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We prove that for a large class of functions P and Q , the discrete bilinear operator 
T P ,Q ( f , g)(n) = ∑

m∈Z\{0} f (n − P (m))g(n − Q (m)) 1
m is bounded from l2 × l2 into l1+ε,∞

for any ε ∈ (0, 1].
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous montrons, que pour une grande classe de fonctions P et Q , l’opérateur bilinéaire 
discret T P ,Q ( f , g)(n) = ∑

m∈Z\{0} f (n − P (m))g(n − Q (m)) 1
m est borné de l2 × l2 dans 

l1+ε,∞, pour tout ε ∈ (0, 1].
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Hilbert transform (HT for short) is defined by

H( f )(x) =
∫

f (x − t)
dt

t
, f ∈ S(R),

where S(Rn), n ∈N, is the Schwartz space on Rn . It was proved in 1928 ([21]) that HT is bounded on Lp for p ∈ (1, ∞). An 
interesting generalization of HT is the so-called HT along curves:

HC ( f )(x) =
∫

f (x − γ (t))
dt

t
, f ∈ S(Rn).

Here γ : R → R
n is a well-behaved curve. The Lp boundedness of HC has been obtained for various curves. See [22] for a 

comprehensive survey and [2] for a generalization of HC to the non-translation-invariant setting. When γ is a polynomial 
with integer coefficients, there is a discrete version of HC defined by
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Hdis
C ( f )(n) =

∑
m∈Z\{0}

f (n − γ (m))
1

m
, f ∈ D(Zn),

where D(Zn) is the space of compactly supported complex-valued functions defined on Zn . On the one hand, Hdis
C has many 

applications in ergodic theory ([6,16–18,20]), but on the other hand this discrete operator is more subtle to handle than its 
continuous counterpart HC , as many number theoretical tools are involved. Hdis

C was at first proved to be bounded on lp

for p ∈ ( 3
2 , 3) ([23]). This restricted range was extended to the full range (1, ∞) a long time later ([7,15]).

Another direction of generalizing HT is to consider its bilinear analogue, which is significantly more difficult to analyze 
since Plancherel Theorem is unavailable in the bilinear setting. The bilinear Hilbert transform (BHT for short) can be defined 
as

B( f , g)(x) =
∫

f (x − t)g(x + t)
dt

t
, f , g ∈ S(R).

It was about 70 years after the first proof of the boundedness of HT that Lacey and Thiele ([9,10]) obtained the Lp estimates 
for BHT. Very recently, Lp estimates for BHT along curves

BC ( f , g)(x) =
∫

f (x − t)g(x − γ (t))
dt

t
, f , g ∈ S(R),

were also established when γ is a polynomial ([14]). Note that BC is a natural bilinear version of HC .
Following the development of the linear case, in this paper we consider the discrete version of BC , that is,

Bdis
C ( f , g)(n) =

∑
m∈Z\{0}

f (n − m)g(n − P (m))
1

m
, f , g ∈ D(Z),

where P is a polynomial with integer coefficients. This operator can also be viewed as a bilinear analogue of Hdis
C . As Hdis

C

is harder to handle than HC , it is reasonable to expect that proving the boundedness of Bdis
C should be more difficult than 

that of BC . As a starting point of the long journey of investigation on Bdis
C , in this article we show the l2 × l2 → l1+ε,∞

boundedness of Bdis
C (Theorem 1.1).

We will study an operator that is more general than Bdis
C (see (1.1)). Given two functions P and Q that map Z into Z, 

define

A P ,Q :=
{
(m1,m2) ∈ (Z \ {0})2 : P (m1) − Q (m1) = P (m2) − Q (m2)

}
.

We say that the pair of functions (P , Q ) satisfies condition (�) if there are constants D1 and D2 such that |m1|
|m2| ≤ D1 for all 

(m1, m2) ∈ A P ,Q and for each m1 ∈ Z, there are at most D2 pairs (m1, m2) in the set A P ,Q .

Theorem 1.1. Given two functions P and Q that map Z into Z, let

T P ,Q ( f , g)(n) :=
∑

m∈Z\{0}
f (n − P (m))g(n − Q (m))

1

m
, f , g ∈ D(Z). (1.1)

Assume that (P , Q ) satisfies condition (�). Then for any ε ∈ (0, 1], there is a constant Cε depending only on ε , D1 and D2 such that

‖T P ,Q ( f , g)‖l1+ε,∞ ≤ Cε‖ f ‖l2‖g‖l2 . (1.2)

Remarks. (1). Condition (�) is mild. A pair of polynomials with integer coefficients (P , Q ) satisfies condition (�) as long 
as P − Q is not constant. Note that D1 depends on the coefficients of P and Q , so does Cε in the theorem. It is natural 
to expect that this dependence can be removed, as uniform estimates exist for related operators ([3,4,11,12,14,23,24]). We 
shall not pursuit this here.

(2). We conjecture that at least for some special pairs of P and Q (for example, P (t) = t and Q (t) = t2), T P ,Q is bounded 
from lp × lq into lr , where p, q ∈ (1, ∞), 1

p + 1
q = 1

r . This problem is very difficult and currently out of reach.

(3). A useful operator related with T P ,Q is the corresponding maximal operator T ∗
P ,Q ( f , g)(n) = supM∈[1,∞) | 1

M ×∑M
m=1 f (n − P (m))g(n − Q (m))|, which is at first proved to be bounded from l2 × l2 to lr when r > 1 ([5]). By using Hölder 

inequality and boundedness of the corresponding discrete linear maximal function f → supM∈[1,∞)] 1
M

∑M
m=1 | f (n − P (m))|

(see, for example, [1,8,19,26]), we can prove that T ∗
P ,Q is bounded from lp × lq into lr , whenever p, q ∈ (1, ∞), 1

p + 1
q = 1

r , 
and r > 1 (see p. 75 in [25] for a similar trick). Whether the restriction r > 1 can be dropped is still unknown.

(4). See [13] for a discussion about an ergodic analogue of T P ,Q .

The rest of the paper is devoted to the proof of Theorem 1.1.
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2. Proof of Theorem 1.1

We will use A � B to denote the statement that A ≤ C B for some positive constant C. When the implied constant C
depends on r, we write A �r B . All the constants may depend on D1 and D2 (appeared in the definition of condition (�)), 
but this dependence will be suppressed since D1 and D2 are often fixed in applications. A � B is short for A � B and 
B � A. For any set of integers E , |E| and χ E will be used to denote the counting measure and the indicator function of E , 
receptively.

Let P and Q be a pair of functions satisfying condition (�). For notational convenience, we will simply write T for T P ,Q

and r := 1 + ε . For any λ > 0 and f , g ∈ D(Z), define the level set Eλ = {n ∈ Z : |T ( f , g)(n)| > λ}. Our goal is to prove the 
following level set estimate

|Eλ| �r
1

λr
, whenever ‖ f ‖l2 = ‖g‖l2 = 1. (2.3)

We first write T = ∑
m∈Z\{0} f (n − P (m))g(n − Q (m)) 1

m as a bilinear multiplier operator. Recall the Fourier transform for 
any f ∈ D(Z) is defined by f̂ (ξ) := ∑

m∈Z f (m)e−2πiξm . Hence

T ( f , g)(n) =
∫
T

∫
T

f̂ (ξ)ĝ(η)e2πi(ξ+η)nσ(ξ,η)dξdη,

where T is the unit circle and σ is the periodic multiplier (a.k.a. symbol) given by

σ(ξ,η) =
∑

m∈Z\{0}

1

m
e−2πi(P (m)ξ+Q (m)η).

Then we decompose dyadically the symbol σ as follows. Pick an odd function ρ ∈ S(R) supported in the set {x : |x| ∈
( 1

2 , 2)} with the property that

1

x
=

∞∑
j=0

1

2 j
ρ

( x

2 j

)
for any x ∈R with |x| ≥ 1.

So the symbol σ can be written as σ(ξ, η) = ∑∞
j=0 σ j(ξ, η), where

σ j(ξ,η) := 1

2 j

∑
m∈Z

ρ
( m

2 j

)
e−2πi(P (m)ξ+Q (m)η).

Correspondingly T = ∑∞
j=0 T j , where

T j( f , g)(n) =
∫
T

∫
T

f̂ (ξ)ĝ(η)e2πi(ξ+η)nσ j(ξ,η)dξdη

= 1

2 j

∑
m∈Z

ρ
( m

2 j

)
f (n − P (m))g(n − Q (m)).

By the support of ρ and Hölder inequality, it is easy to see ‖T j( f , g)‖l1 � ‖ f ‖l2‖g‖l2 . So we have the following level set 
estimate for each T j .

Lemma 2.1. For any f , g ∈ D(Z) with l2-norm 1, j ∈N, and λ > 0, we have

|{n ∈ Z : |T j( f , g)(n)| > λ}| � 1

λ
.

This lemma says that each single T j is under good (and uniform) control. The difficulty is how to get the desired 
estimates for the sum of T j ’s. In the following, we will apply the idea of the T T ∗ method.

Define an auxiliary function h(n) = T ( f ,g)(n)
T ( f ,g)(n)

χ
Eλ (n). It is easy to verify that

λ2|Eλ|2 ≤
(∑

n∈Z
T ( f , g)(n)h(n)

)2

. (2.4)

By Fubini theorem and the definition of Fourier transform,
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∑
n∈Z

T ( f , g)(n)h(n) =
∫
T

∫
T

f̂ (ξ)ĝ(η)σ (ξ,η)ĥ(−(ξ + η))dξdη

=
∫
T

∫
T

f̂ (ξ − η)ĝ(η)σ (ξ − η,η)ĥ(−ξ)dξdη.

Apply the Cauchy–Schwarz inequality and the Plancherel Theorem, and we get(∑
n∈Z

T ( f , g)(n)h(n)

)2

≤ B|Eλ|, (2.5)

where

B := sup
ξ∈T

∫
T

|σ(ξ − η,η)|2dη.

Combining (2.4) and (2.5), we see that |Eλ| ≤ B
λ2 . Hence, to prove (2.3), it suffices to obtain the estimate

B �r λ2−r . (2.6)

To control B , we make use of the dyadic decomposition of σ , aiming for some cancellations. For any ξ ∈ T,

∫
T

|σ(ξ − η,η)|2 dη =
∫
T

∣∣∣∣∣∣
∞∑
j=0

σ j(ξ − η,η)

∣∣∣∣∣∣
2

dη

≤
∞∑

j1, j2=0

1

2 j1

1

2 j2

∑
m1,m2∈Z

∣∣∣ρ (m1

2 j1

)
ρ

(m2

2 j2

)∣∣∣χ A P ,Q (m1,m2).

(2.7)

By condition (�), |m1|
|m2| ≤ D1 for all (m1, m2) ∈ A P ,Q . The support of ρ forces |m1| � 2 j1 and |m2| � 2 j2 . These facts show 

that | j1 − j2| � 1. Also note that for each m1, there are only bounded number of m2’s such that (m1, m2) ∈ A P ,Q . Thus (2.7)
implies

B = sup
ξ∈T

∫
T

|σ(ξ − η,η)|2 dη �
∞∑
j=0

1

2 j
.

When λ ≥ 1, as r ∈ (1, 2], trivially B � λ2−r and we are done. Let M = [(2 − r) log2
1
λ
] + 1, where [x] denotes the integer 

part of x. In the case λ < 1, since 
∑∞

j=M+1
1
2 j �r λ2−r , the above method still gives the desired estimate for 

∑∞
j=M+1 T j , 

the operator associated with the symbol 
∑∞

j=M+1 σ j . It remains to control the level set of the operator 
∑M

j=0 T j for λ < 1. 
Applying Lemma 2.1, we have∣∣∣∣∣∣

⎧⎨
⎩n ∈ Z :

∣∣∣∣∣∣
M∑

j=0

T j( f , g)(n)

∣∣∣∣∣∣ > λ

⎫⎬
⎭

∣∣∣∣∣∣ � M2

λ
�r

1

λr
,

where we used the facts r > 1 and λ < 1 in the last inequality. This finishes the proof of Theorem 1.1.
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