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RESUME

Dans cette Note, nous présentons des résultats de rationalité pour les valeurs critiques
des fonctions L de degré 2n, attachées a GL; x SO(n, n) sur @, ol n est un entier positif. La
preuve résulte d'une étude de la cohomologie d’Eisenstein de rang un, pour SO(n+1,n+1).

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of the main result

To motivate the main result, let us recall a well-known theorem of Shimura [13].

Theorem 1.1 (Shimura). Let f =Y anq" € Si(N, x) and g = _bnq"™ € S|(N, ¥) be primitive modular forms of weights k and I, with
nebentypus characters x and  for T'o(N). Let Q(f, g) be the number field obtained by adjoining the Fourier coefficients {a,} and
{bn} to Q. Assume that k > . Let

anby
nS

DnGs, f,8) = In@s+2—k—1Lxy) )

n=1

be the degree 4 Rankin-Selberg L-function attached to the pair (f, g). Then, for any integer m with | <m < k, we have:

Dn(m, f,g) ~ r)™ 12 gy ut (fHu=(f),
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where ~ means up to an element of Q(f, g), u*(f) are the two periods attached to f by Shimura, and () is the Gauss sum of .
Furthermore, the ratio of the L-value in the left hand side by the right hand side is equivariant under Gal(Q/Q).

The integers | <m < k are all the critical points for Dy(s, f, g). (There are no critical points if [ = k.) Suppose k > 1+ 2,
and we look at two successive critical values then the only change in the right-hand side is (2mi)~2 which may be seen
to be exactly accounted for by the I'-factors at infinity. Suppose L(s, f x g) denotes the completed degree-4 L-function
attached to (f, g), normalized in a classical way as in the theorem above, then we deduce:

LA, fxg) ~Ld+1,fxg ~ -~ Lk—1, f xg). (1.2)

The above result is a statement for L-functions for GL; x GL, over Q. Later Shimura generalized this to Hilbert modular
forms [14], i.e., for GL x GL, over a totally real field F. Note that (GLy x GL;)/AGL; ~ GSO(2, 2), i.e. Shimura’s result may
be construed as a theorem for L-functions for orthogonal groups in four variables.

The main aim of this article is to announce that we expect the following generalization of the result in (1.2) to L-functions for
GL1 x SO(n, n) over a totally real field F, and when n = 2r > 2. For simplicity of exposition, we will work over F = Q.

Theorem 1.3. Let n = 2r > 2 be an even positive integer. Consider SO(n, n)/Q defined so that the subgroup of all upper-triangular
matrices is a Borel subgroup. Let i be a dominant integral weight written as jt = (Jt1 = 2 > -+ = (n—1 = |(nl), with uj € Z. Let
o be a cuspidal automorphic representation of SO(n, n)/Q. Assume that:

(1) the Arthur parameter W, is cuspidal on GLy,/Q;
(2) o is globally generic;
(3) 0xalsom.nymyo is a discrete series representation with Harish-Chandra parameter (. + pn.

Let ° x be a finite order character of Q> \ A*. Then the critical set for the degree-2n completed L-function L(s, °x X o) is the finite set
of contiguous integers

{1 —1unl, 2 —Itnl, ..., |ual}.

Assume also that |un| > 1, so that the critical set is nonempty; and in this case there are at least two critical points. We have

L1 —|unl,°x x0) = L2 — |unl,°x x0) ~ -+ &~ L(|unl,°x x 0),

where ~ means up to an element of a number field Q(°x, o), and furthermore, all the successive ratios are equivariant under

Gal(Q/Q).
2. The combinatorial lemma and a restatement of the main theorem

The strategy of proof follows the paradigm in Harder-Raghuram [7,8]. In our situation, this involves studying the rank-
one Eisenstein cohomology of G =SO(n + 1,n + 1), especially the contribution coming from a parabolic subgroup P with
Levi quotient Mp = GL; x SO(n, n). As in loc. cit., certain Weyl group combinatorics play an important role—essentially saying
that a particular context involving the cohomology of arithmetic groups is viable exactly when the intervening L-values are
critical.

Lemma 2.1. Let ;4 = (1 > 2 > -+ > Un—1 > |Un|) be a dominant integral weight, and o be a cuspidal automorphic representation
for SO(n, n)/Q as in Theorem 1.3. Let d € Z and put x = | |~¢ ® ° x where °x is a finite-order character. Let G = SO(n + 1,n + 1)
and P the maximal parabolic subgroup obtained by deleting the ‘first’ simple root, in which case the Levi decomposition P = MpNp
looks like: Mp = GLy x SO(n, n) and dim(Np) = 2n. The following are equivalent:

(1) —n and 1 — n are critical for the completed degree-2n L-function L(s, x x 0);

(2) 1=l = n+d < |unl = 1;

(3) thereis a unique w € WP (here WP is the set of Kostant representatives for P; we have W¢ = Wy, WP ) such that w=1- (d x w)
is dominant for G and [(w) = dim(Np)/2.

As d runs through the range prescribed by (2), the ratio of critical values
L(—n, x x o)
L(1—n,x x0)
(where the criticality is assured by (1)) runs through the set of all successive ratios of critical values

{L(l—lunl,"XXU) L(unl —1,°x XU)}
L2—|unl,ox x0) 7 Lpal,ox x0) )’
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This says that when the method of Eisenstein cohomology is invoked for rationality results, then we get a result for
ratios of all possible successive critical values, no more and no less! Towards Theorem 1.3, we prove the following theorem.

Theorem 2.2. Let the notations on x and o be as in the lemma above, and assume that the conditions on d are satisfied. Then the
quantity

Li(—n, X x 0)

Coo(Xoos Ooo) Lid—n x x0)

is algebraic and is Gal(Q/Q)-equivariant. (Here Coo(Xoo, Oo) iS @ nonzero complex number that depends only on the data at infinity,
and L is the finite part of the L-function. Please refer to Section 4 for more details.)

3. Comments on the consequences of various hypotheses of the main theorem
3.1. Adiscrete series representation as the local representation at infinity

This is the simplest kind of representation with nontrivial relative Lie algebra cohomology; in fact, it has nonzero co-
homology only in the middle degree. Furthermore, this implies that the finite part o contributes to the cohomology of
a locally symmetric space of SO(n,n) with coefficients in the local system attached to w. Using arguments as in Gan-
Raghuram [5], we show that oy is defined over a number field Q(o) and that there is a Gal(Q/Q)-action on the set of
cuspidal representations that satisfies the hypotheses (1), (2) and (3). In the proof, we need to use Arthur’s work [1]. In the
statement of the theorem above, Q(° x, o) is the field generated by the values of °x and Q(o).

3.2. The transfer Wy is cuspidal on GLy,/Q

This is needed for two reasons. (1) We do not want the L-function L(s,°x x o) to break up into smaller L-functions;
although, even if it did, with an inductive argument, at least in the case when W, is tempered, we would very likely still
have the main theorem. (2) The second reason is far more serious and very delicate. We need to prove a ‘Manin-Drinfeld’
principle: that there is a Hecke-projection from the total boundary cohomology (of the Borel-Serre boundary) to the isotypic
component of the representation of G induced from x ® o of Mp. See Section 4 below. For this to work, we have to exclude
the possibility of o being, for example, a CAP representation (which also gets guaranteed by the next hypothesis).

3.3. o is globally generic

This hypothesis plays several roles: it is used in proving the existence of the Galois action mentioned in Section 3.1
above. Shahidi’s results [12] on local constants (see Section 4 below) need genericity of the representation at infinity.

3.4. Compatibility with Deligne’s conjecture

The above theorem is compatible with Deligne’s conjecture [4] on the critical values of motivic L-function, because we
have the following period relation: Let M be a pure regular motive of rank-2n over Q with coefficients in a number field E. Suppose
M is of orthogonal type (i.e. there is a map Sym®(M) — Q(—w) where w is the purity weight of M), then Deligne’s periods ¢+ (M) are
related as:

c™(M) = ¢~ (M), as elements of (E® C)*/E*.

This was known if M is a tensor product of two rank-two motives; see Blasius [3, 2.3].
3.5. Langlands transfer and special values

It is important to prove this theorem at the level of L-functions for GL; x SO(n, n), and not as L-functions for GL; x GL;,
after transferring. We would see this subtle point already in the context of Shimura’s theorem, because (i) the Langlands
transfer f X g, which is a cuspidal representation of GL4 does not see the Petersson norm (f, f) of only one of the con-
stituents; and (ii) for an L-function L(s, ) with © cuspidal on GL4/Q, successive L-values would see ¢ (n) and ¢~ (), and
in the automorphic world, it is not (yet) known that if © came via transfer from GL, x GL, then ¢t () ~ ¢~ (n). In a similar
vein, one may ask if the main result of [8] applied to GL; x GLy, implies the main result of this paper; this would be so if
we could prove that the relative periods, denoted Q¢ therein, for the representation W, of GLy, are trivial—at this moment,
we have no idea how one might prove such a period relation—hence our insistence on working intrinsically in the context
of orthogonal groups.
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3.6. Further generalizations

All this should work for L-functions for GL; x GSpin(2n) over a totally real field F. We say should because of the hypoth-
esis “the Arthur parameter W, being cuspidal.” We may appeal to the work of Asgari-Shahidi [2] and Hundley-Sayag [9]
since we only want the case of generic transfer from GSpin(2n) to GLy,. However, as we see below, this hypothesis is also
needed for the Manin-Drinfeld principle for boundary cohomology, and for this we will need Arthur’s work [1].

If instead of GSpin(2n), we consider generalizing to GSO(n, n) (or GO(n, n)), then we cannot hope to get any new result,
since the standard degree-2n L-function L(s, o) for a cuspidal representation o of the group GSO(n,n) (or GO(n, n)) is same
as the standard L-function for any irreducible constituent of the restriction of o to SO(n, n).

4. An adumbration of the proof of Theorem 2.2

The basic idea, following [7] and [8], is to give a cohomological interpretation to the constant term theorem of Langlands,
by studying the rank-one Eisenstein cohomology of SO(n + 1,n + 1). Let the notations be as in the combinatorial lemma
above. A consequence of this lemma is that the representation algebraically (un-normalized) and parabolically induced from
Xf ® oy appears in boundary cohomology:

G(Ayf) ~
Indp )y (X ® )N > HO@0pSE . Map),

where go = middle-dimension-of-symmetric-space-of-Mp + dim(Np)/2; A = w~! . (d + p); Ky is a deep-enough open-
compact subgroup of G(Af); dp denotes the part corresponding to P of the Borel-Serre boundary of the locally symmetric
space S,(gf for G with level structure Ky; /VIA,  is the sheaf corresponding to the finite-dimensional representation M, g
of the algebraic group G x E. (The reader is referred to [7, Sect. 1] for a quick primer on these cohomology groups and
for the fundamental long exact sequence that comes out of the Borel-Serre compactification.) The field E is taken to be a
large enough Galois extension of QQ; for example, E could contain Q(x, o). To relate to the theory of automorphic forms,
we can pass to C via an embedding ¢ : E — C. The induced representations and the cohomology groups are all modules
for a Hecke-algebra Hﬁf, and in what follows below, we restrict our attention to a commutative sub-algebra ’Hg ignoring a
finite set S of all ramified places. Next, one observes that the standard intertwining operator T, at the point of evaluation
s = —n goes as:

) G(Ay) GAp 1
Tst = “Indp i,y (X ® 0p) —> *Indp, (X (2n) @ “oyp),

where (2n) denotes a Tate-twist, and « is an element of O(n,n) but outside SO(n, n). Certain combinatorial details about
Kostant representatives allow us to observe that the induced representation in the target also appears in boundary coho-
mology as:

G(Ay)

*Indp /) (X7 @) @ o)k > HO@pSE,. Map).

for the same degree qo and the same weight A. Let

G(Af) G(Af) _
S(xs,opkr = alndP(A;)(xf@)af)Kf ® alndP(AJ{)(Xf1(2n)®’(0f)Kf.

The Manin-Drinfeld principle amounts to showing that we get a 7-{,2 -equivariant projection from boundary cohomology onto
I,S, (xf, af)Kf , and the target is isotypic, i.e. it does not weakly intertwine with the quotient of the boundary cohomology
by I$(xs,07)¥s. Denote this projection as:

R:HOOSE,, Mug) — 13(xs, 00"

If we denote the restriction map from global cohomology to the boundary cohomology as t* : HqO(S,?f,./’\\/l/LE) —

an(as,?f, /\7,\’5), then the main technical result on Eisenstein cohomology involves the image of the composition R o v*:

~ * ~ R
HO(SE,, My ) — HPOSE,, Mop) — 1305, 0p"

For simplicity of explanation, let us pretend (and this could very well happen in some cases) that I,S,(Xf,of)’(f is a
two-dimensional E-vector space. Our main result on Eisenstein cohomology will then say that the image of fi o t* is a
one-dimensional subspace of this two-dimensional ambient space. We then look at the slope of this line. Passing to a
transcendental level via an ¢ : E — C, and using the constant term theorem, one proves that the slope is in fact

Ly(—n, x x &)

Coo(Xoo»Uoo)m,
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where Coo(Xo0: Ooo) iS @ nonzero complex number depending only on the data at infinity, and L¢(s, x x o) is the finite
part of the L-function. This proves that the above quantity lies in ((E). Studying the behavior of the cohomology groups on
varying E then proves Galois equivariance.

Along the way, we need to address certain local problems. At the finite ramified places, we prove that the local normal-
ized intertwining operator is nonzero and preserves rationality using the results of Kim [10], Mceglin-Waldspurger [11] and
Waldspurger [16]. At the Archimedean place, yet another consequence of the combinatorial lemma is that the representation

G(R
Ind} () (Xoo @ Occ)

is irreducible; this follows from the results of Speh-Vogan [15]. Using Shahidi’s results [12] on local factors, we then deduce
that the standard intertwining operator is an isomorphism and induces a nonzero isomorphism in relative Lie algebra
cohomology. But these cohomology groups at infinity are one-dimensional, and after fixing bases on either side we get a
nonzero number Coo (X0, Ooo). We expect that a careful analysis, as in Harder [6], of the rationality properties of relative
Lie algebra cohomology groups, should give us that cso(Xoo, Oco) iS the same as L(—1, Xoo X Oo0)/L(1 — N, oo X Oxo) UP 1O
a nonzero rational number, justifying our claim about a rationality result for completed L-values as in Theorem 1.3.

Acknowledgements
It is our great pleasure to thank the referee for very insightful and important comments and suggestions.

References

[1] J. Arthur, The Endoscopic Classification of Representations: Orthogonal and Symplectic Groups, American Mathematical Society Colloquium Publications,
vol. 61, American Mathematical Society, Providence, RI, USA, 2013.

[2] M. Asgari, F. Shahidi, Generic transfer for general spin groups, Duke Math. J. 132 (1) (2006) 137-190.

[3] D. Blasius, Appendix to Orloff Critical values of certain tensor product L-functions, Invent. Math. 90 (1) (1987) 181-188.

[4] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, (French). With an appendix by N. Koblitz and A. Ogus, Proc. Sympos. Pure Math., XXXIII,
Automorphic Forms, Representations and L-functions, in: Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, OR, USA, 1977, Amer. Math. Soc.,
Providence, RI, 1979, pp. 313-346, Part 2.

[5] W.T. Gan, A. Raghuram, Arithmeticity for periods of automorphic forms, in: Automorphic Representations and L-functions, in: Tata Inst. Fundam. Res.
Stud. Math., vol. 22, Tata Inst. Fund. Res., Mumbai, 2013, pp. 187-229.

[6] G. Harder, Harish-Chandra modules over Z, Preprint, available at arXiv:1407.0574, 2014.

[7] G. Harder, A. Raghuram, Eisenstein cohomology and ratios of critical values of Rankin-Selberg L-functions, C. R. Acad. Sci. Paris Ser. I 349 (13-14)
(2011) 719-724.

[8] G. Harder, A. Raghuram, Eisenstein cohomology for GLy and ratios of critical values of Rankin-Selberg L-functions, Including Appendix 1 by Uwe
Weselmann, and Appendix 2 by Chandrasheel Bhagwat and A. Raghuram. Preprint available at http://arxiv.org/pdf/1405.6513.pdf, 2015.

[9] J. Hundley, E. Sayag, Descent construction for GSpin groups, Mem. Amer. Math. Soc. 243 (1148) (2016).

[10] H. Kim, On local L-functions and normalized intertwining operators, Can. ]. Math. 57 (3) (2005) 535-597.

[11] C. Meeglin, J.-L. Waldspurger, Le spectre résiduel de GL(n). (French) (The residual spectrum of GL(n)), Ann. Sci. Ec. Norm. Supér. (4) 22 (4) (1989)
605-674.

[12] F. Shahidi, Local coefficients as Artin factors for real groups, Duke Math. ]. 52 (4) (1985) 973-1007.

[13] G. Shimura, On the periods of modular forms, Math. Ann. 229 (3) (1977) 211-221.

[14] G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J. 45 (3) (1978) 637-679.

[15] B. Speh, D. Vogan Jr., Reducibility of generalized principal series representations, Acta Math. 145 (3-4) (1980) 227-299.

[16] J.-L. Waldspurger, La formule de Plancherel pour les groupes p-adiques (d’aprés Harish-Chandra), J. Inst. Math. Jussieu 2 (2) (2003) 235-333.


http://refhub.elsevier.com/S1631-073X(17)30019-5/bib617274687572s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib617274687572s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib6173676172692D736861686964692D64756B65s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib626C6173697573s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib64656C69676E65s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib64656C69676E65s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib64656C69676E65s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib67616E2D726167687572616Ds1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib67616E2D726167687572616Ds1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib686172646572s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib6861726465722D726167687572616D2D4352s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib6861726465722D726167687572616D2D4352s1
http://arxiv.org/pdf/1405.6513.pdf
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib68756E646C65792D7361796167s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib6B696Ds1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib6D6F65676C696E2D77616C6473707572676572s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib6D6F65676C696E2D77616C6473707572676572s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib736861686964692D64756B653835s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib7368696D7572612D6D617468616E6Es1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib7368696D7572612D64756B65s1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib737065682D766F67616Es1
http://refhub.elsevier.com/S1631-073X(17)30019-5/bib77616C6473707572676572s1

	Special values of L-functions for orthogonal groups
	1 Introduction and statement of the main result
	2 The combinatorial lemma and a restatement of the main theorem
	3 Comments on the consequences of various hypotheses of the main theorem
	3.1 A discrete series representation as the local representation at inﬁnity
	3.2 The transfer Ψσ is cuspidal on GL2n/Q
	3.3 σ is globally generic
	3.4 Compatibility with Deligne's conjecture
	3.5 Langlands transfer and special values
	3.6 Further generalizations

	4 An adumbration of the proof of Theorem 2.2
	Acknowledgements
	References


