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We prove that some almost automorphic evolution equations carry compact almost auto-
morphic solutions. Moreover, we show that the almost automorphy of the coefficients is 
not necessary to obtain almost automorphic solutions. This improves the assumptions and 
the conclusion of a result of M. Zaki (Ann. Mat. Pura Appl. (4) 101 (1) (1974) 91–114), 
which gives the nature of solutions with relatively compact range for some almost auto-
morphic evolution equations in Banach spaces. We note that many results in the literature 
can be improved in this direction.
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r é s u m é

Nous montrons que certaines équations d’évolution presque automorphes possèdent des 
solutions compactes presque automorphes. De plus, nous montrons que la presque au-
tomorphie des coefficients n’est pas nécessaire pour obtenir des solutions presque auto-
morphes. Cela améliore les hypothèses et la conclusion d’un résultat de M. Zaki (Ann. Mat. 
Pura Appl. (4) 101 (1) (1974) 91–114), qui donne la nature des solutions avec image re-
lativement compacte pour certaines équations d’évolution presque automorphes dans les 
espaces de Banach. Nous notons que de nombreux résultats dans la littérature peuvent 
être améliorés dans cette direction.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this work, we investigate the nature of solutions with relatively compact range for the following evolution equation:

d

dt
x (t) = Ax (t) + f (t) for t ∈R, (1.1)
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where A is the generator of a strongly asymptotically stable C0-semigroup on a Banach space X and f : R → X is an almost 
automorphic function in the sense of Stepanov.

Let us consider the following differential equation in Rn:

x′ (t) = G(t)x (t) + f (t) for t ∈R, (1.2)

where the matrix G(t) and the vector f (t) are both continuous and ω-periodic for some ω > 0. In [11], Massera proved 
that the existence of a bounded solution of Equation (1.2) on the positive real line is enough to get the existence of an 
ω-periodic solution. This result is known in the literature as the Massera theorem. Fixed-point theory plays an important 
role in this kind of results.

For almost periodic equations, the situation is more complicated, since one cannot use fixed-point arguments. Bohr and 
Neugebauer, see [8], extended Massera’s theorem for Equation (1.2) to the almost periodic case when G(t) = G is a constant 
matrix. In addition, they proved that a bounded solution of Equation (1.2) on R is automatically almost periodic. We note 
that this result does not hold for the periodic case.

In [5], Cooke proved that bounded solutions of the following differential equation

y(n)(t) + A1 y(n−1)(t) + . . . An y(t) = f (t),

are almost periodic when f : R → H is almost periodic and Ai , i = 1, . . . , n are compact operators in a separable Hilbert 
space H . In [10], Haraux proved the same result for the following evolution equation

x′ (t) + Ãx (t) � f (t) for t ∈R, (1.3)

where Ã is a maximal monotone operator on R2. In [13,15], Zaidman proved that a bounded solution of Equation (1.1)
is almost periodic when A is a self-adjoint operator in a Hilbert space. In another paper, Zaidman [16] proved this result 
for Equation (1.1) when A is a finite-rank operator. In [9], Goldstein extended the work of Zaidman by considering a more 
general finite dimensionality assumption when A is a closed linear operator in a Hilbert space.

Without some sort of finite dimensionality assumptions, one cannot predict in general that bounded solutions have a 
relatively compact range. In this case, it is more appropriate to look for almost periodic and almost automorphic solutions 
inside the set of solutions having a relatively compact range. Following this remark, Zaidman [14] showed that a bounded 
solution of Equation (1.1) with a relatively compact range is automatically almost periodic when f is also almost periodic 
and A generates a strongly asymptotically stable C0-semigroup on a Banach space X . Under the same assumption on the 
operator A, Zaki [17] gave an analogous result for almost automorphic solutions. He proved that a bounded solution of 
Equation (1.1) with a relatively compact range is almost automorphic when f is also almost automorphic.

In this work, we strengthen the result of Zaki in the sense that we obtain a stronger conclusion and using weaker 
assumptions. More specifically, under the same strong asymptotic stability in [17], we prove that a bounded solution of 
Equation (1.1) with a relatively compact range is even compact almost automorphic when f is only almost automorphic in 
the sense of Stepanov. We note that many results in the literature can be improved in this direction.

2. Almost automorphic functions

Let (X, |.|) be a Banach space and BC(R, X) be the space of bounded continuous functions from R to X equipped with 
the supremum norm

| f |∞ := sup
t∈R

| f (t)| . (2.1)

In [4], Bochner introduced the concept of almost automorphy, which is a generalization of the almost periodicity.

Definition 2.1. [4] A continuous function f : R �→ X is said to be almost automorphic if for every sequence of real numbers 
(sn)n , there exist a subsequence (s′

n)n ⊂ (sn)n and a function f̃ , such that for each t ∈ R

f (t + s′
n) → f̃ (t)

and

f̃ (t − s′
n) → f (t)

as n → ∞. If the above limits hold uniformly in compact subsets of R, then f is said to be compact almost automorphic.

Remark. If one of the convergences in Definition 2.1 holds uniformly on the whole real line, then we obtain the notion of 
almost periodicity.
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Definition 2.2. [1,3,12] The Bochner transform f b of a function f ∈ Lp
loc(R, X) is the function f b :R → Lp ([0,1], X) defined 

for each t ∈R by(
f b(t)

)
(s) = f (t + s) for s ∈ [0,1].

Definition 2.3. [6] A function f ∈ Lp
loc(R, X) is said to be Stepanov almost automorphic for some p ≥ 1 (or S p-almost 

automorphic) if its Bochner transform f b : R → Lp ([0,1], X) is almost automorphic.

The following Bochner-type characterization for the almost automorphy in the sense of Stepanov is essential for the rest 
of this work.

Proposition 2.4. [7] A function f ∈ Lp
loc(R, X) is S p-almost automorphic if and only if, for every sequence of real numbers (sn)n, there 

exist a subsequence (s′
n)n ⊂ (sn)n and a function g ∈ Lp

loc(R, X), such that for each t ∈R

⎛
⎝ t+1∫

t

∣∣ f (s + s′
n) − g(s)

∣∣p ds

⎞
⎠

1
p

→ 0 (2.2)

and

⎛
⎝ t+1∫

t

∣∣g(s − s′
n) − f (s)

∣∣p ds

⎞
⎠

1
p

→ 0, (2.3)

as n → ∞.

Remark. One can see from Proposition 2.4 that an almost automorphic function is automatically S p -almost automorphic for 
all p ≥ 1.

3. Main result

Consider the equation

d

dt
x(t) = Ax(t) + f (t) for t ∈R, (3.1)

where f : R → X is a given function and A is a linear operator on a Banach space X that generates a C0-semigroup 
(T (t))t≥0.

Definition 3.1. A mild solution of Equation (3.1) is a continuous function x : R → X that satisfies, for each t, σ ∈ R with 
t ≥ σ ,

x(t) = T (t − σ)x(σ ) +
t∫

σ

T (t − s) f (s)ds.

The aim of this work is to improve the following result.

Theorem 3.2. [17] If f is almost automorphic and the C0-semigroup (T (t))t≥0 is strongly asymptotically stable, i.e. limt→∞ T (t)x = 0
for each x ∈ X, then a mild solution of Equation (3.1) having a relatively compact range is almost automorphic.

The following result shows that Theorem 3.2 holds under weaker assumptions on the forcing term f . In addition, the 
solution is shown to have more regularity than what is claimed in Theorem 3.2.

Theorem 3.3. If f is S1-almost automorphic and the C0-semigroup (T (t))t≥0 is strongly asymptotically stable, i.e. limt→∞ T (t)x = 0
for each x ∈ X, then a mild solution of Equation (3.1) having a relatively compact range is compact almost automorphic.

Lemma 3.4. [2, Theorem 4.1.2] Let Y be a normed space and (Tn)n be a sequence of bounded linear operators on Y such that 
supn |Tn| < ∞. If D is a dense subset of Y , and if for each y ∈ D
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Tn y → T y as n → ∞,

for some bounded linear operator T , then for every compact set K of Y

sup
y∈K

|Tn y − T y| → 0 as n → ∞.

The following lemma is needed in the proof of Theorem 3.3.

Lemma 3.5. A mild solution of Equation (3.1) having a relatively compact range is uniformly continuous.

Proof of Lemma 3.5. Let x be a solution of Equation (3.1) such that K = {x(t) : t ∈ R} is compact. If x is not uniformly 
continuous, then there exist ε > 0 and two real sequences (sn)n and (hn)n such that limn→∞ hn = 0 and

|x(sn + hn) − x(sn)| > ε for all n ∈N. (3.2)

Assume without loss of generality that hn ≥ 0 for all n ∈ N. Thus we have

x(sn + hn) = T (hn)x(sn) +
sn+hn∫
sn

T (sn + hn − s) f (s) ds

= T (hn)x(sn) +
hn∫

0

T (hn − s) f (s + sn) ds.

Let M0 ≥ 1 and ω0 ∈ R such that |T (t)| ≤ M0eω0t for all t ≥ 0. Then

|x(sn + hn) − x(sn)| ≤ |T (hn)x(sn) − x(sn)| +
hn∫

0

|T (hn − s)| | f (s + sn)|ds

≤ sup
y∈K

|T (hn)y − y| + M0

hn∫
0

eω0(hn−s) | f (s + sn)|ds

≤ sup
y∈K

|T (hn)y − y| + M0e|ω0|hn

hn∫
0

| f (s + sn)| ds. (3.3)

The semigroup (T (t))t≥0 being strongly continuous, we have, for each y ∈ K , T (hn)y → y as n → ∞. This implies that 
supn |T (hn)y| < ∞ for each y ∈ X and thus, by the Banach–Steinhaus Theorem, supn |T (hn)| < ∞. It follows from Lemma 3.4
that

sup
y∈K

|T (hn)y − y| → 0 as n → ∞. (3.4)

On the other hand, from the S1-almost automorphy of f , there exist a subsequence 
(
s′

n

)
n ⊂ (sn)n and a function f̂ ∈

L1
loc (R, X) such that, for each t ∈ R

t+1∫
t

∣∣ f
(
s + s′

n

) − f̂ (s)
∣∣ds → 0 as n → ∞. (3.5)

Let 
(
h′

n

)
n be the corresponding subsequence of (hn)n . We can assume that 0 ≤ hn ≤ 1 for all n ∈ N. Then, we have

h′
n∫

0

∣∣ f
(
s + s′

n

)∣∣ ds ≤
h′

n∫
0

∣∣ f
(
s + s′

n

) − f̂ (s)
∣∣ ds +

h′
n∫

0

∣∣ f̂ (s)
∣∣ ds

≤
1∫ ∣∣ f

(
s + s′

n

) − f̂ (s)
∣∣ ds +

h′
n∫ ∣∣ f̂ (s)

∣∣ ds.
0 0
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Since 
∣∣∣ f̂ (.)1[

0,h′
n
](.)

∣∣∣ ≤ ∣∣ f̂ (.)1[0,1](.)
∣∣ ∈ L1 (R,R) for all n ∈ N and f̂ (.)1[

0,h′
n
](.) converges almost everywhere to 0, then it 

follows from Lebesgue’s dominated convergence theorem that 

h′
n∫

0

∣∣ f̂ (s)
∣∣ds → 0 as n → ∞. On the other hand, using (3.5)

we have 
1∫

0

∣∣ f
(
s + s′

n

) − f̂ (s)
∣∣ds → 0 as n → ∞ and thus

h′
n∫

0

∣∣ f
(
s + s′

n

)∣∣ ds → 0 as n → ∞. (3.6)

Therefore, we conclude from (3.3), (3.4) and (3.6) that∣∣x(s′
n + h′

n) − x(s′
n)

∣∣ → 0 as n → ∞,

which contradicts (3.2). We conclude that x(·) must be uniformly continuous. �
Proof of Theorem 3.3. Let K = {x(t) : t ∈ R} and (tn)n be a sequence of real numbers. From the almost automorphy of f , 
there exist a subsequence 

(
t′
n

)
n ⊂ (tn)n and a measurable function g : R → X such that, for each t ∈R

t+1∫
t

∣∣ f (s + t′
n) − g(s)

∣∣ ds → 0 (3.7)

t+1∫
t

∣∣g(s − t′
n) − f (s)

∣∣ ds → 0.

If we denote xn(t) = x(t + t′
n), then for each n ∈ N, xn ∈ C (R, X) and satisfies xn(t) ∈ K for each t ∈ R. Therefore, for each 

t ∈ R, the set {xn(t) : n ∈N} is a relatively compact subset of X . Since x is uniformly continuous (Lemma 3.5), the sequence 
(xn)n is equicontinuous on R. In view of Arzelà–Ascoli’s theorem, we can assert that {xn : n ∈ N} is a relatively compact 
subset of C (R, X) endowed with the topology of compact convergence. Thus from the sequence (t′

n)n , one can extract 
another subsequence (t′′

n )n ⊂ (t′
n)n ⊂ (tn)n such that

x(t + t′′
n) → y(t) (3.8)

uniformly on compact subsets of R, where y ∈ C (R, X). Since x is a mild solution of Equation (3.1), we obtain for each 
t, s ∈R with t ≥ s and n ∈ N

x(t + t′′
n) = x(s + t′′

n) +
t∫

s

T (t − τ ) f
(
τ + t′′

n

)
dτ . (3.9)

By letting n → ∞ in (3.9) using (3.7) and (3.8) we deduce that

y(t) = y(s) +
t∫

s

T (t − τ )g (τ )dτ .

Now by applying the same argument to the function y using this time the returning sequence 
(−t′′

n

)
n , we have another 

subsequence (t′′′
n )n ⊂ (t′′

n)n ⊂ (t′
n)n ⊂ (tn)n such that

y(t − t′′′
n ) → z(t) (3.10)

uniformly on compact subsets of R, where z is a solution of Equation (3.1).
Since x is also another solution of Equation (3.1) we have for each t, σ ∈ R with t ≥ σ

|x(t) − z(t)| ≤ |T (t − σ) (x(σ ) − z(σ ))| . (3.11)

We note that

{z(t) : t ∈R} ⊂ {y(t) : t ∈R} ⊂ {x(t) : t ∈R} = K .
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Thus there exists a compact set K̃ such that {x(t) − z(t) : t ∈ R} ⊂ K̃ . We deduce from (3.11) that

|x(t) − z(t)| ≤ sup
y∈K̃

|T (t − σ)y| for t ≥ σ . (3.12)

By letting σ → −∞ in (3.12) using the strong asymptotic stability of the C0-semigroup (T (t))t≥0 together with Lemma 3.4
and the Banach–Steinhaus Theorem, we deduce that x = z. Thus the compact almost automorphy of x follows from (3.8)
and (3.10). �
Remark 3.6. An alternative proof for Theorem 3.3 can be given as follows: using Lemma 3.5, one can see that the almost 
automorphic solution in Theorem 3.2 is in fact uniformly continuous and thus it is compact almost automorphic according 
to the following lemma.

Lemma 3.7. A function f is compact almost automorphic if and only if it is almost automorphic and uniformly continuous.

Proof of Lemma 3.7. Let f :R → X be an almost automorphic function that is uniformly continuous. Let (sn)n be a sequence 
of real numbers. Then there exist a subsequence (s′

n)n ⊂ (sn)n and a function f̃ such that, for each t ∈R

f (t + s′
n) → f̃ (t) (3.13)

and

f̃ (t − s′
n) → f (t) (3.14)

as n → ∞. Consider the sequence of functions defined for each n ∈ N by

fn(t) = f (t + s′
n) for t ∈R.

Since f is uniformly continuous, then the family ( fn)n is equicontinuous. It follows that the convergence (3.13) holds 
uniformly in compact subsets of R.

On the other hand, from (3.13), one can see that f̃ is also uniformly continuous. Using the same argument, the conver-
gence (3.14) also holds uniformly in compact subsets of R.

Now, if f is compact almost automorphic, then it is almost automorphic. To show that f is uniformly continuous, take 
two sequences (tn)n and (sn)n such that |tn − sn| → 0 as n → ∞ and show that αn = | f (tn) − f (sn)| → 0 as n → ∞. Let 
(α′

n)n = (∣∣ f (t′
n) − f (s′

n)
∣∣)

n be a subsequence of (αn)n . Since f is compact almost automorphic, there exist a subsequence 
(s′′

n)n ⊂ (s′
n)n and a function g : R → X such that f (t + s′′

n) → g(t) uniformly on compact subsets of R. In addition, the 
function g is continuous. Let a, b ∈ R be such that a ≤ tn − sn ≤ b for all n ∈ N. Then, from the compact almost automorphy 
of f and the continuity of g , we have

α′′
n = ∣∣ f (t′′

n) − f (s′′
n)

∣∣ ≤ ∣∣ f (t′′
n − s′′

n + s′′
n) − g(t′′

n − s′′
n)

∣∣ + ∣∣g(t′′
n − s′′

n) − g(0)
∣∣ + ∣∣g(0) − f (s′′

n)
∣∣

≤ sup
a≤t≤b

∣∣ f (t + s′′
n) − g(t)

∣∣ + ∣∣g(t′′
n − s′′

n) − g(0)
∣∣ + ∣∣g(0) − f (s′′

n)
∣∣ → 0

as n → ∞. Thus we showed that every subsequence of (αn)n has a subsequence that converges to 0. We conclude that the 
whole sequence (αn)n converges to 0. Therefore f is uniformly continuous. �
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