in the qc-portrait, the map σd maps the boundary 
of E forward in the one-to-one fashion, except for (possibly existing) critical edges of the boundary of E .

If all the sets Q i of a qc-portrait are gaps or leaves of a geolamination L, then a part of L can be recovered uniquely by 
taking pullbacks of Q i ’s that are disjoint from Q i ’s. Thus, parameterizing geolaminations is closely related to parameterizing 
qc-portraits.
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Fig. 1. This picture shows an accordion �1 ∪�2 for two linked cubic geolaminations. The first geolamination is sketched in light grays lines, while the second 
one in dotted boldface lines.

Lemma 2.6. The spaces QCPd and LQCPd are compact.

The following lemma explains the importance of full collections of diagonals.

Lemma 2.7. If C is a full collection of diagonals and W is a complementary component of D\C+ , then the circle arcs from the boundary 
of W add up to the total length 1

d and the restriction of σd to the union of these circle arcs is an orientation-preserving homeomorphism, 
except for the endpoints. Thus, a pair of linked chords disjoint from C+ is mapped to a pair of linked chords preserving orientation on 
their endpoints.

If L has a simple loop of critical leaves, then it does not matter how to choose critical quadrilaterals in the polygon 
bounded by this loop. This motivates the following definition.

Definition 2.8. A critical cluster of L is a convex subset of D whose boundary is a union of critical leaves (e.g., a critical leaf 
is itself a critical cluster).

To avoid confusion, we will use the notation Lq (with subscripts) for geolaminations with qc-portraits.

Definition 2.9 (Linked geolaminations). Let Lq
1, Lq

2 be geolaminations with qc-portraits QCP1 = (Q i
1)

d−1
i=1 , QCP2 = (Q i

2)
d−1
i=1 (the 

sets Q i
1, Q i

2, 1 � i � d − 1 are called associated). Let k, 0 � k � d − 1 be such that:

(1) for every i, 1 � i � k, the quadrilaterals Q i
1 and Q i

2 are strongly linked;

(2) for each j > k the sets Q j
1 and Q j

2 are contained in a common critical cluster of L1 and L2 (in what follows these 
common clusters will be called special clusters).

Then qc-portraits QCP1, QCP2, and geolaminations with qc-portraits (Lq
1, QCP1) and (Lq

2, QCP2), are called linked.

In what follows, we fix linked geolaminations with qc-portraits (Lq
1, QCP1) and (Lq

2, QCP2).

Definition 2.10 (Accordions). If a leaf �1 ∈ Lq
1 is not contained in a special cluster, then the union ALq

2
(�1) of �1 and all 

leaves of Lq
2 linked with �1 is called an accordion. The union A�2 (�1) of �1 and all leaves from the orbit of a leaf �2 ∈ Lq

2
that are linked with �1 is also called an accordion (see Fig. 1).

Lemma 2.11 is used in studying accordions of linked geolaminations with qc-portraits.

Lemma 2.11 (Smart criticality). If �1 ∈Lq
1 is not contained in a special cluster, then every critical set of QCP2 has a diagonal unlinked 

with �1 or coinciding with �1. Denote this full collection of diagonals by E . Then A = ALq
2
(�1) is contained in the closure of a component 

of D \ E+ and σd|A∩S is (non-strictly) monotone.

To prove Lemma 2.11, observe that by the assumption, critical chords from special clusters are unlinked with �1. 
Otherwise, take a pair of associated critical quadrilaterals A ∈ L1, B ∈ L2 with non-strictly alternating on S vertices 
a0 � b0 � a1 � b1 � a2 � b2 � a3 � b3 � a0, and observe that �1 is contained, say, in the circle arc [a0, a1], and hence is 
unlinked with the diagonal b1b3 of B .
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To treat sets X formed by linked leaves of two linked geolaminations with qc-portraits, we vary our choice of the full 
collection of diagonals for successive images of X on each step, so that the orbit of X avoids that particular full collection 
of diagonals on that particular step (thus smart criticality). Therefore, similarly to the case of one geolamination, any power 
of the map is order preserving on X (see Lemma 2.7). This serves as the basis for Theorem 2.12. Suppose that the orbit of 
a quadrilateral Q is the union of k � 1 components permuted by σd . Suppose that either all components are single images 
of Q or all components are unions of m > 1 images of Q such that σ i

d(Q ) ∩σ i+k
d (Q ) 
= 0, the σ k

d -images of the first diagonal 
of Q form a convex m-gon, the images of the second diagonal of Q form a convex m-gon, and these two polygons have 
vertices alternating on S. Then we say that Q gives rise to a periodic cluster.

Theorem 2.12 (Dynamics of accordions). Let �1 , �2 be linked leaves of Lq
1 , Lq

2 . The set B = CH(�1, �2) is either wandering or, for 
some k, the sets σ i

3(B), 0 � i < k are pairwise disjoint and σ k
3 (B) gives rise to a periodic cluster unless, for some t, there are two chains 

of diagonals of QCP1 and of QCP2 connecting two adjacent on the circle endpoints of σ t
d(�1) ∪ σ t

d(�2).

Theorem 2.12 implies Corollary 2.13.

Corollary 2.13. The set of all leaves of Lq
2 non-disjoint from a leaf �1 of Lq

1 is at most countable. Thus, if �2 is an accumulation set of 
uncountably many leaves of Lq

2, then �2 is unlinked with any leaf of Lq
1.

To apply Corollary 2.13, we need the following definition.

Definition 2.14 (Perfect sublamination). For a geolamination L, the maximal sublamination Lc ⊂ L of L without isolated 
leaves is called the perfect sublamination of L. If Lc =L, then L is called perfect.

Note that for any � ∈Lc and any neighborhood U of �, there are uncountably many leaves of Lc in U .

Theorem 2.15. We have (Lq
1)

c = (Lq
2)

c . Moreover, suppose that L1, L2 are geolaminations with finite critical sets and there are linked 
geolaminations with qc-portraits (Lq

1, QCP1), (Lq
2, QCP2) such that Lq

1 ⊃L1 and Lq
2 ⊃L2 . Then Lc

1 =Lc
2 .

Indeed, otherwise choose a leaf �c
1 ∈ (Lq

1)
c \Lq

2. By Corollary 2.13, the leaf �c
1 (except for its endpoints) is contained in the 

interior of a gap G of Lq
2 (if not, a leaf of L2 linked with �c

1 would have an uncountable accordion). Since (Lq
1)c is perfect, 

from at least one side all one-sided neighborhoods of �c
1 contain uncountably many leaves of (Lq

1)c . Hence G is uncountable 
with uncountably many leaves of (Lq

1)c connecting points of G ∩S. Interiors of images of G are disjoint from the critical sets 
of Lq

2, since these critical sets are finite. Hence eventually G maps to a Siegel gap, i.e. a gap on which the appropriate iterate 
of σd is semi-conjugate to an irrational rotation. This forces images of leaves of (Lq

1)c inside G to intersect, a contradiction. 
The second part of Theorem 2.15 follows easily.

From now on we consider only the cubic case (i.e. d = 3). Call a geolamination dendritic if all its gaps are finite and 
pairwise disjoint. It is known that dendritic geolaminations are perfect. If L is a cubic dendritic geolamination, then it has 
either two disjoint critical sets of degree two each, or one critical set of degree three. For a critical set Q of L its co-critical 
set Q ∗ is defined as follows: if Q is of degree three, set Q ∗ = Q , otherwise Q ∗ is the convex hull of all points in S \ Q
that map to σ3(Q ) under σ3. By a marked cubic dendritic geolamination we mean a triple (L, Q 1, Q 2) where Q 1 and Q 2 are 
critical sets of L and Q 1 
= Q 2 if possible; the family of all of them is denoted by LMD3. We now introduce a labeling of 
such pairs of sets (Q 1, Q 2).

Definition 2.16 (Mixed tags). The mixed tag of (L, Q 1, Q 2) is the set Tag(L, Q 1, Q 2) = Q ∗
1 × σ3(Q 2).

Lemma 2.17 is based on simple geometric considerations and Theorem 2.15.

Lemma 2.17. The mixed tags of two distinct elements of LMD3 are non-disjoint if and only if these elements of LMD3 coincide (see 
Fig. 2).

To prove Lemma 2.17, assume that (L, C1, C2) ∈ LMD3 and (T , D1, D2) ∈ LMD3 have non-disjoint mixed tags. Then 
C∗

1 and D∗
1 have either a common vertex or two linked edges. The definition of the co-critical set implies then that either 

C1 and D1 have a common critical diagonal, or they contain strongly linked critical quadrilaterals with opposite edges being 
edges of C1, D1. Using this and analyzing the fact that σ3(C2) and σ3(D2) are non-disjoint, one can see that the sets C2, D2
also either share a critical diagonal, or contain strongly linked quadrilaterals with opposite edges being edges of C2, D2. If we 
insert the just-found shared critical diagonals or strongly linked quadrilaterals in critical sets of our geolaminations and pull 
the inserted objects back, we will construct two cubic geolaminations with qc-portraits that are linked. By Theorem 2.15, 
this implies that (L, C1, C2) = (T , D1, D2).
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Fig. 2. This picture illustrates Lemma 2.17. The leaf a1b1 is a co-critical set of a critical quadrilateral a2b2a3b3. The leaf x1 y1 is a co-critical set of a critical 
quadrilateral x2 y2x3 y3. Again, the two geolaminations are sketched in light gray lines and dotted boldface lines.

Standard topological arguments, based on properties of dendritic geolaminations and results of [4], imply now Theo-
rem 1.1.
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