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r é s u m é

Nous définissons des polynômes r-Bell partiels dans trois algèbres de Hopf combinatoires. 
Nous prouvons une formule de factorisation pour les fonctions génératrices, qui est une 
conséquence de la formule de Zassenhauss.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Partial multivariate Bell polynomials have been defined by E.T. Bell [2] in 1934. Their applications in Combinatorics, Analy-
sis, Algebra, Probabilities etc. are numerous (see, e.g., [8]). They are usually defined on an infinite set of commuting variables 
{a1, a2, . . .} by the following generating function:

∑
n�0

Bn,k(a1, . . . ,ap, . . . )
xn

n! tk = exp

⎧⎨
⎩

∑
m�1

am
xm

m! t

⎫⎬
⎭ . (1)

The partial Bell polynomials are related to several combinatorial sequences. Let 
{n

k

}
denotes the Stirling number of 

second kind, which counts the number of ways to partition a set of n objects into k nonempty subsets, and let 
[n

k

]
denote 

the Stirling number of first kind, which counts the number of permutations according to their number of cycles. We have, 
Bn,k(1, 1, . . . ) = {n

k

}
and Bn,k(0!, 1!, 2!, . . . ) = [n

k

]
.

The connection between the Bell polynomials and the combinatorial Hopf algebras has been investigated by one of the 
authors in [3].
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Aiming to generalize these polynomials, Mihoubi et al. [9] defined partial r-Bell polynomials by setting

Br
n+r,k+r(a1,a2, · · · ;b1,b2, · · · ) =

∑
n′+n′′=n+r

∑
λ′

1+···+λ′
r=n′

λ′′
1+···+λ′′

k =n′′

αr
λ′,λ′′aλ′

1
· · ·aλ′

r
bλ′′

1
· · ·bλ′′

k
, (2)

where the second sum runs over pairs of (integer) partitions (λ′, λ′′), αr
λ′,λ′′ is the number of set partitions π =

{π′
1, π

′
2, · · · , π′

r, π′′
1, π′′

2, · · · , π′′
k } of {1, 2, · · · , n} such that #π′

1 = λ′
1, · · · , #π′

r = λ′
r , #π′′

1 = λ′′
1, · · · , #π′′

k = λ′′
k and 1 ∈ π′

1, 2 ∈
π′

2, · · · , r ∈ π′
r , and #πi denotes the cardinality of πi . Comparing our notation to those of [9], the roles of the variables ai

and bi have been switched. The generating function of the r-Bell polynomials is known to be

∑
n�k

Br
n+r,k+r(a1,a2, · · · ;b1,b2, · · · ) xn

n!
yr

r! tk = exp

⎛
⎝∑

j�0

a j+1
x j

j! y

⎞
⎠exp

⎛
⎝∑

j�1

b j
x jt

j!

⎞
⎠ , (3)

where (an; n � 1) and (bn; n � 1) are two sequences of nonnegative integers.
The aim of our paper is to show that we can define three versions of the r-Bell polynomials in three combinatorial 

Hopf algebras in the same way. The first algebra is Sym(2) , the algebra of bisymmetric functions (or symmetric functions of 
level 2). The r-Bell polynomials as defined by Mihoubi belong to this algebra. The second algebra is NCSF(2) , the algebra of 
noncommutative bisymmetric functions. In this algebra, we define non-commutative analogues of r-Bell polynomials that 
generalize the Munthe-Kaas polynomials. The third algebra is WSym(2) := CWSym(2, 2, · · · ), the algebra of 2-colored word 
symmetric functions. In this algebra, we define word analogues of r-Bell polynomials. The common feature of the three 
constructions is that they are based on the same algorithm, which generates 2-colored set partitions without redundance. 
Our main result is a factorization formula for the generating function which holds in the three algebras and which is a 
consequence of the Zassenhauss formula.

2. Bi-colorations of partitions, compositions and set partitions

A bicolored partition λ of n is a multiset {(λ1, j1), . . . , (λk, jk)} such that λ1 + · · · + λk = n and j1, . . . , jk ∈ {1, 2}. We 
set λ � n, ω(λ) = n and �(λ) = k. A bicolored composition I of n is a list I = [(i1, j1), . . . , (ik, jk)] with i1 + · · · + ik = n and 
j1, . . . , jk ∈ {1, 2}. We set I � n, ω(I) = n and �(I) = k. A bicolored set partition is a set π = {(π1, j1), . . . , (πk, jk)} such that 
{π1, . . . , πk} is a set partition of size n and j1, . . . , jk ∈ {1, 2}. We set π � n, ω(π) = n and �(π) = k.

We define

Sr
n+r,k+r = {

π = {(π1,1), · · · , (πr,1), (πr+1,2), · · · , (πk+r,2)} : π � (n + r),1 ∈ π1, · · · , r ∈ πr
}
. (4)

We have Sr
r,r = {{({1},1), ({2},1), · · · , ({r},1)}} and

Sr
n+1+r,k+r =

{
π ∪ {(n + 1,2)} : π ∈ Sr

n+r,r+k−1

}
∪{

π \ {(π�, j�)} ∪ {(π� ∪ {n + 1}, j�)} : π = {(π1, j1), · · · , (πr+k, jr+k),1 ≤ � ≤ r + k} ∈ Sr+k
n+r,k

}
.

(5)

The underlying recursive algorithm generates one and only one times each element of Sr
n+1+r,k+r .

We consider also two applications: c(π) = [(#π1, j1), . . . , (#πk, jk)] if π = {(π1, j1), . . . , (πk, jk)} with min{π1} < · · · <

min{πk} and λ(π) = {(#π1, j1), . . . , (#πk, jk)}. We define

f r
n+r,k+r(I) = #{π ∈ Sr

n+1+r,k+r : c(π) = I} and gr
n+r,k+r(λ) = #{π ∈ Sr

n+1+r,k+r : λ(π) = λ}.
3. Three combinatorial Hopf algebras

3.1. Algebras of symmetric functions of level 2

In this section, we define three combinatorial Hopf algebras indexed by bicolored objects. The model of construction is 
the algebra Sym(l) , which is the representation ring of a wreath product (� � Sn)n≥0, � being a group with l conjugacy 
classes [6]. Let us recall briefly its definition for l = 2. The combinatorial Hopf algebra Sym(2) [6] is naturally realized 
as symmetric functions in 2 independent sets of variables Sym(2) := Sym(X(1); X(2)). It is the free commutative algebra 
generated by two sequences of formal symbols p1(X(1)), p2(X

(1)), . . . and p1(X
(2)), p2(X

(2)), . . . , named power sums, which 
are primitive for its coproduct. The set of the polynomials pλ := pλ1 (X

(i1)) · · · pλk (X
(ik)), where λ = {(λ1, i1), . . . , (λk, iik )} is 

a bicolored partition, is a basis of Sym(2) .
The Hopf algebra NCSF of formal noncommutative symmetric functions [5] is the free associative algebra C 〈�1,�2, · · · 〉

generated by an infinite sequence of primitive formal variables (�i)i�1. Its level l is analogous to that described in [11]
as the free algebra generated by level-l complete homogeneous functions Sn . Here we set l = 2 and we use another basis. 
We recall that the level-2 complete homogeneous function Sn , for n ∈ N

2, is defined as a free quasi-symmetric function 
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of level 2 as Sn = ∑
|ui |=ni

G1...n,u , where Gσ ,u denotes the dual free l-quasi-ribbon labeled by the colored permutation 
(σ , u) [11]. Notice that Gσ ,u is realized as a polynomial in C〈A(1) ∪A

(2)〉, where A(i) denotes two disjoint copies of the same 
alphabet A as Gσ ,u =

∑
w∈(A(1)∪A(1))n

std(w)=σ ,wi∈A(i)

w , where std is the usual standardization applied after identifying the two alphabets 

A
(1) and A(2) . Alternatively, for dimensional reasons, NCSF(2) is the minimal sub (free) algebra of C〈A(1) ∪A

(2)〉 containing 
both NCSF(A(1)) and NCSF(A(2)) as subalgebras. Hence, it is freely generated by the (primitive) power sums �i(A

( j)). If 
I = [(i1, j1), . . . , (ik, jk)] denotes a bi-colored composition, then the set of the polynomials � I = �i1 (A

( j1)) · · ·�ik (A
( jk)) is 

a basis of the space NCSF(2) .
The last algebra, WSym(2) , is a level 2 analogue of the algebra of word symmetric functions introduced by M.C. Wolf [12]

in 1936. We construct it as a special case of the Hopf algebras CWSym(a) of colored set partitions introduced in [1] for 
a = (2, 2, . . . , 2, . . . ). As a space CWSym(a) is generated by the set 	π where π denotes a bicolored set partition. Its product 
is defined by

	π	π′ = 	π∪̂π′
, (6)

where ∪̂ denotes the shifted union obtained by shifting first the elements of π′ by the weight of π and hence compute the 
union, and its coproduct is


(	π) =
∑

π̂1∪π̂2=π
π̂1∩π̂2=∅

	std(π̂1) ⊗ 	std(π̂2), (7)

where the standardized std(π) of π is defined as the unique colored set partition obtained by replacing the ith smallest 
integer in the π j by i.

The algebra Sym(2) (resp. NCSF(2) , WSym(2)) is naturally bigradued Sym(2) = ⊕
n,k Sym(2)

n,k (resp. NCSF(2) = ⊕
n,k NCSF(2)

n,k , 
WSym(2) = ⊕

n,k WSym(2)

n,k) where Sym(2)

n,k = span{pλ : �(λ) = k, ω(λ) = n} (resp. NCSF(2)

n,k = span{� I : �(I) = k, ω(I) = n}, 
WSym(2)

n,k = span{	π : �(π) = k, ω(π) = n}). We denote by R the subalgebra of Sym(2) (resp. NCSF(2) , WSym(2)) spanned 
by the polynomials p{(λ1,2),...,(λk,2)} (resp. �[(i1,2),...,(ik,2)] , 	{(π1,2),...,(πk,2)}), which is isomorphic to Sym (resp. NCSF, WSym). 
Notice also that R = ⊕

n,k Rn,k is naturally bigraded.

In the rest of the paper, when there is no ambiguity, we use ai to refer to pi(X
(1)), �i(A

(1)) or 	{({1,...,n},1)} and bi to 
refer to pi(X

(2)), �i(A
(2)) or 	{({1,...,n},2)} . Notice that with this notation all the ai and the bi are primitive elements. We 

define the natural linear maps � : WSym(2) → NCSF(2) and ξ : WSym(2) → Sym(2) by �(	π) = �c(π) and ξ(	π) = pλ(π) . 
Notice that these maps are morphisms of Hopf algebras.

3.2. r-Bell polynomials and (commutative/noncommutative/word) symmetric functions

In Sym(2) and NCSF(2) , we define the operator ∂ as the unique derivation acting on the right and satisfying ai∂ = ai+1
and bi∂ = bi+1. In WSym(2) , we define ∂ as the operator acting linearly on the right by 1∂ = 0 and

	{[π1,i1],...,[πk,ik]}∂ =
k∑

j=1

	({[π1,i1],...,[πk,ik]}\[π j ,i j ])∪{[π j∪{n+1},i j ]}. (8)

In the three algebras, we define r-Bell polynomials in a similar way to Ebrahimi-Fard et al., who defined Munthe-Kaas poly-
nomials, that is by the use of the operator ∂ . More precisely, the polynomial Br

n+r,k+r is the coefficient of tk in ar
1(tb1 + ∂)n . 

In WSym(2) , from (5), we have

Br
n+r,k+r =

∑
π∈Sr

n+r,k+r

	π. (9)

Hence, using the maps � and ξ , we obtain

Br
n+r,k+r =

∑
π∈Sr

n+r,k+r

pλ(π) =
∑
λ

gr
n+r,k+r(λ)pλ (10)

in Sym(2) and

Br
n+r,k+r =

∑
π∈Sr

n+r,k+r

�λ(π) =
∑

I

f r
n+r,k+r(I)� I (11)

in NCSF(2) . Notice that in Sym(2) , Br
n+r,k+r is nothing but the classical r-Bell polynomial and in NCSF(2) , it is a r-version of 

the Munthe-Kaas polynomial [4,10].
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Example 1. In WSym(2) , we have

B2
4,3 = 	{({1,3},1),({2},1),({4},2)} + 	{({1,4},1),({2},1),({3},2)} + 	{({1},1),({2,3},1),({4},2)}

+ 	{({1},1),({2,4},1),({3},2)} + 	{({1},1),({2},1),({3,4},2)}.

In NCSF(2) , we have

B2
4,3 = 2�[(2,1),(1,1),(1,2)] + 2�[(1,1),(2,1),(1,2)] + �[(1,1),(1,1),(2,2)] = 2a2a1b2 + 2a1a2b1 + a1a1b2.

In Sym(2) , B2
4,3 = 4p{(2,1),(1,1),(1,2)} + p{(1,1),(1,1),(2,2)} = 4a2a1b2 + a1a1b2.

We consider also the polynomials B̃r
n+k+r,k+r = ar

1bk
1∂

n . Notice that in WSym(2) , we have

B̃r
n+k+r,k+r =

∑
{(π1,1),...,(πk+r ,1)}∈Sk+r

n+k+r,k+r
1∈π1,...,r∈πr

	{(π1,1),...,(πr ,1),(πr+1,2),...,(πr+k,2)}. (12)

4. Generating functions

We consider the following generating functions:

S(t, x, y) =
∑
n,r,k

Br
n+r,k+r

xn

n!
yr

r! tk = exp (a1 y) exp (x(tb1 + ∂)), (13)

S◦(t, x) = S(t, x,0) =
∑
n,k

Bn,k
xn

n! tk = 1.exp (x(tb1 + ∂)), (14)

S•(t, x, y) =
∑
n,r,k

B̃r
n+k+r,k+r

xn

n!
yr

r!
tk

k! = exp (a1 y) exp (tb1) exp (x∂), (15)

and

S∗(x, y) =
∑
n,r

Br
n+r,r

xn

n!
yr

r! = exp (yb1) exp (x∂). (16)

Theorem 4.1. The generating functions S(t, x, y) and S◦(t, x) satisfy the following factorization

S(t, x, y) = S•(xt, x, y)Z(x, t) and S◦(t, x) = S∗(x, xt)Z(x, t), (17)

where Z(x, t) = ∏
n�2 exp (xn ∑

k tkCn,k), Cn,k = (−1)n+1

n
1

k!(n−k−1)!adn−k−1
∂ adk

b1
∂ , and adx is the derivation adx P = [x, P ] = xP − P x. 

In Sym(2) and NCSF(2) the operator Cn,k is the multiplication by a primitive polynomial belonging to the subalgebra Rn,k.

Proof. Equalities (17) are obtained from (13) and (14) by using Zassenhaus formula [7]. In Sym(2) and NCSF(2) , since ∂ is a 
derivation, adi

∂ad j
b1

∂ is primitive. Furthermore, remarking that [bi, ∂] = bi+1, we prove that adi
∂ad j

b1
∂ ∈Rn,k . �

Example 2. In NCSF(2) , consider the coefficient of x3

3!
y2

2! t in the left equality of (17). In the left-hand side, we find B2
5,3 =

3a2a1b2
1 + 3a1a2b2

1 + 2a2
1b2b1 + a2

1b1b2. The same coefficient in the right-hand sides is 3B̃2
5,4 − 3B̃2

3,3C2,1 + 3!B̃2
2,2C3,2. Since 

B̃2
5,4 = a2a1b2

1 + a1a2b2
1 + a2

1b2b1 + a2
1b1b2, B̃2

3,3 = a2
1b1, B̃2

2,2 = a2
1, C2,1 = − 1

2 b2, and C3,2 = 1
3! [b1, b2], we check that 3B̃2

5,4 −
3B̃2

3,3C2,1 + 3!B̃2
2,2C3,2 = B2

5,3 as expected by Theorem 4.1.

In NCSF(2) , we compute explicitly the polynomial Cn,k

Cn,k = (−1)k

n

1

k!(n − k − 1)!
∑

i1,...,ik

(
n − k − 1

i1 − 1, . . . , ik−1 − 1, ik − 2

)
[bi1 , [bi2 , · · · , [bik−1 ,bik−1 ] · · · ]]. (18)

Example 3. Consider for instance the polynomial C5,2 in NCSF(2)
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C5,2 = − 1

48
ad4

∂ad2
b1

∂ = − 1

48
ad4

∂ [b1,b2]

= − 1

48
[[[[[b1,b2], ∂], ∂], ∂], ∂]

= − 1

48
(2[b3,b4] + 3[b2,b5] + [b1,b6])

= − 1

48
([b5,b2] + 4[b4,b3] + 6[b3,b4] + 4[b2,b5] + [b1,b6]).

Remark 1. If we set ai = bi for each i, then we have S•(t, x, y) = S∗(y + t, x), and so S(t, x, y) = S∗(y + xt, x)Z(x, t).

In Sym(2) , the series Z(x, t) has a nice closed form

Z(x, t) = exp

⎛
⎝−

∑
i�2

(i − 1)

i! bit
i

⎞
⎠. (19)

Indeed, since the algebra is commutative adi
∂ad j

b1
∂ is nonzero only if j = 1 and when j = 1 formula (18) gives [∂, bi] =

−bi+1.
As a consequence, using equality (19) together with Theorem 4.1 and Formula (3), we find

S•(xt, x, y) = exp

⎛
⎝∑

j�0

a j+1
x j

j! y

⎞
⎠ exp

⎛
⎝∑

j�1

jb j
x jt

j!

⎞
⎠ . (20)

In other words, equating the coefficients in the left- and the right-hand sides of (20), we find

B̃r
n+k+r,k+r =

(
n + k

n

)−1

Br
n+k+r,k+r(a1,a2, . . . ;b1,2b2,3b3, . . . ). (21)

In the case where r = 0, we obtain

B̃0
n+k,k(a1,a2, . . . ;b1, . . . ) = Bk

n+k,k(b1,b2, . . . ;b1,b2, . . . ) =
(

n + k

n

)−1

Bn+k,k(b1,2b2,3b3, . . . ). (22)
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