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We give an example of a stochastic Hamilton–Jacobi equation du = H(Du)dξ which has an 
infinite speed of propagation as soon as the driving signal ξ is not of bounded variation.
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r é s u m é

Nous présentons un exemple d’équation d’Hamilton–Jacobi stochastique du = H(Du)dξ

dont la vitesse de propagation est infinie dès que le signal ξ n’est pas à variation bornée.
© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 

article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

An important feature of (deterministic) Hamilton–Jacobi equations

∂t u = H(Du) on (0, T ) ×R
N (1.1)

is the so-called finite speed of propagation: assuming for instance that H : RN → R is C-Lipschitz, then if u1 and u2 are two 
(viscosity) solutions to (1.1), one has

u1(0, ·) = u2(0, ·) on B(R) ⇒ ∀t ≥ 0, u1(t, ·) = u2(t, ·) on B(R − Ct), (1.2)

where by B(R) we mean the ball of radius R centered at 0.
In this note, we are interested in Hamilton–Jacobi equations with rough time dependence of the form

∂t u = H(Du)ξ̇ (t) on (0, T ) ×R
N , (1.3)
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where ξ is only assumed to be continuous. Of course, the above equation only makes classical (viscosity) sense for ξ in C1, 
but Lions and Souganidis [2] have shown that if H is the difference of two convex functions, the solution map can be 
extended continuously (with respect to supremum norm) to any continuous ξ . (In typical applications, one wants to take ξ
as the realization of a random process such as Brownian motion.)

In fact, the Lions–Souganidis theory also gives the following result: if H = H1 − H2 where H1, H2 are convex, C-Lipschitz, 
with H1(0) = H2(0) = 0, then for any constant A,

u(0, ·) ≡ A on B(R) ⇒ u(t, ·) ≡ A on B(R(t)),

where R(t) = R − C(maxs∈[0,t] ξ(s) − mins∈[0,t] ξ(s)).
However, this does not imply a finite speed of propagation for (1.3) for arbitrary initial conditions, and a natural question 

(as mentioned in lecture notes by Souganidis [3]) is to know whether a property analogous to (1.2) holds in that case. The 
purpose of this note is to show that in general it does not: we present an example of an H such that, if the total variation 
of ξ on [0, T ] is strictly greater than R , one may find initial conditions u1

0, u2
0 that coincide on B(R), but such that, for the 

associated solutions u1 and u2, one has u1(T , 0) �= u2(T , 0).
For instance, if ξ is a (realization of a) Brownian motion, then (almost surely), one may find initial conditions coinciding 

on balls of arbitrary large radii, but such that u1(t, 0) �= u2(t, 0) for all t > 0.
It should be noted that the Hamiltonian H in our example is not convex (or concave). When H is convex, some of 

the oscillations of the path cancel out at the PDE level,1 so that one cannot hope for simple bounds such as (2.2) below. 
Whether one has finite speed of propagation in this case remains an open question.

2. Main result and proof

We fix T > 0 and denote P = {(t0, . . . , tn), 0 = t0 ≤ t1 ≤ . . . ≤ tn = T } the set of partitions of [0, T ]. Recall that the total 
variation of a continuous path ξ : [0, T ] →R is defined by

V 0,T (ξ) = sup
(t0,...,tn)∈P

n−1∑
i=0

|ξ(ti+1) − ξ(ti)| .

Our main result is then:

Theorem 1. Given ξ ∈ C([0, T ]), let u : [0, T ] ×R
2 →R be the viscosity solution to

∂t u = (|∂xu| − ∣∣∂yu
∣∣) ξ̇ (t) on (0, T ) ×R

2 (2.1)

with initial condition

u(0, x, y) = |x − y| + �(x, y),

where � ≥ 0 is such that �(x, y) ≥ 1 if min{x, y} ≥ R.
One then has the estimate

u(T ,0,0) ≥
(

sup
(t0,...,tn)∈P

∑n−1
j=0

∣∣ξ(t j+1) − ξ(t j)
∣∣

n
− R

n

)
+

∧ 1. (2.2)

In particular, u(T , 0, 0) > 0 as soon as V 0,T (ξ) > R.

Note that since |x − y| is a stationary solution to (2.1), the claims from the introduction about the speed of propagation 
follow.

The proof of Theorem 1 is based on the differential game associated with (2.1). Informally, the system is constituted 
of a pair (x, y) and the two players take turn controlling x or y depending on the sign of ξ̇ , with speed up to |ξ̇ |. The 
minimizing player wants x and y to be as close as possible to each other, while keeping them smaller than R . The idea 
is then that if the minimizing player keeps x and y stuck together, the maximizing player can lead x and y to be greater 
than R as long as V 0,T (ξ) > R .

Proof of Theorem 1. By approximation, we can consider ξ ∈ C1, and in fact we consider the backward equation:{ −∂t v = (|∂x v| − ∣∣∂y v
∣∣) ξ̇ (t),

v(T , x, y) = |x − y| + �(x, y).
(2.3)

1 For example: for δ ≥ 0, S H (δ) ◦ S−H (δ) ◦ S H (δ) = S H (δ), where S H , S−H are the semigroups associated with H , −H .
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We then need a lower bound on v(0, 0, 0). Note that(|∂x v| − ∣∣∂y v
∣∣) ξ̇ (t) = sup

|a|≤1
inf

|b|≤1

{
ξ̇+(t)

(
a∂xu + b∂yu

) + ξ̇−(t)
(
a∂yu + b∂su

)}
,

so that by classical results (e.g., [1]) one has the representation

v(0,0,0) = sup
δ(·)∈�

inf
β∈U J (δ(β),β), (2.4)

where U is the set of controls (measurable functions from [0, T ] to [−1, 1]) and � the set of progressive strategies (i.e. 
maps δ: U → U such that if β = β ′ a.e. on [0, t], then δ(β)(t) = δ(β ′)(t)). Here for α, β ∈ U , the payoff is defined by

J (α,β) = |xα,β(T ) − yα,β(T )| + �(xα,β(T ), yα,β(T )),

where

xα,β(0) = yα,β(0) = 0, ẋα,β(s) = ξ̇+(s)α(s) + ξ̇−(s)β(s), ẏα,β(s) = ξ̇−(s)α(s) + ξ̇+(s)β(s).

Assume v(0, 0, 0) < 1 (otherwise there is nothing to prove) and fix ε ∈ (0, 1) such that v(0, 0, 0) < ε. Consider the 
strategy δε for the maximizing player defined as follows: for β ∈ U , let

τ
β
ε = inf

{
t ≥ 0, |x1,β(t) − y1,β(t)| ≥ ε

}
,

and then

δε(β)(t) =
{

1, t < τ
β
ε

β(t), t ≥ τ
β
ε

.

In other words, the maximizing player moves to the right at maximal speed, until the time when |x − y| = ε, at which point 
he moves in a way such that x and y stay at distance ε.

Now by (2.4), there exists β ∈ U with J (δε(β), β) < ε. Clearly, for the corresponding trajectories x(·), y(·), this means 
that |x(T ) − y(T )| < ε, and by definition of δε this implies |x(t) − y(t)| ≤ ε for t ∈ [0, T ]. We now fix (t0, . . . , tn) ∈ P and 
prove by induction that for i = 0, . . . , n,

min{x(ti), y(ti)} ≥
i−1∑
j=0

∣∣ξ(t j+1) − ξ(t j)
∣∣ − iε.

Indeed, if it is true for some index i, then assuming that for instance ξ(ti+1) − ξ(ti) ≥ 0, one has

x(ti+1) = x(ti) +
ti+1∫
ti

ξ̇+(s)ds −
ti+1∫
ti

β(s)ξ̇−(s)ds

≥ x(ti) + ξ(ti+1) − ξ(ti) ≥
i∑

j=0

∣∣ξ(t j+1) − ξ(t j)
∣∣ − iε

and since y(ti+1) ≥ x(ti+1) − ε, one also has y(ti+1) ≥ ∑i
j=0

∣∣ξ(t j+1) − ξ(t j)
∣∣ − (i + 1)ε. The case when ξ(ti+1) − ξ(ti) ≤ 0 is 

similar.
Since J (δε(β), β) ≤ 1, one must necessarily have min{x(T ), y(T )} ≤ R , so that

ε ≥ 1

n

⎛
⎝ n∑

j=0

∣∣ξ(t j+1) − ξ(t j)
∣∣ − R

⎞
⎠ .

Letting ε → v(0, 0, 0) and taking the supremum over P on the r.h.s. we obtain (2.2). �
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