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This is an announcement of certain rationality results for the critical values of the 
degree-2n L-functions attached to GL1 × SO(n, n) over Q for an even positive integer n. 
The proof follows from studying the rank-one Eisenstein cohomology for SO(n + 1, n + 1).
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r é s u m é

Dans cette Note, nous présentons des résultats de rationalité pour les valeurs critiques 
des fonctions L de degré 2n, attachées à GL1 × SO(n, n) sur Q, où n est un entier positif. La 
preuve résulte d’une étude de la cohomologie d’Eisenstein de rang un, pour SO(n +1, n +1).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of the main result

To motivate the main result, let us recall a well-known theorem of Shimura [13].

Theorem 1.1 (Shimura). Let f = ∑
anqn ∈ Sk(N, χ) and g = ∑

bnqn ∈ Sl(N, ψ) be primitive modular forms of weights k and l, with 
nebentypus characters χ and ψ for �0(N). Let Q( f , g) be the number field obtained by adjoining the Fourier coefficients {an} and 
{bn} to Q. Assume that k > l. Let

D N(s, f , g) := LN(2s + 2 − k − l,χψ)

∞∑
n=1

anbn

ns

be the degree 4 Rankin–Selberg L-function attached to the pair ( f , g). Then, for any integer m with l ≤ m < k, we have:

D N(m, f , g) ≈ (2πi)l+1−2m g(ψ) u+( f )u−( f ),
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where ≈ means up to an element of Q( f , g), u±( f ) are the two periods attached to f by Shimura, and g(ψ) is the Gauss sum of ψ . 
Furthermore, the ratio of the L-value in the left hand side by the right hand side is equivariant under Gal(Q/Q).

The integers l ≤ m < k are all the critical points for D N (s, f , g). (There are no critical points if l = k.) Suppose k ≥ l + 2, 
and we look at two successive critical values then the only change in the right-hand side is (2πi)−2 which may be seen 
to be exactly accounted for by the �-factors at infinity. Suppose L(s, f × g) denotes the completed degree-4 L-function 
attached to ( f , g), normalized in a classical way as in the theorem above, then we deduce:

L(l, f × g) ≈ L(l + 1, f × g) ≈ · · · ≈ L(k − 1, f × g). (1.2)

The above result is a statement for L-functions for GL2 × GL2 over Q. Later Shimura generalized this to Hilbert modular 
forms [14], i.e., for GL2 × GL2 over a totally real field F . Note that (GL2 × GL2)/�GL1 � GSO(2, 2), i.e. Shimura’s result may 
be construed as a theorem for L-functions for orthogonal groups in four variables.

The main aim of this article is to announce that we expect the following generalization of the result in (1.2) to L-functions for 
GL1 × SO(n, n) over a totally real field F , and when n = 2r ≥ 2. For simplicity of exposition, we will work over F = Q.

Theorem 1.3. Let n = 2r ≥ 2 be an even positive integer. Consider SO(n, n)/Q defined so that the subgroup of all upper-triangular 
matrices is a Borel subgroup. Let μ be a dominant integral weight written as μ = (μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ |μn|), with μ j ∈ Z. Let 
σ be a cuspidal automorphic representation of SO(n, n)/Q. Assume that:

(1) the Arthur parameter �σ is cuspidal on GL2n/Q;
(2) σ is globally generic;
(3) σ∞|SO(n,n)(R)0 is a discrete series representation with Harish–Chandra parameter μ +ρn.

Let ◦χ be a finite order character of Q×\A× . Then the critical set for the degree-2n completed L-function L(s, ◦χ × σ) is the finite set 
of contiguous integers

{1 − |μn|, 2 − |μn|, . . . , |μn|}.
Assume also that |μn| ≥ 1, so that the critical set is nonempty; and in this case there are at least two critical points. We have

L(1 − |μn|, ◦χ × σ) ≈ L(2 − |μn|, ◦χ × σ) ≈ · · · ≈ L(|μn|, ◦χ × σ),

where ≈ means up to an element of a number field Q(◦χ, σ), and furthermore, all the successive ratios are equivariant under 
Gal(Q/Q).

2. The combinatorial lemma and a restatement of the main theorem

The strategy of proof follows the paradigm in Harder–Raghuram [7,8]. In our situation, this involves studying the rank-
one Eisenstein cohomology of G = SO(n + 1, n + 1), especially the contribution coming from a parabolic subgroup P with 
Levi quotient M P = GL1 ×SO(n, n). As in loc. cit., certain Weyl group combinatorics play an important role—essentially saying 
that a particular context involving the cohomology of arithmetic groups is viable exactly when the intervening L-values are 
critical.

Lemma 2.1. Let μ = (μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ |μn|) be a dominant integral weight, and σ be a cuspidal automorphic representation 
for SO(n, n)/Q as in Theorem 1.3. Let d ∈ Z and put χ = | |−d ⊗ ◦χ where ◦χ is a finite-order character. Let G = SO(n + 1, n + 1)

and P the maximal parabolic subgroup obtained by deleting the ‘first’ simple root, in which case the Levi decomposition P = M P N P

looks like: M P = GL1 × SO(n, n) and dim(N P ) = 2n. The following are equivalent:

(1) −n and 1 − n are critical for the completed degree-2n L-function L(s, χ × σ);
(2) 1 − |μn| ≤ n + d ≤ |μn| − 1;
(3) there is a unique w ∈ W P (here W P is the set of Kostant representatives for P ; we have W G = W M P W P ) such that w−1 · (d ×μ)

is dominant for G and l(w) = dim(N P )/2.

As d runs through the range prescribed by (2), the ratio of critical values

L(−n,χ × σ)

L(1 − n,χ × σ)

(where the criticality is assured by (1)) runs through the set of all successive ratios of critical values{
L(1 − |μn|, ◦χ × σ)

◦ , . . . ,
L(|μn| − 1, ◦χ × σ)

◦

}
.

L(2 − |μn|, χ × σ) L(|μn|, χ × σ)
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This says that when the method of Eisenstein cohomology is invoked for rationality results, then we get a result for 
ratios of all possible successive critical values, no more and no less! Towards Theorem 1.3, we prove the following theorem.

Theorem 2.2. Let the notations on χ and σ be as in the lemma above, and assume that the conditions on d are satisfied. Then the 
quantity

c∞(χ∞,σ∞)
L f (−n,χ × σ)

L f (1 − n,χ × σ)

is algebraic and is Gal(Q/Q)-equivariant. (Here c∞(χ∞, σ∞) is a nonzero complex number that depends only on the data at infinity, 
and L f is the finite part of the L-function. Please refer to Section 4 for more details.)

3. Comments on the consequences of various hypotheses of the main theorem

3.1. A discrete series representation as the local representation at infinity

This is the simplest kind of representation with nontrivial relative Lie algebra cohomology; in fact, it has nonzero co-
homology only in the middle degree. Furthermore, this implies that the finite part σ f contributes to the cohomology of 
a locally symmetric space of SO(n, n) with coefficients in the local system attached to μ. Using arguments as in Gan–
Raghuram [5], we show that σ f is defined over a number field Q(σ ) and that there is a Gal(Q̄/Q)-action on the set of 
cuspidal representations that satisfies the hypotheses (1), (2) and (3). In the proof, we need to use Arthur’s work [1]. In the 
statement of the theorem above, Q(◦χ, σ) is the field generated by the values of ◦χ and Q(σ ).

3.2. The transfer �σ is cuspidal on GL2n/Q

This is needed for two reasons. (1) We do not want the L-function L(s, ◦χ × σ) to break up into smaller L-functions; 
although, even if it did, with an inductive argument, at least in the case when �σ is tempered, we would very likely still 
have the main theorem. (2) The second reason is far more serious and very delicate. We need to prove a ‘Manin–Drinfeld’ 
principle: that there is a Hecke-projection from the total boundary cohomology (of the Borel–Serre boundary) to the isotypic 
component of the representation of G induced from χ ⊗σ of M P . See Section 4 below. For this to work, we have to exclude 
the possibility of σ being, for example, a CAP representation (which also gets guaranteed by the next hypothesis).

3.3. σ is globally generic

This hypothesis plays several roles: it is used in proving the existence of the Galois action mentioned in Section 3.1
above. Shahidi’s results [12] on local constants (see Section 4 below) need genericity of the representation at infinity.

3.4. Compatibility with Deligne’s conjecture

The above theorem is compatible with Deligne’s conjecture [4] on the critical values of motivic L-function, because we 
have the following period relation: Let M be a pure regular motive of rank-2n over Q with coefficients in a number field E. Suppose 
M is of orthogonal type (i.e. there is a map Sym2(M) → Q(−w) where w is the purity weight of M), then Deligne’s periods c±(M) are 
related as:

c+(M) = c−(M), as elements of (E ⊗C)×/E×.

This was known if M is a tensor product of two rank-two motives; see Blasius [3, 2.3].

3.5. Langlands transfer and special values

It is important to prove this theorem at the level of L-functions for GL1 × SO(n, n), and not as L-functions for GL1 × GL2n

after transferring. We would see this subtle point already in the context of Shimura’s theorem, because (i) the Langlands 
transfer f � g , which is a cuspidal representation of GL4 does not see the Petersson norm 〈 f , f 〉 of only one of the con-
stituents; and (ii) for an L-function L(s, π) with π cuspidal on GL4/Q, successive L-values would see c+(π) and c−(π), and 
in the automorphic world, it is not (yet) known that if π came via transfer from GL2 × GL2 then c+(π) ≈ c−(π). In a similar 
vein, one may ask if the main result of [8] applied to GL1 × GL2n implies the main result of this paper; this would be so if 
we could prove that the relative periods, denoted 	ε therein, for the representation �σ of GL2n are trivial—at this moment, 
we have no idea how one might prove such a period relation—hence our insistence on working intrinsically in the context 
of orthogonal groups.
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3.6. Further generalizations

All this should work for L-functions for GL1 × GSpin(2n) over a totally real field F . We say should because of the hypoth-
esis “the Arthur parameter �σ being cuspidal.” We may appeal to the work of Asgari–Shahidi [2] and Hundley–Sayag [9]
since we only want the case of generic transfer from GSpin(2n) to GL2n . However, as we see below, this hypothesis is also 
needed for the Manin–Drinfeld principle for boundary cohomology, and for this we will need Arthur’s work [1].

If instead of GSpin(2n), we consider generalizing to GSO(n, n) (or GO(n, n)), then we cannot hope to get any new result, 
since the standard degree-2n L-function L(s, σ) for a cuspidal representation σ of the group GSO(n, n) (or GO(n, n)) is same 
as the standard L-function for any irreducible constituent of the restriction of σ to SO(n, n).

4. An adumbration of the proof of Theorem 2.2

The basic idea, following [7] and [8], is to give a cohomological interpretation to the constant term theorem of Langlands, 
by studying the rank-one Eisenstein cohomology of SO(n + 1, n + 1). Let the notations be as in the combinatorial lemma 
above. A consequence of this lemma is that the representation algebraically (un-normalized) and parabolically induced from 
χ f ⊗ σ f appears in boundary cohomology:

aInd
G(A f )

P (A f )
(χ f ⊗ σ f )

K f ↪→ Hq0(∂PSG
K f

,M̃λ,E ),

where q0 = middle-dimension-of-symmetric-space-of-M P + dim(N P )/2; λ = w−1 · (d + μ); K f is a deep-enough open-
compact subgroup of G(A f ); ∂P denotes the part corresponding to P of the Borel–Serre boundary of the locally symmetric 
space SG

K f
for G with level structure K f ; M̃λ,E is the sheaf corresponding to the finite-dimensional representation Mλ,E

of the algebraic group G × E . (The reader is referred to [7, Sect. 1] for a quick primer on these cohomology groups and 
for the fundamental long exact sequence that comes out of the Borel–Serre compactification.) The field E is taken to be a 
large enough Galois extension of Q; for example, E could contain Q(χ, σ). To relate to the theory of automorphic forms, 
we can pass to C via an embedding ι : E → C. The induced representations and the cohomology groups are all modules 
for a Hecke-algebra HG

K f
, and in what follows below, we restrict our attention to a commutative sub-algebra HS

G ignoring a 
finite set S of all ramified places. Next, one observes that the standard intertwining operator Tst , at the point of evaluation 
s = −n goes as:

Tst : aInd
G(A f )

P (A f )
(χ f ⊗ σ f ) −→ aInd

G(A f )

P (A f )
(χ−1

f (2n) ⊗ κσ f ),

where (2n) denotes a Tate-twist, and κ is an element of O(n, n) but outside SO(n, n). Certain combinatorial details about 
Kostant representatives allow us to observe that the induced representation in the target also appears in boundary coho-
mology as:

aInd
G(A f )

P (A f )
(χ−1

f (2n) ⊗ κσ f )
K f ↪→ Hq0(∂PSG

K f
,M̃λ,E),

for the same degree q0 and the same weight λ. Let

IS
P (χ f ,σ f )

K f := aInd
G(A f )

P (A f )
(χ f ⊗ σ f )

K f ⊕ aInd
G(A f )

P (A f )
(χ−1

f (2n) ⊗ κσ f )
K f .

The Manin–Drinfeld principle amounts to showing that we get a HS
G -equivariant projection from boundary cohomology onto 

IS
P (χ f , σ f )

K f , and the target is isotypic, i.e. it does not weakly intertwine with the quotient of the boundary cohomology 
by IS

P (χ f , σ f )
K f . Denote this projection as:

R : Hq0(∂SG
K f

,M̃λ,E) −→ IS
P (χ f ,σ f )

K f .

If we denote the restriction map from global cohomology to the boundary cohomology as r∗ : Hq0(SG
K f

, M̃λ,E ) →
Hq0(∂SG

K f
, M̃λ,E ), then the main technical result on Eisenstein cohomology involves the image of the composition R ◦ r∗:

Hq0(SG
K f

,M̃λ,E)
r∗−→ Hq0(∂SG

K f
,M̃λ,E)

R−→ IS
P (χ f ,σ f )

K f .

For simplicity of explanation, let us pretend (and this could very well happen in some cases) that IS
P (χ f , σ f )

K f is a 
two-dimensional E-vector space. Our main result on Eisenstein cohomology will then say that the image of R ◦ r∗ is a 
one-dimensional subspace of this two-dimensional ambient space. We then look at the slope of this line. Passing to a 
transcendental level via an ι : E →C, and using the constant term theorem, one proves that the slope is in fact

c∞(χ∞,σ∞)
L f (−n,χ × σ)

L (1 − n,χ × σ)
,

f
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where c∞(χ∞, σ∞) is a nonzero complex number depending only on the data at infinity, and L f (s, χ × σ) is the finite 
part of the L-function. This proves that the above quantity lies in ι(E). Studying the behavior of the cohomology groups on 
varying E then proves Galois equivariance.

Along the way, we need to address certain local problems. At the finite ramified places, we prove that the local normal-
ized intertwining operator is nonzero and preserves rationality using the results of Kim [10], Mœglin–Waldspurger [11] and 
Waldspurger [16]. At the Archimedean place, yet another consequence of the combinatorial lemma is that the representation

aIndG(R)
P (R)

(χ∞ ⊗ σ∞)

is irreducible; this follows from the results of Speh–Vogan [15]. Using Shahidi’s results [12] on local factors, we then deduce 
that the standard intertwining operator is an isomorphism and induces a nonzero isomorphism in relative Lie algebra 
cohomology. But these cohomology groups at infinity are one-dimensional, and after fixing bases on either side we get a 
nonzero number c∞(χ∞, σ∞). We expect that a careful analysis, as in Harder [6], of the rationality properties of relative 
Lie algebra cohomology groups, should give us that c∞(χ∞, σ∞) is the same as L(−n, χ∞ × σ∞)/L(1 − n, χ∞ × σ∞) up to 
a nonzero rational number, justifying our claim about a rationality result for completed L-values as in Theorem 1.3.
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