Harmonic analysis

Characterization of Lipschitz spaces via commutators of the Hardy-Littlewood maximal function ${ }^{\text {th }}$

Caractérisation des espaces de Lipschitz via les commutateurs de l'opérateur maximal de Hardy-Littlewood

Pu Zhang
Department of Mathematics, Mudanjiang Normal University, Mudanjiang 157011, PR China

A R T I CLE IN F O

Article history:

Received 6 November 2016
Accepted after revision 1 February 2017
Available online 20 February 2017
Presented by the Editorial Board

Abstract

Let M be the Hardy-Littlewood maximal function and b be a locally integrable function. Denote by M_{b} and $[b, M]$ the maximal commutator and the (nonlinear) commutator of M with b. In this paper, the author considers the boundedness of M_{b} and $[b, M]$ on Lebesgue spaces and Morrey spaces when b belongs to the Lipschitz space, by which some new characterizations of the Lipschitz spaces are given.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Ré S U M É

Soit M l'opérateur maximal de Hardy-Littlewood et b une fonction localement intégrable. Notons M_{b} et $[b, M]$ le commutateur maximal et le commutateur (non linéaire) de M et b. Dans cette Note, l'auteur étudie la finitude de M_{b} et $[b, M]$ sur les espaces de Lebesgue et les espaces de Morrey lorsque b appartient à l'espace de Lipschitz. Cela conduit à de nouvelles caractérisations de l'espace de Lipschitz.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and results

Let T be the classical singular integral operator, the commutator $[b, T]$ generated by T and a suitable function b is given by

$$
\begin{equation*}
[b, T] f=b T(f)-T(b f) \tag{1.1}
\end{equation*}
$$

A well-known result due to Coifman, Rochberg and Weiss [6] (see also [13]) states that $b \in B M O\left(\mathbb{R}^{n}\right)$ if and only if the commutator $[b, T]$ is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for $1<p<\infty$. In 1978, Janson [13] gave some characterizations of the Lipschitz

[^0]http://dx.doi.org/10.1016/j.crma.2017.01.022
1631-073X/© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
space $\dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ (see Definition 1.1 below) via commutator $[b, T]$ and proved that $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)(0<\beta<1)$ if and only if $[b, T]$ is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ where $1<p<n / \beta$ and $1 / p-1 / q=\beta / n$ (see also Paluszyński [18]).

For a locally integrable function f, the Hardy-Littlewood maximal function M is given by

$$
M(f)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|f(y)| \mathrm{d} y
$$

the maximal commutator of M with a locally integrable function b is defined by

$$
M_{b}(f)(x)=\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|b(x)-b(y)||f(y)| \mathrm{d} y
$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^{n}$ containing x.
The mapping properties of the maximal commutator M_{b} have been studied intensively by many authors. See $[3,9,11,12$, 20,21] and [25] for instance. The following result is proved by García-Cuerva et al. [9]. See also [20] and [21].

Theorem \mathbf{A} ([9]). Let b be a locally integrable function and $1<p<\infty$. Then the maximal commutator M_{b} is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ if and only if $b \in B M O\left(\mathbb{R}^{n}\right)$.

The first part of this paper is to study the boundedness of M_{b} when the symbol b belongs to a Lipschitz space. Some characterizations of the Lipschitz space via such commutator are given.

Definition 1.1. Let $0<\beta<1$, we say a function b belongs to the Lipschitz space $\dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ if there exists a constant C such that for all $x, y \in \mathbb{R}^{n}$,

$$
|b(x)-b(y)| \leq C|x-y|^{\beta}
$$

The smallest such constant C is called the $\dot{\Lambda}_{\beta}$ norm of b and is denoted by $\|b\|_{\dot{\Lambda}_{\beta}}$.
Our first result can be stated as follows.
Theorem 1.1. Let b be a locally integrable function and $0<\beta<1$, then the following statements are equivalent:
(1) $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$;
(2) M_{b} is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ for all p, q with $1<p<n / \beta$ and $1 / q=1 / p-\beta / n$;
(3) M_{b} is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ for some p, q with $1<p<n / \beta$ and $1 / q=1 / p-\beta / n$;
(4) M_{b} satisfies the weak-type $(1, n /(n-\beta))$ estimates, namely, there exists a positive constant C such that for all $\lambda>0$,

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{n}: M_{b}(f)(x)>\lambda\right\}\right| \leq C\left(\lambda^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}\right)^{n /(n-\beta)} \tag{1.2}
\end{equation*}
$$

(5) M_{b} is bounded from $L^{n / \beta}\left(\mathbb{R}^{n}\right)$ to $L^{\infty}\left(\mathbb{R}^{n}\right)$.

Morrey spaces were originally introduced by Morrey in [17] to study the local behavior of solutions to second-order elliptic partial differential equations. Many classical operators of harmonic analysis were studied in Morrey-type spaces during the last decades. We refer the readers to Adams [2] and references therein.

Definition 1.2. Let $1 \leq p<\infty$ and $0 \leq \lambda \leq n$. The classical Morrey space is defined by

$$
L^{p, \lambda}\left(\mathbb{R}^{n}\right)=\left\{f \in L_{\mathrm{loc}}^{p}\left(\mathbb{R}^{n}\right):\|f\|_{L^{p, \lambda}}<\infty\right\}
$$

where

$$
\|f\|_{L^{p, \lambda}}:=\sup _{Q}\left(\frac{1}{|Q|^{\lambda / n}} \int_{Q}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}
$$

It is well known that if $1 \leq p<\infty$ then $L^{p, 0}\left(\mathbb{R}^{n}\right)=L^{p}\left(\mathbb{R}^{n}\right)$ and $L^{p, n}\left(\mathbb{R}^{n}\right)=L^{\infty}\left(\mathbb{R}^{n}\right)$.
Theorem 1.2. Let b be a locally integrable function and $0<\beta<1$. Suppose that $1<p<n / \beta, 0<\lambda<n-\beta p$ and $1 / q=1 / p-$ $\beta /(n-\lambda)$. Then $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ if and only if M_{b} is bounded from $L^{p, \lambda}\left(\mathbb{R}^{n}\right)$ to $L^{q, \lambda}\left(\mathbb{R}^{n}\right)$.

Theorem 1.3. Let b be a locally integrable function and $0<\beta<1$. Suppose that $1<p<n / \beta, 0<\lambda<n-\beta p, 1 / q=1 / p-\beta / n$ and $\lambda / p=\mu / q$. Then $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ if and only if M_{b} is bounded from $L^{p, \lambda}\left(\mathbb{R}^{n}\right)$ to $L^{q, \mu}\left(\mathbb{R}^{n}\right)$.

On the other hand, similar to (1.1), we can define the (nonlinear) commutator of the Hardy-Littlewood maximal function M with a locally integrable function b by

$$
[b, M](f)(x)=b(x) M(f)(x)-M(b f)(x)
$$

Using real interpolation techniques, Milman and Schonbek [16] established a commutator result. As an application, they obtained the L^{p}-boundedness of $[b, M]$ when $b \in B M O\left(\mathbb{R}^{n}\right)$ and $b \geq 0$. This operator can be used in studying the product of a function in H^{1} and a function in $B M O$ (see [5] for instance). In 2000, Bastero, Milman and Ruiz [4] studied the necessary and sufficient conditions for the boundedness of $[b, M]$ on L^{p} spaces when $1<p<\infty$. Zhang and Wu obtained similar results for the fractional maximal function in [24] and extended the mentioned results to variable exponent Lebesgue spaces in [25] and [26]. Recently, Agcayazi et al. [3] gave the end-point estimates for the commutator [b, M]. Zhang [23] extended these results to the multilinear setting.

We would like to remark that operators M_{b} and $[b, M]$ essentially differ from each other. For example, M_{b} is positive and sublinear, but $[b, M]$ is neither positive nor sublinear.

The second part of this paper aims to study the mapping properties of the (nonlinear) commutator $[b, M]$ when b belongs to some Lipschitz space. To state our results, we recall the definition of the maximal operator with respect to a cube. For a fixed cube Q_{0}, the Hardy-Littlewood maximal function with respect to Q_{0} of a function f is given by

$$
M_{Q_{0}}(f)(x)=\sup _{Q_{0} \supseteq Q \ni x} \frac{1}{|Q|} \int_{Q}|f(y)| \mathrm{d} y
$$

where the supremum is taken over all the cubes Q with $Q \subseteq Q_{0}$ and $Q \ni x$.

Theorem 1.4. Let b be a locally integrable function and $0<\beta<1$. Suppose that $1<p<n / \beta$ and $1 / q=1 / p-\beta / n$. Then the following statements are equivalent:
(1) $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ and $b \geq 0$;
(2) $[b, M]$ is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{q}\left(\mathbb{R}^{n}\right)$;
(3) there exists a constant $C>0$ such that

$$
\begin{equation*}
\sup _{Q} \frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|b(x)-M_{Q}(b)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q} \leq C \tag{1.3}
\end{equation*}
$$

Theorem 1.5. Let $b \geq 0$ be a locally integrable function, $0<\beta<1$ and $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$. Then there is a positive constant C such that, for all $\lambda>0$,

$$
\left|\left\{x \in \mathbb{R}^{n}:|[b, M](f)(x)|>\lambda\right\}\right| \leq C\left(\lambda^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}\right)^{n /(n-\beta)}
$$

Theorem 1.6. Let b be a locally integrable function and $0<\beta<1$. Suppose that $1<p<n / \beta, 0<\lambda<n-\beta p$ and $1 / q=1 / p-$ $\beta /(n-\lambda)$. Then the following statements are equivalent:
(1) $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ and $b \geq 0$.
(2) $[b, M]$ is bounded from $L^{p, \lambda}\left(\mathbb{R}^{n}\right)$ to $L^{q, \lambda}\left(\mathbb{R}^{n}\right)$.

Theorem 1.7. Let b be a locally integrable function and $0<\beta<1$. Suppose that $1<p<n / \beta, 0<\lambda<n-\beta p, 1 / q=1 / p-\beta / n$ and $\lambda / p=\mu / q$. Then the following statements are equivalent:
(1) $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ and $b \geq 0$,
(2) $[b, M]$ is bounded from $L^{p, \lambda}\left(\mathbb{R}^{n}\right)$ to $L^{q, \mu}\left(\mathbb{R}^{n}\right)$.

This paper is organized as follows. In the next section, we recall some basic definitions and known results. In Section 3, we will prove Theorems 1.1-1.3. Section 4 is devoted to proving Theorems 1.4-1.7.

2. Preliminaries and lemmas

For a measurable set E, we denote by $|E|$ the Lebesgue measure and by χ_{E} the characteristic function of E. For $p \in$ $[1, \infty]$, we denote by p^{\prime} the conjugate index of p, namely, $p^{\prime}=p /(p-1)$. For a locally integrable function f and a cube Q, we denote by $f_{Q}=(f)_{Q}=\frac{1}{|Q|} \int_{Q} f(x) \mathrm{d} x$.

To prove the theorems, we need some known results. It is known that the Lipschitz space $\dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ coincides with some Morrey-Companato space (see [14] for example) and can be characterized by mean oscillation as the following lemma, which is due to DeVore and Sharpley [7] and Janson, Taibleson and Weiss [14] (see also Paluszyński [18]).

Lemma 2.1. Let $0<\beta<1$ and $1 \leq q<\infty$. Define

$$
\dot{\Lambda}_{\beta, q}\left(\mathbb{R}^{n}\right):=\left\{f \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{n}\right):\|f\|_{\dot{\Lambda}_{\beta, q}}=\sup _{Q} \frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|f(x)-f_{Q}\right|^{q} \mathrm{~d} x\right)^{1 / q}<\infty\right\}
$$

Then, for all $0<\beta<1$ and $1 \leq q<\infty, \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)=\dot{\Lambda}_{\beta, q}\left(\mathbb{R}^{n}\right)$ with equivalent norms.

Let $0<\alpha<n$ and f be a locally integrable function, the fractional maximal function of f is given by

$$
\mathfrak{M}_{\alpha}(f)(x)=\sup _{Q} \frac{1}{|Q|^{1-\alpha / n}} \int_{Q}|f(y)| \mathrm{d} y
$$

where the supremum is taken over all cubes $Q \subset \mathbb{R}^{n}$ containing x.
The following strong and weak-type boundednesses of \mathfrak{M}_{α} are well known, see [10] and [8].

Lemma 2.2. Let $0<\alpha<n, 1 \leq p \leq n / \alpha$ and $1 / q=1 / p-\alpha / n$.
(1) If $1<p<n / \alpha$ then there exists a positive constant $C(n, \alpha, p)$ such that

$$
\left\|\mathfrak{M}_{\alpha}(f)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \leq C(n, \alpha, p)\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

(2) If $p=n / \alpha$ then there exists a positive constant $C(n, \alpha)$ such that

$$
\left\|\mathfrak{M}_{\alpha}(f)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C(n, \alpha)\|f\|_{L^{n / \alpha}\left(\mathbb{R}^{n}\right)}
$$

(3) If $p=1$ then there exists a positive constant $C(n, \alpha)$ such that for all $\lambda>0$

$$
\left|\left\{x \in \mathbb{R}^{n}: \mathfrak{M}_{\alpha}(f)(x)>\lambda\right\}\right| \leq C(n, \alpha)\left(\lambda^{-1}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}\right)^{n /(n-\alpha)}
$$

Spanne (see [19]) and Adams [1] studied the boundedness of the fractional integral I_{α} in classical Morrey spaces. We note that the fractional maximal function enjoys the same boundedness as that of the fractional integral since the pointwise inequality $\mathfrak{M}_{\alpha}(f)(x) \leq I_{\alpha}(|f|)(x)$. These results can be summarized as follows (see also [22]).

Lemma 2.3. Let $0<\alpha<n, 1<p<n / \alpha$ and $0<\lambda<n-\alpha p$.
(1) If $1 / q=1 / p-\alpha /(n-\lambda)$, then there is a constant $C>0$ such that

$$
\left\|\mathfrak{M}_{\alpha}(f)\right\|_{L^{q, \lambda}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{p, \lambda}\left(\mathbb{R}^{n}\right)} \text { for every } f \in L^{p, \lambda}\left(\mathbb{R}^{n}\right)
$$

(2) If $1 / q=1 / p-\alpha / n$ and $\lambda / p=\mu / q$. Then there is a constant $C>0$ such that

$$
\left\|\mathfrak{M}_{\alpha}(f)\right\|_{L^{q, \mu}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{p, \lambda}\left(\mathbb{R}^{n}\right)} \text { for every } f \in L^{p, \lambda}\left(\mathbb{R}^{n}\right)
$$

Lemma 2.4 ([15]). Let $1 \leq p<\infty$ and $0<\lambda<n$, then there is a constant $C>0$ that depends only on n such that

$$
\left\|\chi_{Q}\right\|_{L^{p, \lambda}\left(\mathbb{R}^{n}\right)} \leq C|Q|^{\frac{n-\lambda}{n p}}
$$

3. Proof of Theorems $1.1-1.3$

Proof of Theorem 1.1. If $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$, then

$$
\begin{align*}
M_{b}(f)(x) & =\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|b(x)-b(y)||f(y)| \mathrm{d} y \\
& \leq C\|b\|_{\dot{\Lambda}_{\beta}} \sup _{Q \ni x} \frac{1}{|Q|^{1-\beta / n}} \int_{Q}|f(y)| \mathrm{d} y \tag{3.1}\\
& =C\|b\|_{\dot{\Lambda}_{\beta}} \mathfrak{M}_{\beta}(f)(x) .
\end{align*}
$$

Obviously, (2), (3), (4) and (5) follow from Lemma 2.2, Lemma 2.3 and (3.1).
$(3) \Longrightarrow(1)$: Assume M_{b} is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ for some p, q with $1<p<n / \beta$ and $1 / q=1 / p-\beta / n$. For any cube $Q \subset \mathbb{R}^{n}$, by Hölder's inequality and noting that $1 / p+1 / q^{\prime}=1+\beta / n$, one gets

$$
\begin{aligned}
\frac{1}{|Q|^{1+\beta / n}} \int_{Q}\left|b(x)-b_{Q}\right| \mathrm{d} x & \leq \frac{1}{|Q|^{1+\beta / n}} \int_{Q}\left(\frac{1}{|Q|} \int_{Q}|b(x)-b(y)| \mathrm{d} y\right) \mathrm{d} x \\
& =\frac{1}{|Q|^{1+\beta / n}} \int_{Q}\left(\frac{1}{|Q|} \int_{Q}|b(x)-b(y)| \chi_{Q}(y) \mathrm{d} y\right) \mathrm{d} x \\
& \leq \frac{1}{|Q|^{1+\beta / n}} \int_{Q} M_{b}\left(\chi_{Q}\right)(x) \mathrm{d} x \\
& \leq \frac{1}{|Q|^{1+\beta / n}}\left(\int_{Q}\left[M_{b}\left(\chi_{Q}\right)(x)\right]^{q} \mathrm{~d} x\right)^{1 / q}\left(\int_{Q} \chi_{Q}(x) \mathrm{d} x\right)^{1 / q^{\prime}} \\
& \leq \frac{C}{|Q|^{1+\beta / n}}\left\|M_{b}\right\|_{L^{p} \rightarrow L^{q}}\|\chi Q\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|\chi Q\|_{L^{q^{\prime}}\left(\mathbb{R}^{n}\right)} \\
& \leq C\left\|M_{b}\right\|_{L^{p} \rightarrow L^{q}} .
\end{aligned}
$$

This together with Lemma 2.1 gives $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$.
$(4) \Longrightarrow(1)$: We assume (1.2) is true and will verify $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$. For any fixed cube $Q_{0} \subset \mathbb{R}^{n}$, since for any $x \in Q_{0}$,

$$
\left|b(x)-b_{Q_{0}}\right| \leq \frac{1}{\left|Q_{0}\right|} \int_{Q_{0}}|b(x)-b(y)| \mathrm{d} y
$$

then, for all $x \in Q_{0}$,

$$
\begin{aligned}
M_{b}\left(\chi_{Q_{0}}\right)(x) & =\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|b(x)-b(y)| \chi_{Q_{0}}(y) \mathrm{d} y \\
& \geq \frac{1}{\left|Q_{0}\right|} \int_{Q_{0}}|b(x)-b(y)| \chi_{Q_{0}}(y) \mathrm{d} y \\
& =\frac{1}{\left|Q_{0}\right|} \int_{Q_{0}}|b(x)-b(y)| \mathrm{d} y \\
& \geq\left|b(x)-b_{Q_{0}}\right| .
\end{aligned}
$$

This together with (1.2) gives

$$
\begin{aligned}
\left|\left\{x \in Q_{0}:\left|b(x)-b_{Q_{0}}\right|>\lambda\right\}\right| & \leq\left|\left\{x \in Q_{0}: M_{b}\left(\chi_{Q_{0}}\right)(x)>\lambda\right\}\right| \\
& \leq C\left(\lambda^{-1}\left\|\chi_{Q_{0}}\right\|_{L^{1}\left(\mathbb{R}^{n}\right)}\right)^{n /(n-\beta)} \\
& =C\left(\lambda^{-1}\left|Q_{0}\right|\right)^{n /(n-\beta)} .
\end{aligned}
$$

Let $t>0$ be a constant to be determined later, then

$$
\begin{aligned}
\int_{Q_{0}}\left|b(x)-b_{Q_{0}}\right| \mathrm{d} x= & \int_{0}^{\infty}\left|\left\{x \in Q_{0}:\left|b(x)-b_{Q_{0}}\right|>\lambda\right\}\right| \mathrm{d} \lambda \\
= & \int_{0}^{t}\left|\left\{x \in Q_{0}:\left|b(x)-b_{Q_{0}}\right|>\lambda\right\}\right| \mathrm{d} \lambda \\
& +\int_{t}^{\infty}\left|\left\{x \in Q_{0}:\left|b(x)-b_{Q_{0}}\right|>\lambda\right\}\right| \mathrm{d} \lambda \\
\leq & t\left|Q_{0}\right|+C \int_{t}^{\infty}\left(\lambda^{-1}\left|Q_{0}\right|\right)^{n /(n-\beta)} \mathrm{d} \lambda
\end{aligned}
$$

$$
\begin{aligned}
& \leq t\left|Q_{0}\right|+C\left|Q_{0}\right|^{n /(n-\beta)} \int_{t}^{\infty} \lambda^{-n /(n-\beta)} \mathrm{d} \lambda \\
& \leq C(n, \beta)\left(t\left|Q_{0}\right|+\left|Q_{0}\right|^{n /(n-\beta)} t^{1-n /(n-\beta)}\right)
\end{aligned}
$$

Set $t=\left|Q_{0}\right|^{\beta / n}$ in the above estimate, we have

$$
\int_{Q_{0}}\left|b(x)-b_{Q_{0}}\right| \mathrm{d} x \leq C\left|Q_{0}\right|^{1+\beta / n}
$$

It follows from Lemma 2.1 that $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ since Q_{0} is an arbitrary cube in \mathbb{R}^{n}.
$(5) \Longrightarrow(1)$: If M_{b} is bounded from $L^{n / \beta}\left(\mathbb{R}^{n}\right)$ to $L^{\infty}\left(\mathbb{R}^{n}\right)$, then for any cube $Q \subset \mathbb{R}^{n}$,

$$
\begin{aligned}
\frac{1}{|Q|^{1+\beta / n}} \int_{Q}\left|b(x)-b_{Q}\right| \mathrm{d} x & \leq \frac{1}{|Q|^{1+\beta / n}} \int_{Q}\left(\frac{1}{|Q|} \int_{Q}|b(x)-b(y)| \chi_{Q}(y) \mathrm{d} y\right) \mathrm{d} x \\
& \leq \frac{1}{|Q|^{1+\beta / n}} \int_{Q} M_{b}\left(\chi_{Q}\right)(x) \mathrm{d} x \\
& \leq \frac{1}{|Q|^{\beta / n}}\left\|M_{b}\left(\chi_{Q}\right)\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \\
& \leq \frac{C}{|Q|^{\beta / n}\left\|M_{b}\right\|_{L^{n / \beta} \rightarrow L^{\infty}}\left\|\chi_{Q}\right\|_{L^{n / \beta}\left(\mathbb{R}^{n}\right)}} \\
& \leq C\left\|M_{b}\right\|_{L^{n / \beta} \rightarrow L^{\infty}} .
\end{aligned}
$$

This together with Lemma 2.1 gives $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$.
The proof of Theorem 1.1 is completed since $(2) \Longrightarrow(1)$ follows from $(3) \Longrightarrow(1)$.

Proof of Theorem 1.2. Assume $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$. By (3.1) and Lemma 2.3 (1), we have

$$
\left\|M_{b}(f)\right\|_{L^{q, \lambda}} \leq\|b\|_{\dot{\Lambda}_{\beta}}\left\|\mathfrak{M}_{\beta}(f)\right\|_{L^{q, \lambda}} \leq C\|b\|_{\dot{\Lambda}_{\beta}}\|f\|_{L^{p, \lambda}}
$$

Conversely, if M_{b} is bounded from $L^{p, \lambda}\left(\mathbb{R}^{n}\right)$ to $L^{q, \lambda}\left(\mathbb{R}^{n}\right)$, then for any cube $Q \subset \mathbb{R}^{n}$,

$$
\begin{aligned}
\frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|b(x)-b_{Q}\right|^{q} \mathrm{~d} x\right)^{1 / q} & \leq \frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left[\frac{1}{|Q|} \int_{Q}|b(x)-b(y)| \chi_{Q}(y) \mathrm{d} y\right]^{q} \mathrm{~d} x\right)^{1 / q} \\
& \leq \frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left[M_{b}\left(\chi_{Q}\right)(x)\right]^{q} \mathrm{~d} x\right)^{1 / q} \\
& =\frac{1}{|Q|^{\beta / n}}\left(\frac{|Q|^{\lambda / n}}{|Q|}\right)^{1 / q}\left(\frac{1}{|Q|^{\lambda / n}} \int_{Q}\left[M_{b}\left(\chi_{Q}\right)(x)\right]^{q} \mathrm{~d} x\right)^{1 / q} \\
& \leq|Q|^{-\beta / n-1 / q+\lambda /(n q)}\left\|M_{b}\left(\chi_{Q}\right)\right\|_{L^{q, \lambda}\left(\mathbb{R}^{n}\right)} \\
& \leq C|Q|^{-\beta / n-1 / q+\lambda /(n q)}\left\|M_{b}\right\|_{L^{p, \lambda} \rightarrow L^{q, \lambda}}\left\|\chi_{Q}\right\|_{L^{p, \lambda}\left(\mathbb{R}^{n}\right)} \\
& \leq C\left\|M_{b}\right\|_{L^{p, \lambda} \rightarrow L^{q, \lambda}}
\end{aligned}
$$

where in the last step we have used $1 / q=1 / p-\beta /(n-\lambda)$ and Lemma 2.4.
It follows from Lemma 2.1 that $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$. This completes the proof.

Proof of Theorem 1.3. By a similar proof to the one of Theorem 1.2, we can obtain Theorem 1.3.

4. Proof of Theorems 1.4-1.7

Proof of Theorem 1.4. (1) $\Longrightarrow(2)$: For any fixed $x \in \mathbb{R}^{n}$ such that $M(f)(x)<\infty$, since $b \geq 0$ then

$$
\begin{align*}
|[b, M](f)(x)| & =|b(x) M(f)(x)-M(b f)(x)| \\
& =\left|\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q} b(x)\right| f(y)\left|\mathrm{d} y-\sup _{Q \ni x} \frac{1}{|Q|} \int_{Q} b(y)\right| f(y)|\mathrm{d} y| \tag{4.1}\\
& \leq \sup _{Q \ni x} \frac{1}{|Q|} \int_{Q}|b(x)-b(y)||f(y)| \mathrm{d} y \\
& =M_{b}(f)(x)
\end{align*}
$$

It follows from Theorem 1.1 that $[b, M]$ is bounded from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{q}\left(\mathbb{R}^{n}\right)$ since $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$.
$(2) \Longrightarrow(3)$: For any fixed cube $Q \subset \mathbb{R}^{n}$ and all $x \in Q$, we have (see the proof of Proposition 4.1 in [4], see also (2.4) in [24])

$$
M\left(\chi_{Q}\right)(x)=\chi_{Q}(x) \quad \text { and } \quad M\left(b \chi_{Q}\right)(x)=M_{Q}(b)(x) .
$$

Then,

$$
\begin{aligned}
& \frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|b(x)-M_{Q}(b)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q} \\
& =\frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|b(x) M\left(\chi_{Q}\right)(x)-M_{Q}\left(b \chi_{Q}\right)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q} \\
& =\frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|[b, M]\left(\chi_{Q}\right)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q} \\
& \leq \frac{1}{|Q|^{\beta / n+1 / q}}\left\|[b, M]\left(\chi_{Q}\right)\right\|_{L^{q}\left(\mathbb{R}^{n}\right)} \\
& \leq \frac{C}{|Q|^{\beta / n+1 / q}}\left\|\chi_{Q}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \leq C,
\end{aligned}
$$

which implies (3) since the cube $Q \subset \mathbb{R}^{n}$ is arbitrary.
(3) $\Longrightarrow(1)$: To prove $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$, by Lemma 2.1, it suffices to verify that there is a constant $C>0$ such that for all cubes Q,

$$
\begin{equation*}
\frac{1}{|Q|^{1+\beta / n}} \int_{Q}\left|b(x)-b_{Q}\right| \mathrm{d} x \leq C \tag{4.3}
\end{equation*}
$$

For any fixed cube Q, let $E=\left\{x \in Q: b(x) \leq b_{Q}\right\}$ and $F=\left\{x \in Q: b(x)>b_{Q}\right\}$. The following equality is trivially true (see [4] page 3331):

$$
\int_{E}\left|b(x)-b_{Q}\right| \mathrm{d} x=\int_{F}\left|b(x)-b_{Q}\right| \mathrm{d} x
$$

Since for any $x \in E$ we have $b(x) \leq b_{Q} \leq M_{Q}(b)(x)$, then for any $x \in E$,

$$
\left|b(x)-b_{Q}\right| \leq\left|b(x)-M_{Q}(b)(x)\right| .
$$

Thus,

$$
\begin{align*}
\frac{1}{|Q|^{1+\beta / n}} \int_{Q}\left|b(x)-b_{Q}\right| \mathrm{d} x & =\frac{1}{|Q|^{1+\beta / n}} \int_{E \cup F}\left|b(x)-b_{Q}\right| \mathrm{d} x \\
& =\frac{2}{|Q|^{1+\beta / n}} \int_{E}\left|b(x)-b_{Q}\right| \mathrm{d} x \\
& \leq \frac{2}{|Q|^{1+\beta / n}} \int_{E}\left|b(x)-M_{Q}(b)(x)\right| \mathrm{d} x \tag{4.4}\\
& \leq \frac{2}{|Q|^{1+\beta / n}} \int_{Q}\left|b(x)-M_{Q}(b)(x)\right| \mathrm{d} x
\end{align*}
$$

On the other hand, it follows from Hölder's inequality and (1.3) that

$$
\begin{aligned}
\frac{1}{|Q|^{1+\beta / n}} \int_{Q}\left|b(x)-M_{Q}(b)(x)\right| \mathrm{d} x & \leq \frac{1}{|Q|^{1+\beta / n}}\left(\int_{Q}\left|b(x)-M_{Q}(b)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q}|Q|^{1 / q^{\prime}} \\
& \leq \frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|b(x)-M_{Q}(b)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q} \\
& \leq C
\end{aligned}
$$

This together with (4.4) gives (4.3), and so we achieve $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$.
In order to prove $b \geq 0$, it suffices to show $b^{-}=0$, where $b^{-}=-\min \{b, 0\}$. Let $b^{+}=|b|-b^{-}$, then $b=b^{+}-b^{-}$. For any fixed cube Q, observe that

$$
0 \leq b^{+}(x) \leq|b(x)| \leq M_{Q}(b)(x)
$$

for $x \in Q$ and therefore we have that, for $x \in Q$,

$$
0 \leq b^{-}(x) \leq M_{Q}(b)(x)-b^{+}(x)+b^{-}(x)=M_{Q}(b)(x)-b(x)
$$

Then, it follows from (1.3) that, for any cube Q,

$$
\begin{aligned}
\frac{1}{|Q|} \int_{Q} b^{-}(x) \mathrm{d} x & \leq \frac{1}{|Q|} \int_{Q}\left|M_{Q}(b)(x)-b(x)\right| \\
& \leq\left(\frac{1}{|Q|} \int_{Q}\left|b(x)-M_{Q}(b)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q} \\
& =|Q|^{\beta / n}\left\{\frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|b(x)-M_{Q}(b)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q}\right\} \\
& \leq C|Q|^{\beta / n}
\end{aligned}
$$

Thus, $b^{-}=0$ follows from Lebesgue's differentiation theorem.
The proof of Theorem 1.4 is completed.
Proof of Theorem 1.5. Obviously, Theorem 1.5 follows from (4.1) and Theorem 1.1.
Proof of Theorem 1.6. (1) $\Longrightarrow(2)$: Assume $b \geq 0$ and $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$, then by (4.1) and Theorem 1.2 we see that $[b, M]$ is bounded from $L^{p, \lambda}\left(\mathbb{R}^{n}\right)$ to $L^{q, \lambda}\left(\mathbb{R}^{n}\right)$.
$(2) \Longrightarrow(1)$: Assume that $[b, M]$ is bounded from $L^{p, \lambda}\left(\mathbb{R}^{n}\right)$ to $L^{q, \lambda}\left(\mathbb{R}^{n}\right)$. Similarly to (4.2), we have, for any cube $Q \subset \mathbb{R}^{n}$,

$$
\begin{aligned}
& \frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|b(x)-M_{Q}(b)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q} \\
& =\frac{1}{|Q|^{\beta / n}}\left(\frac{1}{|Q|} \int_{Q}\left|[b, M]\left(\chi_{Q}\right)(x)\right|^{q} \mathrm{~d} x\right)^{1 / q}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \frac{|Q|^{\lambda /(n q)}}{|Q|^{\beta / n+1 / q}}\left\|[b, M]\left(\chi_{Q}\right)\right\|_{L^{q, \lambda}\left(\mathbb{R}^{n}\right)} \\
& \leq \frac{C|Q|^{\lambda /(n q)}}{|Q|^{\beta / n+1 / q}}\left\|\chi_{Q}\right\|_{L^{p, \lambda}\left(\mathbb{R}^{n}\right)} \\
& \leq C
\end{aligned}
$$

where in the last step we have used $1 / q=1 / p-\beta /(n-\lambda)$ and Lemma 2.4.
This shows by Theorem 1.4 that $b \in \dot{\Lambda}_{\beta}\left(\mathbb{R}^{n}\right)$ and $b \geq 0$.
Proof of Theorem 1.7. By the same way of the proof of Theorem 1.6, Theorem 1.7 can be proven. We omit the details.

Acknowledgements

The author would like to express his gratitude to the referee for his/her very valuable comments and suggestions, which greatly improved the final version of this paper.

References

[1] D.R. Adams, A note on Riesz potentials, Duke Math. J. 42 (1975) 765-778.
[2] D.R. Adams, Morrey Spaces, Lect. Notes Appl. Numer. Harmon. Anal., Springer International Publishing, Switzerland, 2015.
[3] M. Agcayazi, A. Gogatishvili, K. Koca, R. Mustafayev, A note on maximal commutators and commutators of maximal functions, J. Math. Soc. Jpn. 67 (2) (2015) 581-593.
[4] J. Bastero, M. Milman, F.J. Ruiz, Commutators for the maximal and sharp functions, Proc. Amer. Math. Soc. 128 (11) (2000) $3329-3334$.
[5] A. Bonami, T. Iwaniec, P. Jones, M. Zinsmeister, On the product of functions in BMO and H^{1}, Ann. Inst. Fourier 57 (5) (2007) 1405-1439.
[6] R.R. Coifman, R. Rochberg, G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (2) (1976) $611-635$.
[7] R.A. DeVore, R.C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 47 (293) (1984) 1-115.
[8] J. Duoandikoetxea, Fourier Analysis, Grad. Stud. Math., vol. 29, Amer. Math. Soc., Providence, RI, USA, 2001.
[9] J. García-Cuerva, E. Harboure, C. Segovia, J.L. Torrea, Weighted norm inequalities for commutators of strongly singular integrals, Indiana Univ. Math. J. 40 (1991) 1397-1420.
[10] L. Grafakos, Classical Fourier Analysis, third edition, Grad. Texts Math., vol. 249, Springer, New York, 2014.
[11] G. Hu, H. Lin, D. Yang, Commutators of the Hardy-Littlewood maximal operator with BMO symbols on spaces of homogeneous type, Abstr. Appl. Anal. (2008) 237937, 21 pages.
[12] G. Hu, D. Yang, Maximal commutators of BMO functions and singular integral operators with non-smooth kernels on spaces of homogeneous type, J. Math. Anal. Appl. 354 (2009) 249-262.
[13] S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Mat. 16 (1978) 263-270.
[14] S. Janson, M. Taibleson, G. Weiss, Elementary characterization of the Morrey-Campanato spaces, Lect. Notes Math. 992 (1983) 101-114.
[15] Y. Komori, T. Mizuhara, Notes on commutators and Morrey spaces, Hokkaido Math. J. 32 (2003) 345-353.
[16] M. Milman, T. Schonbek, Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc. 110 (4) (1990) $961-969$.
[17] C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938) 126-166.
[18] M. Paluszyński, Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J. 44 (1) (1995) 1-17.
[19] J. Peetre, On the theory of $L_{p, \lambda}$ spaces, J. Funct. Anal. 4 (1969) 71-87.
[20] C. Segovia, J.L. Torrea, Vector-valued commutators and applications, Indiana Univ. Math. J. 38 (4) (1989) 959-971.
[21] C. Segovia, J.L. Torrea, Higher order commutators for vector-valued Calderón-Zygmund operators, Trans. Amer. Math. Soc. 336 (2) (1993) $537-556$.
[22] S. Shirai, Necessary and sufficient conditions for boundedness of commutators of fractional integral operators on classical Morrey spaces, Hokkaido Math. J. 35 (2006) 683-696.
[23] P. Zhang, Multiple weighted estimates for commutators of multilinear maximal function, Acta Math. Sin. Engl. Ser. 31 (6) (2015) 973-994.
[24] P. Zhang, J.L. Wu, Commutators of the fractional maximal functions, Acta Math. Sin. 52 (6) (2009) 1235-1238.
[25] P. Zhang, J.L. Wu, Commutators of the fractional maximal function on variable exponent Lebesgue spaces, Czechoslov. Math. J. 64 (2014) 183-197.
[26] P. Zhang, J.L. Wu, Commutators for the maximal functions on Lebesgue spaces with variable exponent, Math. Inequal. Appl. 17 (4) (2014) $1375-1386$.

[^0]: it Supported by the National Natural Science Foundation of China (Grant Nos. 11571160 and 11471176).
 E-mail address: puzhang@sohu.com.

