
C. R. Acad. Sci. Paris, Ser. I 355 (2017) 563–570
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Geometry/Algebra

The equivariant Riemann–Roch theorem and the graded Todd 

class

Le théorème de Riemann–Roch équivariant et la classe de Todd graduée

Michèle Vergne

Université Denis-Diderot–Paris-7, Institut de Mathématiques de Jussieu, C.P. 7012, 4 place Jussieu, Boite Courrier 247, 75252 Paris Cedex 05, 
France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 January 2017
Accepted 17 January 2017
Available online 18 April 2017

Presented by Michèle Vergne

Let G be a torus with Lie algebra g and let M be a G-Hamiltonian manifold with 
Kostant line bundle L and proper moment map. Let � ⊂ g∗ be the weight lattice 
of G . We consider a parameter k ≥ 1 and the multiplicity m(λ, k) of the quantized 
representation R RG (M, Lk). Define 〈�(k), f 〉 = ∑

λ∈� m(λ, k) f (λ/k) for f a test function 
on g∗. We prove that the distribution �(k) has an asymptotic development 〈�(k), f 〉 ∼
kdim M/2 ∑∞

n=0 k−n〈D Hn, f 〉 where the distributions D Hn are the twisted Duistermaat–
Heckman distributions associated with the graded equivariant Todd class of M . When M is 
compact, and f polynomial, the asymptotic series is finite and exact.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Soit G un tore d’algèbre de Lie g agissant de manière hamiltonienne sur une variété M . 
Soit L un fibré de Kostant tel que l’application moment associée soit propre. Soit 
� ⊂ g∗ le réseau des poids de G . On considère un paramètre k ≥ 1 et la multiplicité 
m(λ, k) de la représentation quantifiée R RG (M, Lk). On définit la distribution 〈�(k), f 〉 =∑

λ∈� m(λ, k) f (λ/k) pour f une fonction test sur g∗. La distribution �(k) admet un 
développement asymptotique 〈�(k), f 〉 ∼ kdim M/2 ∑∞

n=0 k−n〈D Hn, f 〉 où les distributions 
D Hn sont des distributions associées aux composantes homogènes de la classe de Todd 
équivariante de M . Lorsque M est compacte et f polynomiale, cette série est finie et exacte.

© 2017 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let G be a torus with Lie algebra g. Identify Ĝ to a lattice � of g∗ . If λ ∈ �, we denote by gλ the corresponding character 
of G . If g = exp(X) with X ∈ g, then gλ = ei〈λ,X〉 .
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Let M be a prequantizable G-Hamiltonian manifold with symplectic form �, Kostant line bundle L, and moment map 
� : M → g∗ . Assume M compact and of dimension 2d. The Riemann–Roch quantization R RG (M, L) is a virtual finite di-
mensional representation of G , constructed as the index of a Dolbeaut–Dirac operator on M . The dimension of the space 
R RG(M, L) will be called the Riemann–Roch number of (M, L). The character of the representation of R RG(M, L) is a 
function on G , denoted by R RG (M, L)(g). We write

R RG(M,L)(g) =
∑
λ∈�

mrep(λ)gλ.

The typical example is the case where M is a projective manifold, and L the corresponding ample bundle. Then

R RG(M,L)(g) =
d∑

i=0

(−1)iTrHi(M,O(L))(g)

is the alternate sum of the traces of the action of g in the cohomology spaces of L. In particular dim R RG(M, L) =∑d
i=0(−1)i dim Hi(M, O(L)) is given by the Riemann–Roch formula.

It is natural to introduce the kth power Lk of the line bundle L. Thus

R RG(M,Lk)(g) =
∑
λ∈�

mrep(λ,k)gλ.

Assume k ≥ 1. We associate with (M, L) the distribution on g∗ given by

〈�M(k), f 〉 =
∑
λ∈�

mrep(λ,k) f (λ/k)

where f is a test function.

Example. When M is a toric manifold associated with the Delzant polytope P , then dim R RG(M, L) is the number of 
integral points in the convex polytope P , and 1

kd 〈�M(k), f 〉 is the Riemann sum of the values of f on the sample points 
�
k ∩ P .

We prove that �M(k) has an asymptotic behavior when the integer k tends to ∞ of the form

�M(k) ∼ kd
∞∑

n=0

k−n D Hn

where D Hn are distributions on g∗ supported on �(M). We determine the distributions D Hn in terms of the decompo-
sition of the equivariant Todd class Todd(M) of M in its homogeneous components Toddn(M) in the graded equivariant 
cohomology ring of M . The distribution D H0 is the Duistermaat–Heckmann measure. The asymptotics are exact when f
is a polynomial. This generalizes the weighted Ehrhart polynomial for an integral polytope, and the asymptotic behavior of 
Riemann sums over convex integral polytopes established by Guillemin–Sternberg [8].

We then consider the case where M is a prequantizable G-Hamiltonian manifold, not necessarily compact, but with 
proper moment map � : M → g∗ . The formal quantization of (M, Lk) [19] is defined by

R RG(M,Lk)(g) =
∑
λ∈�

mgeo(λ,k)gλ.

Here mgeo(λ, k) is the geometric multiplicity function constructed by Guillemin–Sternberg in terms of the Riemann–Roch 
number of the reduced fiber Mλ = �−1(λ)/G of the moment map. When M is compact, Meinrenken–Sjamaar [10] proved 
that mrep(λ, k) = mgeo(λ, k), so this purely geometric definition extends the definition of R RG(M, Lk) given in terms of index 
theory when M is compact.

Similarly, we construct distributions D Hn on g∗ using the equivariant cohomology classes Toddn(M) and push-forwards 
by the proper map �. The main result of this announcement is that the distribution �M (k) defined by

〈�M(k), f 〉 =
∑
λ∈�

mgeo(λ,k) f (λ/k),

is asymptotic to kd ∑∞
n=0 k−n D Hn .

A similar result holds for Dirac operators twisted by powers of a line bundle Lk .
Recall that we introduced a truncated Todd class (of the cotangent bundle T ∗ M) for determining the multiplicities of 

the equivariant index of any transversally elliptic operator on M [17]. Here the use of the parameter k allows us to have 
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families of such equivariant indices, and the full series 
∑∞

n=0 Toddn(M) enters in the description of the asymptotic behavior. 
This is similar to the Euler—Maclaurin formula evaluating sums of the values of a function at integral points of an interval 
involving all Bernoulli numbers. We finally give some information on the piecewise polynomial behavior of the distributions 
D Hn .

2. Equivariant cohomology

Let N be a G-manifold and let A(N) be the space of differential forms on N , graded by its exterior degree. Following 
[3] and [20], an equivariant form is a G-invariant smooth function α : g → A(N), thus α(X) is a differential form on N
depending differentiably of X ∈ g. Consider the operator

dgα(X) = dα(X) − ι(v X )α(X) (2.1)

where ι(v X ) is the contraction by the vector field v X generated by the action of −X on N . Then dg is an odd operator 
with square 0, and the equivariant cohomology is defined to be the cohomology space of dg . It is important to note that 
the dependance of α on X may be C∞ . If the dependance of α in X is polynomial, we denote by H∗

G (N) the corresponding 
Z-graded algebra. By definition, the grading of P (X) ⊗ μ, P a homogeneous polynomial and μ a differential form on N , is 
the exterior degree of μ plus twice the polynomial degree in X .

The Hamiltonian structure on M determines the equivariant symplectic form �(X) = 〈�, X〉 + �.
Choose a G-invariant Riemannian metric on M . This provides the tangent bundle T M with the structure of a Hermitian 

vector bundle. Let J (A) = det
Cd

eA−1
A , an invariant function of A ∈ End(Cd). Then, J (0) = 1. Consider 1

J (A)
and its Taylor 

expansion at 0:

1

J (A)
= det

Cd
(

A

eA − 1
) =

∞∑
n=0

Bn(A).

Each function Bn(A) is an invariant polynomial of degree n on End(Cd) and by the Chern–Weil construction, Bn determines 
an equivariant characteristic class Toddn(M)(X) on M of homogeneous degree 2n. Remark that Todd0(M) = 1. We define 
the formal series of equivariant cohomology classes:

Todd(M)(X) =
∞∑

n=0

Toddn(M)(X).

For X small enough, the series is convergent, and Todd(M)(X) is the equivariant Todd class of M . In particular, Todd(M)(0)

is the usual Todd class of M .
In the rest of this note, using the Lebesgue measure dξ determined by the lattice �, we may identify distributions and 

generalized functions on g∗ , and we may write 〈θ, f 〉 = ∫
g∗ θ(ξ) f (ξ)dξ for the value of a distribution θ on a test function 

f on g∗ .

3. The compact case

Let M be a compact G-Hamiltonian manifold. Recall (see [2]) the “delocalized Riemann–Roch formula.” For X ∈ g suffi-
ciently small, we have

R RG(M,L)(exp X) = 1

(2iπ)d

∫
M

ei�(X)Todd(M)(X).

Here i = √−1.
For each integer n, consider the analytic function on g given by

θn(X) = 1

(2iπ)d

∫
M

ei�(X)Toddn(M)(X).

There is a remarkable relation between the Riemann–Roch character associated with Lk and the dilation X → X/k on g.

Lemma 3.1. When X ∈ g is sufficiently small, then for any k ≥ 1, one has

R RG(M,Lk)(exp(X/k)) =
∞∑

n=0

kd−nθn(X).
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Proof. When X ∈ g is small, then 
∑∞

n=0 Toddn(M)(X) is a convergent series with sum the equivariant Todd class. Thus we 
obtain

R RG(M,Lk)(exp(X/k)) =
∞∑

n=0

1

(2iπ)d

∫
M

eik�+ik�(X/k)Toddn(M)(X/k)

=
∑
n,m

1

(2iπ)d

∫
M

ei�(X) 1

m!km(i�)mToddn(M)(X/k).

For each m, only the term of differential degree 2d − 2m of Toddn(M) contributes to the integral, and this term is homoge-
neous in X of degree n + m − d. This implies the result. �

When n = 0,

θ0(X) = 1

(2iπ)d

∫
M

ei�(X)

is the equivariant volume of M , and the Fourier transform D H0 of θ0 is the Duistermaat–Heckmann measure of M , a piece-
wise polynomial measure on g∗ .

Theorem 3.2. Let D Hn be the Fourier transform of θn. Then D Hn is a distribution supported on �(M). For any polynomial function P
of degree N on g∗ , we have∑

λ∈�

mrep(λ)P (λ) =
∑

n≤N+d

∫
g∗

D Hn(ξ)P (ξ)dξ.

In particular, we have the following Euler—MacLaurin formula for the Riemann–Roch number of (M, L):

dim R RG(M,L) =
∑
λ∈�

mrep(λ) =
∫
g∗

∑
n≤d

D Hn(ξ)dξ.

We now give a theorem for smooth functions.

Theorem 3.3. When the integral parameter k tends to ∞, the distribution �M(k) admits the asymptotic expansion

�M(k) ∼ kd
∞∑

n=0

k−n D Hn.

Let us sketch the proof of Theorems 3.2 and 3.3. It is easy to see that the distributions D Hn are supported on the image 
�(M) of M by the moment map. Furthermore, it follows from the piecewise quasi-polynomial behavior of the function 
mrep(λ, k) that for P a homogeneous polynomial of degree N , the sum 

∑
λ∈� mrep(λ, k)P (λ) is a quasi-polynomial function 

of k ≥ 1 of degree less than or equal to N + d. Thus Theorem 3.2 will be a consequence of Theorem 3.3, which we now 
prove.

The Fourier transform of �M(k) is∑
λ∈�

mrep(λ,k)ei〈λ,X/k〉 = R RG(M,Lk)(exp(X/k)).

Against a test function φ of X , this is

1

(2iπ)d

∫
g

R RG(M,Lk)(exp(X/k))φ(X)dX .

For k large, and X in the support of φ, X/k is small, and we use Lemma 3.1.
Let us give an example of the asymptotic expansion.
Let P1(C) equipped with the torus action g([z1, z2]) = [gz1, z2] of g = eiθ , in homogeneous coordinates. We consider 

M = P1(C) × P1(C) with diagonal action, and let L be its Kostant line bundle. Then we have

R R(M,Lk)(g) =
∑

mrep( j,k)g j
j∈Z
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with

mrep( j,k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if j < −2k,

2k + 1 + j if − 2k ≤ j ≤ 0,

2k + 1 − j if 0 ≤ j ≤ 2k,

0 if j > 2k.

We have

�(k) ∼ k2(D H0 + 1

k
D H1 + 1

k2
D H2 + 1

k3
D H3 + · · ·).

Let us give the explicit formulae for D H0, D H1, D H2, D H3.

〈D H0, f 〉 =
2∫

−2

m(ξ) f (ξ)dξ

with

m(ξ) =
{

2 + ξ if − 2 ≤ ξ ≤ 0,

2 − ξ if 0 ≤ ξ ≤ 2,

〈D H1, f 〉 =
2∫

−2

f (ξ)dξ,

〈D H2, f 〉 = 5

12
f (−2) + 1

6
f (0) + 5

12
f (2),

〈D H3, f 〉 = − 1

12
f ′(−2) + 1

12
f ′(2).

We now sketch another proof of Theorem 3.3, which can be extended to the non-compact case. We use Paradan’s 
decomposition ([11,12], see also [18]) of R RG (M, L) in a sum of simpler characters supported on cones. Let us consider a 
generic value r of the moment map, and choose a scalar product on g∗ . Then there exists a certain finite subset B(r) of g∗ , 
and for each β ∈ B(r), a cone C(β) in g∗ and an (infinite dimensional) representation Pβ,k such that

R RG(M,Lk) =
∑

β∈B(r)

Pβ,k.

Here Pβ,k(g) = ∑
λ∈�∩kC(β) mrep,β (λ, k)gλ . Thus �(k) is decomposed in 

∑
β∈B(r) �β(k). Similarly, each distribution D Hn is 

decomposed as D Hn = ∑
β∈B(r) D Hn,β and the support of D Hn,β is contained in the cone Cβ . It is easily verified that, for 

each β , the distribution �β(k) is asymptotic to kd ∑∞
n=0 k−n D Hn,β . Here we use the explicit Euler—Maclaurin expansion on 

half lines, and convolutions of such distributions. The proof is entirely similar to that in the case of a polytope given in [4].
Let us return to the example of the case of M = P1(C) × P1(C), for r < 0 a small negative number. Then B(r) =

{−2, r, 0, 2}. We have

Pβ=−2,k(g) = −
∑

j<−2k

(2k + 1 + j)g j,

Pβ=r,k(g) =
j=∞∑

j=−∞
(2k + 1 + j)g j,

Pβ=0,k(g) = −2
∑
j>0

jg j,

Pβ=2,k(g) =
∑
j>2k

( j − (2k + 1))g j .

Consider, for example, the asymptotic development of the distribution

〈�β=2(k), f 〉 =
∑

( j − (2k + 1)) f ( j/k).
j>2k
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It is easy to see that this distribution is the convolution K (k) ∗ K (k) where K (k) is the distribution defined by 〈K (k), f 〉 =∑
j>k f ( j/k) = ∑

j≥k f ( j/k) − f (1). We then use the explicit exact Euler—Maclaurin formula to evaluate the distribution 

K (k), thus its convolution. In particular, the Fourier transform of K (k) ∗ K (k) coincides with the analytic function e2ix

(1−e−ix/k)2

for (1 − e−ix/k) �= 0. As is natural, the asymptotic series of distributions q−d ∑∞
n=0 qn D Hβ=2,n is the unique series of distri-

butions supported on ξ ≥ 2 and with Fourier transform, for x �= 0, the Laurent series in q of e2ix

(1−e−iqx)2 at q = 0.

4. Proper moment maps

Consider the case where M is non-necessarily compact, but � : M → g∗ is a proper map. One can then define [19,13]
the formal geometric quantification of M with respect to the line bundle Lk to be

R RG,geo(M,Lk)(g) =
∑
λ∈�

mgeo(λ,k)gλ,

using a function mgeo(ξ) on g∗ . The definition of the function mgeo(ξ) is due to Guillemin–Sternberg [7]. Let us recall 
its delicate definition ([10], see also [16]). There is a closed set A, union of affine hyperplanes, such that if r is in the 
complement of A, then either r is not in �(M) or r is a regular value of �. Consider the open subset g∗

reg = g∗ \A. When 
ξ ∈ g∗

reg but not in �(M), mgeo(ξ) is defined to be 0. If ξ ∈ g∗
reg ∩ �(M), the reduced fiber Mξ = �−1(ξ)/G is a compact 

symplectic orbifold, and mgeo(ξ) is defined to be a sum of integrals on the various strata of the compact orbifold Mξ . When 
λ ∈ g∗

reg ∩ � ∩ �(M), then Mλ is a prequantizable compact symplectic orbifold and mgeo(λ) is the Riemann–Roch number 
of Mλ equipped with its Kostant orbifold line bundle. Let λ ∈ � be any point in �(M). Choose a vector ε such that λ + tε
is in �(M) ∩ g∗

reg for any t > 0 and sufficiently small. It can be proved, using the wall crossing formulae of Paradan [15], 
that (limε mgeo)(λ) = limt>0,t→0 mgeo(λ + tε) is independent of the choice of such an ε . This allows us to define mgeo(λ) by 
“continuity on �(M)” for any λ ∈ �.

The [Q , R] = 0 theorem [10,9,14] asserts that R RG,geo(M, L) coincides with a representation of G defined using index 
theory. In particular, R RG,geo(M, L) coincides with R RG (M, L) when M is compact. However, in the rest of this note, we 
only use the geometric definition of R RG,geo(M, L).

Replacing L by Lk , and the moment map � by k�, define the distribution, with parameter k,

〈�M(k), f 〉 =
∑
λ∈�

mgeo(λ,k) f (λ/k).

As in the compact case, the asymptotic behavior of �M(k) is determined by the graded Todd class, using push-forwards 
by the proper map �. Indeed if α is an equivariant cohomology class with polynomial coefficients, then the Duistermaat–
Heckman twisted distribution D H(M, �, α) is well defined by the formula

〈D H(M,�,α), f 〉 = 1

(2iπ)d

∫
M×g

ei�(X)α(X) f̂ (X)dX

where f̂ (X) = ∫
g∗ ei〈ξ,X〉 f (ξ)dξ is the Fourier transform of the test function f (ξ) (see [6]). It is a distribution supported on 

�(M).

Definition 4.1. We define D Hn to be the distribution on g∗ associated with the equivariant cohomology class Toddn(M):

〈D Hn, f 〉 = 1

(2iπ)d

∫
M×g

ei�(X)Toddn(M)(X) f̂ (X)dX .

The distribution D H0 is the Duistermaat–Heckman measure, a locally polynomial function.
The distribution D Hn is given by a polynomial function on each connected component of the open set g∗

reg. Its restriction 
to g∗

reg vanishes when n > d − dim G . Furthermore, if all stabilizers of points of M are connected, it follows from Witten 
non-Abelian localization theorem that

mgeo(λ,k) = kd
∞∑

n=0

k−n D Hn(λ/k)

when λ/k is a regular value of �. Otherwise, it can be defined by the limit of the function mgeo(ξ, k) = kd ∑∞
n=0 k−n D Hn(ξ/k)

along ξ = λ + tελ and t > 0, t → 0, where the direction ελ is chosen to be arbitrary if λ does not belong to k�(M), or in 
such a way that λ + tελ stays in k�(M) if λ ∈ k�(M). Similar formulae can be given without assumption on connected 
stabilizers.

We can see that, for any n, the distributions D Hn can be expressed (but not uniquely) as derivatives of locally polynomial 
functions associated with symplectic submanifolds MT where T are subtori of G .
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The main result of this note is the following theorem.

Theorem 4.2. When the integer k tends to ∞,

�M(k) ∼ kd
∞∑

n=0

k−n D Hn.

Let us sketch the proof of this theorem, in the case where each stabilizer is connected. We use Paradan’s decomposition 
formula [12,11]. We choose r a generic element of g∗

reg. As in the compact case, there is a locally finite set B(r) ⊂ �(M), 
cones Cβ , and decompositions

D Hn =
∑

β∈B(r)

D Hn,β

where D Hn,β are supported on Cβ . The functions D Hn,β are given by polynomial functions on each connected component 
of g∗

reg and vanishes on g∗
reg when n > d − dim G . Thus the locally polynomial function Aβ(ξ, k) = kd ∑∞

n=0 k−n D Hn,β(ξ/k) is 
well defined when ξ/k ∈ g∗

reg. For each β ∈ B(r), choose a direction εβ such that β + tεβ is in �(M) ∩ g∗
reg for t > 0 small. 

Then wβ(λ, k) = limt>0,t→0 Aβ(λ + tεβ, k) is well defined. Define

Pβ,k(g) =
∑
λ∈�

wβ(λ,k)gλ

and

〈�β,geo(k), f 〉 =
∑
λ∈�

wβ(λ,k) f (λ/k).

As before, it is easy to see that �β,geo(k) ∼ kd ∑∞
n=0 k−n D Hn,β . Here we use the following “continuity” result on partition 

function (see for example [5]). Let � be a unimodular list of non-zero vectors in �, and γ ∈ g generic. There is a unique 
function K (the Kostant partition function) on � supported on the half space 〈ξ, γ 〉 ≥ 0 and such that 

∑
λ∈� K (λ)gλ =∏

α∈�
1

1−gα for g in the open set 
∏

α∈�(1 − gα) �= 0. Let d = |�|. Consider the Laurent series expansion in q

∏
α∈�

1

1 − eq〈α,X〉 = q−d
∞∑

n=0

qnUn(X)

and the distributions Dn on g∗ supported on the half space 〈ξ, γ 〉 ≥ 0, such that∫
g∗

Dn(ξ)ei〈ξ,X〉 = Un(X)

when 
∏

α 〈α, X〉 �= 0. Define T (ξ) = ∑∞
n=0 Dn(ξ), which is well defined outside a system of hyperplanes. Then for any λ ∈ �, 

and ε� generic and belonging to the cone Cone(�) generated by �, we have K (λ) = limt>0,t→0 T (λ + tε�).
Define Pr,k = ∑

β∈B(r) Pβ,k . It remains to see that Pr,k = R RG,geo(M, Lk). This is not immediate, since we do not have 
a global representation theoretic object for describing R RG,geo(M, Lk). Each coefficient mgeo(λ, k) is defined using a limit 
direction depending on λ, while each wβ(λ, k) is defined using the same limit direction (depending on β) for any λ. 
So additivity is not clear. However, we can prove that Pr,k is independent of r, using [15]. This is very similar to the 
technique used in [1] to establish decompositions à la Paradan of characteristic functions of polyhedra. It then follows 
that Pr,k = R RG,geo(M, Lk). Indeed for each connected component c of g∗

reg contained in �(M), we choose r in c. In the 
decomposition Pr,k = ∑

β∈B(r) Pβ,k , the term wβ(λ, k) for β = r ∈ B(r) is the polynomial function coinciding with mgeo(λ, k)

for λ ∈ kc. The other terms wβ(λ, k) for β ∈ B(r) and β �= r vanishes when λ ∈ kc ([12], see also [18]).
A quicker route, but less instructive, for determining asymptotics of �M,geo would be to take a test function with small 

support around a point r ∈ g∗ . Then we can choose ελ coinciding with εβ for all β ∈ B(r) and in the support of the test 
function f . The additivity is immediate on those β .
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