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Let {∞+, ∞−} be the two points above ∞ on the real hyperelliptic curve H : y2 =
(x2 − 1) 

∏2g
i=1(x − ai). We show that the divisor ([∞+] − [∞−]) is torsion in Jac J for a 

dense set of (a1, a2, . . . , a2g) ∈ (−1, 1)2g . In fact, we prove by degeneration to a nodal P1

that an associated period map has derivative generically of full rank.
© 2016 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Soient {∞+, ∞−} les deux points de la courbe hyperelliptique réelle H : y2 =
(x2 − 1) 

∏2g
i=1(x − ai) au-dessus du point ∞ de P1. On montre que le diviseur ([∞+] −

[∞−]) est de torsion dans Jac J pour un ensemble dense de (a1, a2, . . . , a2g) ∈ (−1, 1)2g . 
En fait, on démontre par réduction à un P1 avec des points doubles que la dérivée d’un 
morphisme de périodes est génériquement surjectif.

© 2016 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Our goal is to prove a density result, suggested by Jean-Pierre Serre, relating to the question of when a certain divisor 
on a real hyperelliptic curve is a torsion divisor. The key difficulty is to show that a certain Jacobian derivative, relating to 
integrals on the curve, generically has full rank. It would suffice to show that the Jacobian has full rank for even a single 
curve in the family. We degenerate the curve to a P1 with nodes, and perform the calculation there.

The question about real hyperelliptic curves arises from the study of Chebyshev-like polynomials for unions of intervals 
on the real line. For the connection between Chebyshev polynomials and integrals on hyperelliptic curves, see Chapter 2 
of [1]. Our result guarantees the existence of hyperelliptic curves with certain periods rational, which can be used to define 
Chebyshev polynomials, as in Theorem 2.1 of [1]. As Serre points out, this result can also be used to complete a difficult 
passage in a paper by Robinson [2]: the claim at the end of §4 that one can “vary the intervals a little” so that “the heights 
of the corresponding slits [are] rational multiples of π” is in fact equivalent to this density result for hyperelliptic curves.
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2. The setup

Fix a positive integer g and let U denote the set of 2g-tuples a = (a1, a2, . . . , a2g) of real numbers satisfying −1 < a1 <

· · · < a2g < 1. For any a ∈ U the curve Pa in P2 given by

y2 = f (x) := (x2 − 1)
∏

i

(x − ai)

has one point ∞ at infinity, at which it is singular; call its normalization Ha . This is a real algebraic curve; it has two points 
lying over ∞, both defined over R, and distinguished by the sign of y

xg+1 . Call them ∞+ and ∞− . We say that a (or Ha) is 
of torsion type if the image of the divisor

[∞+] − [∞−]
in Jac Ha is torsion. (This condition is independent of base field and can be checked after base change to C.)

Our goal is to prove the following theorem. (The problem, as well as the method of proof, was suggested in a lecture by 
Serre at Leiden in November 2015.)

Theorem 2.1. The set of elements a ∈U of torsion type is dense in U .

Recall that we can detect whether a is of torsion type by integrating differentials on Ha , as follows.
The global differentials on Ha (i.e. the global sections of �Ha/R) form a real vector space � of dimension g , whose 

complexification is the isomorphic to the cotangent space of the Jac(Ha)C . Explicitly, the global differentials are of the form

p(x)dx

y
,

with p a polynomial of degree at most g − 1. Suppose

ωi = pi(x)dx

y
,

for 1 ≤ i ≤ g , form a basis B for this vector space. (We will make an explicit choice of ωi , including the implicit choice of 
square root, later.) Then we can compute the matrix of real periods M of Ha with respect to B, whose (i, j)-th entry is

2

a2 j∫
a2 j−1

ωi .

Here i and j each range from 1 to g . (We may write MB(a) to emphasize the dependence of M on a and B.)
The Jacobian of the base change of Ha to C is a complex torus, which is naturally the quotient of the complexification 

�C by a rank-2g integral lattice �. This � contains the rank-g sublattice �R generated (after choice of basis B) by the 
columns of M; it follows that �R is exactly the intersection of � with the real subspace �.

The coordinates of (a lift of) the divisor [∞+] − [∞−] in this torus are given by the following g integrals:

vi = 2

∞∫
1

ωi .

Let v denote the vector of the vi ’s. Note that v in fact lies in the real subspace �. (Again, we may write vB(a).)
Now a is of torsion type if and only if some nonzero integral multiple of v lies in the lattice �, or equivalently in �R . 

Hence we have the following characterization of a of torsion type.

Lemma 2.2. Suppose given some a ∈ U , and make an arbitrary choice of basis B for �. Then a is of torsion type if and only if the vector 
M−1

B (a)vB(a) has all its components rational.

We remark in passing that, while M and v both depend on the choice of basis B, the product M−1 v appearing in the 
lemma above does not. By a slight abuse of notation, we will use M−1 v to denote this function

M−1 v : U → Rg,

without reference to B.
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3. Expanding U

Let U ′ denote the set of tuples (a1, a2, . . . , a2g+2) of real numbers such that

−1 < min(a1,a2) ≤ max(a1,a2) < min(a3,a4) ≤ · · · ≤ max(a2g−1,a2g) < 1;
we equip U ′ with the real analytic structure induced from R2g . Then U is naturally a subset of U ′ .

We wish to extend M and v to functions on U ′ . As before, we will choose a basis B of the relevant space of differentials; 
write the basis elements as

ωi = pi(x)dx√
f (x)

,

with each pi a polynomial of degree at most g − 1. (The choice of square root will be specified below.) We will define M
and v with respect to B.

The definition of M is problematic, since the endpoints of the integral

2

a2 j∫
a2 j−1

ωi

could coincide. However this integral, where defined, is equal to a path integral in the complex plane∫
γ j

ωi,

where γ j is a loop that goes around the two roots a2 j and a2 j+1. We now make this idea precise.
In order to choose a square root 

√
f (x), we make g + 2 branch cuts in the complex plane. First, cut along the inter-

vals (−∞, −1] and [1, ∞) of the real line. This is exactly the locus where (x2 − 1) is positive real; away from this locus 
we may specify a square root 

√
x2 − 1 by requiring that its imaginary part be positive. Similarly, each quadratic factor 

(x − a2 j−1)(x − a2 j) has a holomorphic square root on the complement of the line segment joining a2 j−1 to a2 j ; we choose 
the square root to be positive real for real x outside the interval removed. (If the two roots a2 j−1 and a2 j coincide we merely 
puncture the plane at this point.) The condition on the real parts of the roots implies that the branch cuts are disjoint. Away 
from these branch cuts we have specified a choice of square root of f .

We define the paths γ j as follows, for 1 ≤ j ≤ g . Each γ j will be a loop that goes once counterclockwise around the 
branch cut from a2 j to a2 j+1. Precisely, one may take γ j to be a rectangle; its left-hand side is between max(a2 j−3, a2 j−2)

and min(a2 j−1, a2 j), and its right-hand side between max(a2 j−1, a2 j) and min(a2 j+1, a2 j+2). (When j = 1 the left-hand 
side should be between a1 = −1 and min(a1, a2); and similarly for the right-hand side when j = g .) The lower and upper 
edges of the rectangle lie in the lower and upper half-planes, respectively. We also take the lower and upper edges to be 
symmetric about the real axis; this shows that the periods are real.

We define the matrix of periods to be the matrix with entries

Mij =
∫
γ j

ωi,

where i and j each range from 1 to g .
First, we verify that this matrix M is invertible. When the roots ai are distinct, this is a consequence of the Hodge 

decomposition, applied to our hyperelliptic curve. In the general case, our condition on the roots ai implies that f has at 
most double roots; suppose there are k double roots, and 2g + 2 − 2k single roots. In this case we again take Pa to be 
the projectivized plane curve y2 = f (x), which has a singular point ∞ at its single intersection with the line at infinity in 
the projective plane. We construct Ha to be a “desigularization of Pa at ∞”: our Ha is a cover of Pa such that the map 
Ha → Pa is an isomorphism away from ∞. We adjoin y/xg+1 to the coordinate ring of Pa in affine neighborhoods of ∞. 
The resulting curve Ha has again points ∞± lying over ∞, and is smooth at those two points; but Ha retains the k singular 
points of Pa in the finite part of the projective plane. Let C be the normalization of Ha . This C is a curve of genus g − k, 
and Ha is obtained from C by glueing k pairs of complex-conjugate points. The vector space � of real global differentials 
on Ha fits in an exact sequence

0 → �1
C → � → Vk → 0,

where V is a k-dimensional vector space over R, and �1
C denotes the matrix of real global differentials on C . The map 

� → V is the residue map. Specifically, each singular point x of Ha has two preimages x1 and x2 in C ; a global differential 
on Ha pulls back to a differential on C with at most simple poles at x1 and x2, and opposite residues at these two poles. 
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For each of the k singular points x1, x2, . . . , xk , we choose one of its two preimages; the residues at these k points give the 
map from � to V .

We may check invertibility of the period matrix with respect to any basis for �. Let us choose a basis containing g − k
elements ωk+1, ωk+2, . . . , ωg of �(�1

C ), and then an additional k differentials ω1, ω2, . . . , ωk such that the pullback of ωi
to C has nonzero residue around the preimages of Pi , but zero residue around the preimages of P j for j �= i. Furthermore, 
permute the indices of the loops γ j so that γ1, γ2, . . . , γk are the loops around the singular points.

Then for 1 ≤ j ≤ k, the loop γ j lifts to a trivial loop on C that goes around one of the preimages of Pi . So, if i > k then 
we have

Mij =
∫
γ j

ωi = 0.

In other words, the matrix M is upper-triangular in this basis, so its determinant depends only on the two diagonal blocks.
The block 1 ≤ i, j ≤ k is diagonal with diagonal entries nonzero (given by the residue of ωi around a preimage of Pi ). The 

other block has nonzero determinant by the Hodge decomposition applied to the curve C . Hence, the matrix M is invertible.
The definition of v via

vi = 2

∞∫
1

ωi

remains valid on U ′ since f cannot vanish at any x > 1.
Next we show that M and v are real-analytic as functions on U ′ , taking for B the standard basis{

xidx√
f (x)

}
.

The integral defining v can be replaced with a contour integral in the complex plane. Keeping our previous branch cuts, 
integrate along a path γ that starts from infinity in the lower half-plane, passes just to the left of 1, say through 1 − ε , and 
goes back to infinity through the upper half-plane. To avoid integrating along a path that goes to infinity, we perform the 
change of variables z = 1/x. (Assume γ was chosen not to pass through 0.) Call γ0 the corresponding path in the z-plane. 
Now the two endpoints of γ0 coincide at 0, but in fact the integrand has different values at the two endpoints since the 
points are on different branches of our double cover of P1; to deal with this, split the path γ0 into paths γ1 (from 0 to 
1/(1 − ε), through the lower half-plane) and γ2 (from 1/(1 − ε) to 0, through the upper half-plane). Since

xidx√
f (x)

is a holomorphic global differential on a double cover of P1, we may write it as

ge(z)dz,

with ge holomorphic on a neighborhood of γe , for e equal to 1 or 2. Also, each ge is holomorphic in the coefficients of f . 
The analyticity of v (and of M) now follows from the following well-known lemma.

Lemma 3.1. Let γ be a piecewise-differentiable path in C, and let U be an open set containing γ . Suppose we have an open set D ⊆Cn

and a holomorphic function h on D × U . Then

H(z1, z2, . . . , zn) =
∫
γ

h(z1, z2, . . . , zn, w)dw

is holomorphic on D.

Proof. By Osgood’s lemma, it is enough to check that H is holomorphic in the variables zi taken one at a time, so we may 
suppose n = 1 and write z for z1. By Morera’s theorem, it is enough to show that∫

γ ′
H(z)dz = 0

over any loop γ ′ whose interior is contained in D . But this follows from the holomorphy of h, since Fubini’s theorem allows 
one to interchange the order of integration. �



B. Lawrence / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 1219–1224 1223
We apply the lemma to our situation as follows. Fix real numbers a(0)
i , and a path γ , as in the discussion preceding the 

lemma. We will apply the lemma to the integral∫
γ

x j dx√
(x2 − 1)

∏2g
i=1(x − ai)

,

where we make a choice of square root as discussed above. In the lemma we take n = 2g with zi = ai , and

h(a1, . . . ,a2g, x) = x j√
(x2 − 1)

∏2g
i=1(x − ai)

.

We will take D a neighborhood of (a(0)
1 , . . . , a(0)

2g ) in Cn , and U a neighborhood of γ in C, such that h remains holomorphic 
on D × U (to which our choice of square root extends).

The lemma shows that our integral is holomorphic in the variables ai in a neighborhood of an arbitrary (a(0)
1 , . . . , a(0)

2g ) ∈
U ′; if we restrict ai to real values, the integral remains real-analytic, as desired.

We have now extended M and v to U ′ . As before we find that the product M−1 v is independent of B and gives a 
real-analytic map from U ′ to Rg , which agrees with the function already constructed on U .

4. An infinitesimal criterion

(Serre gave this argument in his lecture.)
We wish to show that the preimage of Qg under M−1 v is dense. Since U ′ is open in R2g , we may consider the Jacobian 

of M−1 v . (Here “Jacobian” is used in the sense of “matrix of first partial derivatives,” not “Picard scheme.”)

Lemma 4.1. If there is a point A0 ∈ U ′ at which the Jacobian of M−1v is surjective, then the preimage of Qg is dense in U ′.

Proof. Let S denote the closure of the preimage under M−1 v of Qg . We must show S = U ′ .
First of all, if A ∈ U ′ is any point at which the Jacobian of M−1 v is surjective, then by the implicit function theorem 

A ∈ S .
But M−1 v is a real-analytic function on the connected set U ′ . The rank of the Jacobian is lower semicontinuous for the 

analytic Zariski topology, which is to say that the Jacobian has rank g away from a proper analytic subset of U . Hence, 
S contains the complement of a proper analytic subset of U ′ . But S is closed for the classical topology, hence S = U ′ . �

We remark in passing that the lemma holds true with Qg replaced with any dense subset X ⊆ Rg . For example, one 
could take for X the set of all rational numbers with denominator in any infinite set S of positive integers. The proof is the 
same.

Now we have reduced the problem to finding a single A where the Jacobian has rank g .

5. A calculation on PPP1

Choose real numbers

−1 < b1 < b2 < · · · < bg < 1

and set

f (x) = (x2 − 1)
∏

i

(x − bi)
2.

This f comes from a ∈ U ′ with

a2i−1 = a2i = bi .

Let V ⊆ U ′ denote the g-dimensional set of f which arise in this way.
Geometrically, our hyperelliptic curve has degenerated to a P1 with g nodes. The global differentials have become differ-

entials with poles on P1; their integrals turn out to be trigonometric functions.
The space of differentials is now the set of all

p(x)dx[∏
(x − b )

]√
x2 − 1

,

i i
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as p ranges over polynomials of degree at most g − 1. Recall that the combination M−1 v is independent of our choice of 
basis B. By partial fractions, we can choose for B the differentials

ωi = dx

(x − bi)
√

x2 − 1
.

First we compute the “period matrix.” The differential ωi is meromorphic away from −1 and 1, with a pole only at bi . 
So, integrating along γ j for j �= i gives zero; while∫

γi

ωi = 2π√
1 − b2

i

by the residue theorem. Hence, M is the diagonal matrix with entries

2π√
1 − b2

i

along the diagonal.
Next we need to compute the integrals

vi = 2

∞∫
1

dx

(x − bi)
√

x2 − 1
.

The substitution t = x − √
x2 − 1 transforms the integral to

vi =
1∫

0

4 dt

(t2 − 2bit + 1)
,

which evaluates to

vi = 2 arccos(−bi)√
1 − b2

i

.

Hence, M−1 v is the vector with i-th entry equal to

arccos(−bi)

π
.

It follows that the Jacobian of the restriction of M−1 v to V has full rank g at every point in V . The result follows.
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