Algebraic geometry/Differential geometry

Residue formula for Morita-Futaki-Bott invariant on orbifolds ${ }^{\text {NT}}$

Une formule résiduelle pour l'invariant de Morita-Futaki-Bott sur une orbifold

Maurício Corrêa ${ }^{\text {a }}$, Miguel Rodríguez ${ }^{\text {b }}$
${ }^{\text {a }}$ Dep. Matemática ICEx, UFMG, Campus Pampulha, 31270-901 Belo Horizonte, Brazil
b Dep. Matemática, UFSJ, Praça Frei Orlando, 170, Centro, 36307-352 São João Del Rei, MG, Brazil

A R T I C L E IN F O

Article history:

Received 9 June 2016
Accepted after revision 7 October 2016
Available online 17 October 2016
Presented by Claire Voisin

Abstract

In this work, we prove a residue formula for the Morita-Futaki-Bott invariant with respect to any holomorphic vector field, with isolated (possibly degenerated) singularities in terms of Grothendieck's residues.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

On obtient, en utilisant les résidus de Grothendieck, une formule résiduelle pour l'invariant de Morita-Futaki-Bott par rapport à un champ de vecteurs holomorphes avec singularités isolées, dégénérées ou non.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

Let X be a compact complex orbifold of dimension n. That is, X is a complex space endowed with the following property: each point $p \in X$ possesses a neighborhood, which is the quotient \widetilde{U} / G_{p}, where \widetilde{U} is a complex manifold, say of dimension n, and G_{p} is a properly discontinuous finite group of automorphisms of \widetilde{U}, so that locally we have a quotient map $(\widetilde{U}, \tilde{p}) \xrightarrow{\pi_{p}}\left(\widetilde{U} / G_{p}, p\right)$. See [1].

Let $\eta(X)$ be the complex Lie algebra of all holomorphic vector fields of X. Choose any Hermitian metric h on X and let ∇ and Θ be the Hermitian connection and the curvature form with respect to h, respectively. Let ξ be a global holomorphic vector field on X and consider the operator

$$
L(\xi):=[\xi, \cdot]-\nabla_{\xi}(\cdot): T^{1,0} X \longrightarrow T^{1,0} X
$$

[^0]Let ϕ be an invariant polynomial of degree $n+k$; the Futaki-Morita integral invariant is defined by

$$
f_{\phi}(\xi)=\int_{X} \bar{\phi}(\underbrace{L(\xi), \ldots, L(\xi)}_{k \text { times }}, \underbrace{\frac{\mathrm{i}}{2 \pi} \Theta, \ldots, \frac{\mathrm{i}}{2 \pi} \Theta}_{n \text { times }})
$$

where $\bar{\phi}$ denotes the polarization of ϕ. Morita and Futaki proved in [6] that the definition of $f_{\phi}(\xi)$ does not depend on the choice of the Hermitian metric h. It is well known that the Futaki-Morita integral invariant can be calculated via a Bott-type residue formula for non-degenerated holomorphic vector fields, see [5-7] and [4] in the orbifold case. In this work, we prove a residue formula for holomorphic vector fields with isolated and possibly degenerated singularities in terms of Grothendieck's residues (see [8, Chapter 5]).

Theorem 1. Let $\xi \in \eta(X)$ a holomorphic vector field with only isolated singularities, then

$$
\binom{n+k}{n} f_{\phi}(\xi)=(-1)^{k} \sum_{p \in \operatorname{Sing}(\xi)} \frac{1}{\# G_{p}} \operatorname{Res}_{\tilde{p}}\left\{\frac{\phi(J \tilde{\xi}) \mathrm{d} \tilde{z}_{1} \wedge \cdots \wedge \mathrm{~d} \tilde{z}_{n}}{\tilde{\xi}_{1} \ldots \tilde{\xi}_{n}}\right\}
$$

where, given p such that $\xi(p)=0$ and $(\widetilde{U}, \tilde{p}) \xrightarrow{\pi_{p}}\left(\widetilde{U} / G_{p}, p\right)$ denotes the projection: $\tilde{\xi}=\pi_{p}^{*} \xi, J \tilde{\xi}=\left(\frac{\partial \tilde{\xi}_{i}}{\partial \tilde{z}_{j}}\right)_{1 \leq i, j \leq n}$ and $\operatorname{Res}_{\tilde{p}}\left\{\frac{\phi(J \tilde{\xi}) \mathrm{d} \tilde{z}_{1} \wedge \cdots \wedge \mathrm{~d} \tilde{z}_{n}}{\tilde{\xi}_{1} \ldots \tilde{\xi}_{n}}\right\}$ is Grothendieck's point residue and $\left(\tilde{z}_{1}, \ldots, \tilde{z}_{n}\right)$ is a germ of the coordinate system on $(\widetilde{U}, \tilde{p})$.

We note that such residue can be calculated using Hilbert's Nullstellensatz and Martinelli's integral formula. In fact, if $\tilde{z}_{i}^{a_{i}}=\sum_{j=1}^{n} b_{i j} \tilde{\xi}_{j}$, then (see [11])

$$
\begin{equation*}
\operatorname{Res}_{\tilde{p}}\left\{\frac{\phi(J \tilde{\xi}) \mathrm{d} \tilde{z}_{1} \wedge \cdots \wedge \mathrm{~d} \tilde{z}_{n}}{\tilde{\xi}_{1} \ldots \tilde{\xi}_{n}}\right\}=\frac{1}{\prod_{i=1}^{n}\left(a_{i}-1\right)!}\left(\frac{\partial^{n}}{\partial \tilde{z}_{1}^{a_{1}}, \ldots, \tilde{z}_{n}^{a_{n}}}\left(\operatorname{Det}\left(b_{i j}\right) \phi(J \tilde{\xi})\right)\right)(\tilde{p}) \tag{1}
\end{equation*}
$$

Moreover, note that if $p \in \operatorname{Sing}(\xi)$ is a non-degenerated singularity of ξ, then

$$
\operatorname{Res}_{\tilde{p}}\left\{\frac{\phi(J \tilde{\xi}) \mathrm{d} \tilde{z}_{1} \wedge \cdots \wedge \mathrm{~d} \tilde{z}_{n}}{\tilde{\xi}_{1} \ldots \tilde{\xi}_{n}}\right\}=\frac{\phi(J \tilde{\xi}(\tilde{p}))}{\operatorname{Det}(J \tilde{\xi}(\tilde{p}))}
$$

Theorem 1 allows us to calculate the Morita-Futaki invariant for holomorphic vector fields with possible degenerated singularities. For instance, in a recent work [9], the Futaki-Bott residue for vector fields with degenerated singularities, on the blowup of Kähler surfaces, was calculated by Li and Shi. Compare the equation (1) with Lemma 3.6 of [9].

Futaki showed in [5] that if X admits a Kähler-Einstein metric, then $f_{C_{1}^{n+1}} \equiv 0$, where $C_{1}=\operatorname{Tr}$ denotes the trace, i.e., the first elementary symmetric polynomial. Taking $\phi=C_{1}^{n+1}=T r^{n+1}$, we obtain the following corollary of Theorem 1 .

Corollary 2. Let $\xi \in \eta(X)$ with only isolated singularities, then

$$
f_{C_{1}^{n+1}}(\xi)=\frac{-1}{(n+1)^{2}} \sum_{p \in \operatorname{Sing}(\xi)} \frac{1}{\# G_{p}} \operatorname{Res}_{\tilde{p}}\left\{\frac{\operatorname{Tr}^{n+1}(J \tilde{\xi}) \mathrm{d} \tilde{z}_{1} \wedge \cdots \wedge \mathrm{~d} \tilde{z}_{n}}{\tilde{\xi}_{1} \ldots \tilde{\xi}_{n}}\right\}
$$

This result generalizes the Proposition 1.2 of [4]. It is well known that projective planes are Kähler-Einstein. However, the non-existence of Kähler-Einstein metrics on singular weighted projective planes was shown in previous works; see, for example, [12]. As an application of Theorem 1, we will give, in Section 1, a new proof of this fact.

1. Non-existence of Kähler-Einstein metric on weighted projective planes

Here we consider weighted complex projective planes with only isolated singularities, which we briefly recall.
Let w_{0}, w_{1}, w_{2} be positive integers two by two co-primes, set $w:=\left(w_{0}, w_{1}, w_{2}\right)$ and $|w|:=w_{0}+w_{1}+w_{2}$. Define an action of \mathbb{C}^{*} in $\mathbb{C}^{3} \backslash\{0\}$ by

$$
\begin{array}{cc}
\mathbb{C}^{*} \times \mathbb{C}^{3} \backslash\{0\} & \longrightarrow \\
\lambda \cdot\left(z_{0}, z_{1}, z_{2}\right) & \mathbb{C}^{3} \backslash\{0\} \\
\left.\lambda^{w_{0}} z_{0}, \lambda^{w_{1}} z_{1}, \lambda^{w_{2}} z_{2}\right)
\end{array}
$$

and let $\mathbb{P}_{w}^{2}:=\mathbb{C}^{3} \backslash\{0\} / \sim$. The weights are chosen to be pairwise co-primes in order to assure a finite number of singularities and to give \mathbb{P}_{w}^{2} the structure of an effective, Abelian, compact orbifold of dimension 2 . The singular locus is:

$$
\operatorname{Sing}\left(\mathbb{P}_{w}^{2}\right)=\left\{[1: 0: 0]_{\omega},[0: 1: 0]_{\omega},[0: 0: 1]_{\omega}\right\}
$$

We have the canonical projection

$$
\begin{aligned}
& \pi: \mathbb{C}^{3} \backslash\{0\} \longrightarrow \\
& \mathbb{P}_{w}^{2} \\
&\left(z_{0}, z_{1}, z_{2}\right) \longmapsto\left[z_{0}^{w_{0}}: z_{1}^{w_{1}}: z_{2}^{w_{2}}\right]_{w}
\end{aligned}
$$

and the natural map

$$
\begin{array}{cc}
\varphi_{w}: \mathbb{P}^{n} & \longrightarrow \\
{\left[z_{0}: z_{1}: z_{2}\right]} & \mathbb{P}_{w}^{n} \\
& \left.z_{0}^{w_{0}}: z_{1}^{w_{1}}: z_{2}^{w_{2}}\right]_{w}
\end{array}
$$

of degree $\operatorname{deg} \varphi_{w}=w_{0} w_{1} w_{2}$. The map φ_{w} is good in the sense of [1, section 4.4], which means, among other things, that V-bundles behave well under pullback. It is shown in [10] that there is a line V-bundle $\mathcal{O}_{\mathbb{P}_{w}^{2}}(1)$ on \mathbb{P}_{w}^{2}, unique up to isomorphism, such that

$$
\varphi_{w}^{*} \mathcal{O}_{\mathbb{P}_{w}^{2}}(1) \cong \mathcal{O}_{\mathbb{P}^{2}}(1)
$$

and, by naturality, $c_{1}\left(\varphi_{w}^{*} \mathcal{O}_{\mathbb{P}_{w}^{2}}(1)\right)=c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)=\varphi_{w}^{*} c_{1}\left(\mathcal{O}_{\mathbb{P}_{w}^{2}}(1)\right)$, from which we obtain the Chern number

$$
\left[\mathbb{P}_{w}^{2}\right] \frown\left(c_{1}\left(\mathcal{O}_{\mathbb{P}_{w}^{2}}(1)\right)\right)^{n}=\int_{\mathbb{P}_{w}^{n}}\left(c_{1}\left(\mathcal{O}_{\mathbb{P}_{w}^{2}}(1)\right)\right)^{2}=\frac{1}{w_{0} w_{1} w_{2}}
$$

since

$$
1=\int_{\mathbb{P}^{2}}\left(c_{1}\left(\mathcal{O}_{\mathbb{P}^{2}}(1)\right)\right)^{2}=\int_{\mathbb{P}^{2}} \varphi_{w}^{*}\left(c_{1}\left(\mathcal{O}_{\mathbb{P}_{w}^{2}}(1)\right)\right)^{2}=\left(\operatorname{deg} \varphi_{w}\right) \int_{\mathbb{P}_{w}^{2}}\left(c_{1}\left(\mathcal{O}_{\mathbb{P}_{w}^{2}}(1)\right)\right)^{2}
$$

There exist an Euler type sequence on \mathbb{P}_{w}^{n}

$$
0 \longrightarrow \mathbb{C} \longrightarrow \bigoplus_{i=0}^{2} \mathcal{O}_{\mathbb{P}_{w}^{2}}\left(w_{i}\right) \longrightarrow T \mathbb{P}_{w}^{2} \longrightarrow 0
$$

where
(i) $1 \longmapsto\left(w_{0} z_{0}, w_{1} z_{1}, w_{2} z_{2}\right)$.
(ii) $\left(P_{0}, P_{1}, P_{2}\right) \longmapsto \pi_{*}\left(\sum_{i=0}^{2} P_{i} \frac{\partial}{\partial z_{i}}\right)$.

It is well known that the non-singular weighted projective planes admit Kähler-Einstein metrics. On the other side, singular weighted projective spaces do not admit Kähler-Einstein metrics, see [12]. We give a simple proof of the non-existence of Kähler-Einstein metrics on singular \mathbb{P}_{ω}^{2} by using Corollary 2.

Theorem 3. The singular weighted projective space \mathbb{P}_{ω}^{2} does not admit any Kähler-Einstein metric.
Proof. Choose $a_{0}, a_{1}, a_{2} \in \mathbb{C}^{*}$ such that $a_{i} w_{j} \neq a_{j} w_{i}$, for all $i \neq j$. Suppose, without loss of generality, that $1 \leq w_{0} \leq$ $w_{2}<w_{1}$. Consider the holomorphic vector field on \mathbb{P}_{ω}^{2} given by

$$
\xi_{a}=\sum_{k=0}^{2} a_{k} Z_{k} \frac{\partial}{\partial Z_{k}} \in H^{0}\left(\mathbb{P}_{\omega}^{2}, T \mathbb{P}_{\omega}^{2}\right)
$$

where $\left(Z_{0}, Z_{1}, Z_{3}\right)$ denotes the homogeneous coordinate system.
The local expression of ξ over $U_{i}=\left\{\left[Z_{0}: Z_{1}: Z_{3}\right] \in \mathbb{P}^{2} ; Z_{i} \neq 0\right\}$ is given by

$$
\left.\xi_{a}\right|_{U_{i}}=\sum_{\substack{k=0 \\ k \neq i}}^{2}\left(a_{k}-a_{i} \frac{w_{k}}{w_{i}}\right) Z_{k} \frac{\partial}{\partial Z_{k}}
$$

Therefore, the singular set $\operatorname{Sing}\left(\left.\xi\right|_{U_{i}}\right)$ is reduced to $\{0\}$ and it is nondegenerate. In general,

$$
\operatorname{Sing}\left(\xi_{a}\right)=\left\{[1: 0: 0]_{\omega},[0: 1: 0]_{\omega},[0: 0: 1]_{\omega}\right\}=\operatorname{Sing}\left(\mathbb{P}_{\omega}^{2}\right)
$$

It follows from Corollary 2 that

$$
f\left(\xi_{a}\right)=\frac{-1}{3^{2}} \sum_{i=0}^{2} \frac{1}{w_{i}^{2}} \frac{\left(\sum_{k \neq i}\left(a_{k} w_{i}-a_{i} w_{k}\right)\right)^{3}}{\prod_{k \neq i}\left(a_{k} w_{i}-a_{i} w_{k}\right)}
$$

Thus

$$
\begin{gathered}
\zeta\left(a_{0}, a_{1}, a_{2}\right)=-3^{2} w_{0}^{2} w_{1}^{2} w_{2}^{2} \prod_{0 \leq i<j \leq 2}\left(a_{i} w_{j}-a_{j} w_{i}\right) f\left(\xi_{a}\right)= \\
\left(3 w_{1}^{5} w_{2}^{2} w_{0}-3 w_{1}^{4} w_{2}^{3} w_{0}+3 w_{1}^{3} w_{2}^{4} w_{0}+3 w_{1}^{2} w_{2}^{5} w_{0}-3 w_{0}^{4} w_{2}^{2} w_{1}^{2}+3 w_{0}^{3} w_{2}^{3} w_{1}^{2}+6 w_{0}^{2} w_{2}^{4} w_{1}^{2}+\right. \\
\left.+3 w_{0}^{4} w_{1}^{2} w_{2}^{2}-3 w_{0}^{3} w_{1}^{3} w_{2}^{2}-6 w_{0}^{2} w_{1}^{4} w_{2}^{2}\right) \cdot a_{1} a_{2} a_{0}^{2}+\cdots
\end{gathered}
$$

is a homogeneous polynomial of degree 4 in the variables a_{0}, a_{1}, a_{2}. Suppose by contradiction that $\zeta\left(a_{0}, a_{1}, a_{2}\right) \equiv 0$. In particular, the coefficient of the monomial $a_{0}^{2} a_{1} a_{2}$ is zero. Thus, we have the following equation

$$
w_{2}\left(w_{1} w_{2}+w_{2}^{2}+w_{0}^{2}+2 w_{0} w_{2}\right)=w_{1}\left(w_{1} w_{2}+w_{1}^{2}+w_{0}^{2}+2 w_{0} w_{1}\right)
$$

This contradicts $1 \leq w_{0} \leq w_{2}<w_{1}$. Thus the non-vanishing of $\zeta\left(a_{0}, a_{1}, a_{2}\right)$ implies that $f\left(\xi_{a}\right)$ is not zero. Therefore, \mathbb{P}_{ω}^{2} does not admit Kähler-Einstein metrics.

2. Proof of Theorem 1

For the proof, we will use Bott-Chern's transgression method, see [2] and [3].
Let p_{1}, \ldots, p_{m} be the zeros of ξ. Let $\left\{U_{\beta}\right\}$ be an open cover orbifold of $X\left(\varphi_{\beta}: \widetilde{U}_{\beta} \rightarrow U_{\beta} \subset X\right.$ coordinate map $)$. Suppose that $\left\{U_{\beta}\right\}$ is a trivializing neighborhood for the holomorphic tangent orbibundle $T X$ (see [1, section 2.3]) of X and that we have disjoint neighborhoods coordinates U_{α} with $p_{\alpha} \in U_{\alpha}$ and $p_{\alpha} \notin U_{\beta}$ if $\alpha \neq \beta$. On each \widetilde{U}_{α}, take local coordinates $\tilde{z}^{\alpha}=\left(\tilde{z}_{1}^{\alpha}, \ldots, \tilde{z}_{n}^{\alpha}\right)$ and the holomorphic frame $\left\{\frac{\partial}{\partial z_{1}^{\alpha}}, \ldots, \frac{\partial}{\partial \tilde{z}_{n}^{\alpha}}\right\}$ of $T X$. Thus, we have a local representation

$$
\tilde{\xi}^{\alpha}=\sum \tilde{\xi}_{i}^{\alpha} \frac{\partial}{\partial \tilde{z}_{i}^{\alpha}}
$$

where $\tilde{\xi}_{i}^{\alpha}$ are holomorphic functions in $\tilde{U}_{\alpha}, 1 \leq i \leq n$. Let \tilde{h}_{α} the Hermitian metric in \widetilde{U}_{α} defined by $\left\langle\partial / \partial \tilde{z}_{i}^{\alpha}, \partial / \partial \tilde{z}_{j}^{\alpha}\right\rangle=\delta_{j}^{i}$. Also consider $\widetilde{U}_{\alpha}^{\prime} \subset \widetilde{U}_{\alpha}$ and $U_{\alpha}^{\prime}=\varphi_{\alpha}\left(\widetilde{U}_{\alpha}^{\prime}\right)$ for each α. Take a Hermitian metric h_{0} in any $X \backslash \cup_{\alpha}\left\{p_{\alpha}\right\}$ and $\left\{\rho_{0}, \rho_{\alpha}\right\}$ a partition of unity subordinate to the cover $\left\{X \backslash \cup_{\alpha} \overline{U_{\alpha}^{\prime}}, U_{\alpha}\right\}_{\alpha}$. Define a Hermitian metric $h=\rho_{0} h_{0}+\sum \rho_{\alpha} h_{\alpha}$ in X. Then we have that for every α, the metric curvature $\Theta \equiv 0$ in U_{α}^{\prime}.

Consider the matrix of the metric connection ∇ in the open \widetilde{U}^{β} given by $\theta^{\beta}=\left(\sum_{k} \Gamma_{i k}^{\beta j} \mathrm{~d} \tilde{z}_{k}^{\beta}\right)$.
The local expression of $L(\xi)$ is given by $\tilde{E}^{\beta}=\left(\tilde{E}_{i j}^{\beta}\right)$ such that

$$
\tilde{E}_{i j}^{\beta}=-\frac{\partial \tilde{\xi}_{i}^{\beta}}{\partial \tilde{z}_{j}^{\beta}}-\sum_{s} \Gamma_{j s}^{\beta i} \tilde{\xi}_{s}^{\beta}
$$

see [2] and [8]. We indicate by $\mathcal{A}^{p, q}(X)$ the vector space of complex-valued $(p+q)$-forms on X of type (p, q). Define

$$
\phi_{r}:=\binom{n+k}{r} \bar{\phi}(\underbrace{E, \ldots, E}_{n+k-r}, \underbrace{\Theta, \ldots, \Theta}_{r}) \in \mathcal{A}^{r, r}(X) \quad r=0, \ldots, n .
$$

Let $\omega \in \mathcal{A}^{1,0}(X)$ in $X \backslash \operatorname{Sing}(\xi)$, with $\omega(\xi)=1$. Following Bott's idea (see [2]), it is sufficient to show that there exists ψ such that $i(\xi)\left(\bar{\partial} \psi+\phi_{n}\right)=0$ on $X \backslash \operatorname{Sing}(\xi)$. We take $\psi=\sum_{r=0}^{n-1} \psi_{r}$ such that

$$
\psi_{r}=\omega \wedge(\bar{\partial} \omega)^{n-r-1} \wedge \phi_{r} \in \mathcal{A}^{n, n-1}(X) \quad r=0, \ldots, n-1
$$

The following formulas hold (see [2] or [8]):
a) $\bar{\partial} \Theta=0, \bar{\partial} E=i(\xi) \Theta$;
b) $\bar{\partial} \phi_{r}=i(\xi) \phi_{r+1}, r=0, \ldots, n+1$;
c) $i(\xi) \bar{\partial} \omega=0$.

Let us prove b): since $\bar{\partial} \Theta=0$ and $\bar{\partial} E=i(\xi) \Theta$, we have

$$
\bar{\partial} \phi_{r}=\binom{n+k}{r} \sum_{i=1}^{n+k-r} \bar{\phi}(E, \ldots, i(\xi) \Theta, \ldots, E, \Theta, \ldots, \Theta)=i(\xi) \phi_{r+1}
$$

Therefore, a), b) and c) implies that on $X \backslash \operatorname{Sing}(\xi)$ we get

$$
i(\xi)\left(\bar{\partial} \psi+\phi_{n}\right)=0
$$

Therefore, $\mathrm{d} \psi=\bar{\partial} \psi=-\phi_{n}$ on $X \backslash \operatorname{Sing}(\xi)$. Thus, by the Satake-Stokes Theorem, we have

$$
\begin{align*}
\binom{n+k}{n} f_{\phi}(\xi) & =\left(\frac{\mathrm{i}}{2 \pi}\right)^{n} \int_{X} \phi_{n}=\left(\frac{\mathrm{i}}{2 \pi}\right)^{n} \lim _{\epsilon \rightarrow 0} \int_{X \backslash \cup_{\alpha} B_{\epsilon}\left(p_{\alpha}\right)} \phi_{n} \\
& =-\left(\frac{\mathrm{i}}{2 \pi}\right)^{n} \lim _{\epsilon \rightarrow 0} \int_{X \backslash \cup_{\alpha} B_{\epsilon}\left(p_{\alpha}\right)} \mathrm{d} \psi=\left(\frac{\mathrm{i}}{2 \pi}\right)^{n} \lim _{\epsilon \rightarrow 0} \sum_{\alpha} \int_{\partial B_{\epsilon}\left(p_{\alpha}\right)} \psi^{\alpha} \tag{2}
\end{align*}
$$

where is $B_{\epsilon}\left(p_{\alpha}\right)=B_{\epsilon}\left(\tilde{p}_{\alpha}\right) / G_{p_{\alpha}}$ and $B_{\epsilon}\left(\tilde{p}_{\alpha}\right)$ is an Euclidean ball centered at \tilde{p}_{α} such that $\overline{B_{\epsilon}\left(\tilde{p}_{\alpha}\right)} \subset U_{\alpha}^{\prime}$. Since our metric is Euclidean in $B_{\epsilon}\left(\tilde{p}_{\alpha}\right)$, its connection is zero and

$$
\tilde{E}_{i j}^{\alpha}=-\frac{\partial \tilde{\xi}_{i}^{\alpha}}{\partial \tilde{z}_{j}^{\alpha}}
$$

Now, by our choice of metric, Θ and hence ϕ_{r}, for $r>0$, vanishes identically in $B_{\epsilon}\left(\tilde{p}_{\alpha}\right)$. Then, we have

$$
\tilde{\psi}^{\alpha}=\tilde{\psi}_{0}^{\alpha}=\omega \wedge(\bar{\partial} \omega)^{n-1} \phi\left(\tilde{E}^{\alpha}\right)=(-1)^{n+k} \omega \wedge(\bar{\partial} \omega)^{n-1} \phi\left(J \tilde{\xi}^{\alpha}\right)
$$

on $B_{\epsilon}\left(\tilde{p}_{\alpha}\right)$. Therefore,

$$
\begin{equation*}
\tilde{\psi}^{\alpha}=(-1)^{k} \omega \wedge(\bar{\partial} \omega)^{n-1} \phi\left(J \tilde{\xi}^{\alpha}\right) \tag{3}
\end{equation*}
$$

Consider the map $\Phi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{2 n}$ given by $\Phi(\tilde{z})=(\tilde{z}+\tilde{\xi}(\tilde{z}), \tilde{z})$. There is a $(2 n, 2 n-1)$ closed form β_{n} in $\mathbb{C}^{2 n} \backslash\{0\}$ (the Bochner-Martinelli kernel) such that

$$
\begin{equation*}
\Phi^{*} \beta_{n}=\left(\frac{\mathrm{i}}{2 \pi}\right)^{n} \omega \wedge(\bar{\partial} \omega)^{n-1} \tag{4}
\end{equation*}
$$

Finally, if we substitute (3) and (4) into (2), and by using Martinelli's formula ([8, p. 655])

$$
\int_{\partial B_{\epsilon}\left(\tilde{p}_{\alpha}\right)} \phi\left(J \tilde{\xi}^{\alpha}\right) \Phi^{*} \beta_{n}=\operatorname{Res}_{\tilde{p}_{\alpha}}\left\{\frac{\phi\left(J \tilde{\xi}^{\alpha}\right) \mathrm{d} \tilde{z}_{1} \wedge \cdots \wedge \mathrm{~d} \tilde{z}_{n}}{\tilde{\xi}_{1} \ldots \tilde{\xi}_{n}}\right\}
$$

we obtain

$$
\binom{n+k}{n} f_{\phi}(\xi)=(-1)^{k} \sum_{\alpha} \frac{1}{\# G_{p_{\alpha}}} \operatorname{Res}_{\tilde{p}_{\alpha}}\left\{\frac{\phi\left(J \tilde{\xi}^{\alpha}\right) \mathrm{d} \tilde{z}_{1} \wedge \cdots \wedge \mathrm{~d} \tilde{z}_{n}}{\tilde{\xi}_{1} \ldots \tilde{\xi}_{n}}\right\}
$$

Acknowledgements

We are grateful to Marcio Soares and Marcos Jardim for many stimulating conversations on this subject.

References

[1] A. Adem, J. Leida, Y. Ruan, Orbifolds and String Topology, Cambridge University Press, Cambridge, UK, ISBN 0-511-28288-5, 2007.
[2] R. Bott, Vector fields and characteristic numbers, Mich. Math. J. 14 (1967) 231-244.
[3] S.S. Chern, Meromorphic Vector Fields and Characteristic Numbers, Selected Papers Springer-Verlag, New York, 1978, pp. 435-443.
[4] W. Ding, G. Tian, Kähler-Einstein metrics and the generalized Futaki invariant, Invent. Math. 110 (1992) 315-335.
[5] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983) 437-443.
[6] A. Futaki, S. Morita, Invariant polynomials on compact complex manifolds, Proc. Jpn. Acad., Ser. A, Math. Sci. 60 (10) (1984) $369-372$.
[7] A. Futaki, S. Morita, Invariant polynomials of the automorphism group of a compact complex manifold, J. Differ. Geom. 21 (1985) 135-142.
[8] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, 1978.
[9] H. Li, Y. Shi, The Futaki invariant on the blowup of Kähler surfaces, Int. Math. Res. Not. 2015 (7) (2015) 1902-1923, http://dx.doi.org/10.1093/imrn/ rnt351.
[10] É. Mann, Cohomologie quantique orbifolde des espaces projectifs à poids, J. Algebraic Geom. 17 (2008) 137-166.
[11] F. Norguet, Fonctions de plusieurs variables complexes, Lect. Notes Math. 409 (1974) 1-97.
[12] J.A. Viaclovsky, Einstein metrics and Yamabe invariants of weighted projective spaces, Tohoku Math. J. (2) 65 (2) (2013) $297-311$.

[^0]: 领 This work was partially supported by CNPq, CAPES, FAPEMIG and FAPESP-2015/20841-5.
 E-mail addresses: mauricio@mat.ufmg.br (M. Corrêa), miguel.rodriguez.mat@gmail.com (M. Rodríguez).
 http://dx.doi.org/10.1016/j.crma.2016.10.006
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

