

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

A converse to Fortin's Lemma in Banach spaces

Une réciproque au lemme de Fortin dans les espaces de Banach

Alexandre Ern^a, Jean-Luc Guermond^b

^a Université Paris-Est, CERMICS (ENPC), 77455 Marne-la-Vallée cedex 2, France
 ^b Department of Mathematics, Texas A&M University 3368 TAMU, College Station, TX 77843, USA

ARTICLE INFO

Article history: Received 15 February 2016 Accepted after revision 3 October 2016 Available online 12 October 2016

Presented by the Editorial Board

ABSTRACT

We establish the converse of Fortin's Lemma in Banach spaces. This result is useful to assert the existence of a Fortin operator once a discrete inf-sup condition has been proved. The proof uses a specific construction of a right-inverse of a surjective operator in Banach spaces. The key issue is the sharp determination of the stability constants.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

RÉSUMÉ

On montre une réciproque au lemme de Fortin dans les espaces de Banach. Ce résultat est utile afin d'affirmer l'existence d'un opérateur de Fortin une fois qu'une condition inf-sup discrète a été prouvée. La preuve utilise une construction spécifique d'un inverse à droite d'un opérateur surjectif dans les espaces de Banach. Le point crucial est la détermination précise des constantes de stabilité.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let *V* and *W* be two complex Banach spaces equipped with the norms $\|\cdot\|_V$ and $\|\cdot\|_W$, respectively. We adopt the convention that dual spaces are denoted with primes and are composed of antilinear forms; complex conjugates are denoted by an overline. Let *a* be a sesquilinear form on $V \times W$ (linear w.r.t. its first argument and antilinear w.r.t. its second argument). We assume that *a* is bounded, i.e.

$$||a|| := \sup_{v \in V} \sup_{w \in W} \frac{|a(v, w)|}{||v||_V ||w||_W} < \infty,$$

and that the following inf-sup condition holds:

http://dx.doi.org/10.1016/j.crma.2016.09.013

(1)

E-mail addresses: alexandre.ern@enpc.fr (A. Ern), guermond@math.tamu.edu (J.-L. Guermond).

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

$$\alpha := \inf_{v \in V} \sup_{w \in W} \frac{|a(v, w)|}{\|v\|_V \|w\|_W} > 0.$$
⁽²⁾

Here and in what follows, arguments in infima and suprema are implicitly assumed to be nonzero.

Assume that we have at hand two sequences of finite-dimensional subspaces $\{V_h\}_{h \in \mathcal{H}}$ and $\{W_h\}_{h \in \mathcal{H}}$ with $V_h \subset V$ and $W_h \subset W$ for all $h \in \mathcal{H}$, where the parameter h typically refers to a family of underlying meshes. The spaces V_h and W_h are equipped with the norms of V and W, respectively. A question of fundamental importance is to assert the following discrete inf-sup condition:

$$\hat{\alpha}_h := \inf_{v_h \in V_h} \sup_{w_h \in W_h} \frac{|a(v_h, w_h)|}{\|v_h\|_V \|w_h\|_W} > 0.$$
(3)

The aim of this Note is to prove the following result.

Theorem 1 (Fortin's Lemma with converse). Under the above assumptions, consider the following two statements:

- (i) there exists a map $\Pi_h : W \to W_h$ and a real number $\gamma_{\Pi_h} > 0$ such that $a(v_h, \Pi_h w w) = 0$, for all $(v_h, w) \in V_h \times W$, and $\gamma_{\Pi_h} \|\Pi_h w\|_W \le \|w\|_W$ for all $w \in W$;
- (ii) the discrete inf-sup condition (3) holds.

Then, (i) \Rightarrow (ii) with $\hat{\alpha}_h \geq \gamma_{\Pi_h} \alpha$. Conversely, (ii) \Rightarrow (i) with $\gamma_{\Pi_h} = \frac{\hat{\alpha}_h}{\|a\|}$, and Π_h can be constructed to be idempotent. Moreover, Π_h can be made linear if W is a Hilbert space.

The statement (i) \Rightarrow (ii) in Theorem 1 is classical and is known in the literature as Fortin's Lemma, see [5] and [1, Prop. 5.4.3]. It provides an effective tool to prove the discrete inf–sup condition (3) by constructing explicitly a Fortin operator Π_h . We briefly outline a proof that (i) \Rightarrow (ii) for completeness. Assuming (i), we have

$$\sup_{w_h \in W_h} \frac{|a(v_h, w_h)|}{\|w_h\|_W} \ge \sup_{w \in W} \frac{|a(v_h, \Pi_h w)|}{\|\Pi_h w\|_W} = \sup_{w \in W} \frac{|a(v_h, w)|}{\|\Pi_h w\|_W} \ge \gamma_{\Pi_h} \sup_{w \in W} \frac{|a(v_h, w)|}{\|w\|_W} \ge \gamma_{\Pi_h} \alpha \|v_h\|_V,$$

since *a* satisfies (2) and $V_h \subset V$. This proves (ii) with $\hat{\alpha}_h \ge \gamma_{\Pi_h} \alpha$.

The proof of the converse (ii) \Rightarrow (i) is the main object of this Note. This property is useful when it is easier to prove the discrete inf-sup condition directly rather than constructing a Fortin operator. Another application of current interest is the analysis framework for discontinuous Petrov-Galerkin methods (dPG) recently proposed in [3], which includes the existence of a Fortin operator among its key assumptions. The proof of the converse is not so straightforward if one wishes to establish a sharp stability bound for Π_h , i.e. that indeed one can take $\gamma_{\Pi_h} = \frac{\hat{\alpha}_h}{\|a\|}$. Incidentally, we observe that there is a gap in the stability constant γ_{Π_h} between the direct and the converse statements, since the ratio of the two is equal to $\frac{\|a\|}{\alpha}$ (which is independent of the discrete setting).

This Note is organized as follows. In Section 2, we establish a sharp bound on the stability of the right-inverse of surjective operators in Banach spaces. Since this result can be of independent theoretical interest, we present it in the infinite-dimensional setting. Then in Section 3, we prove the converse of Fortin's Lemma. The proof is relatively simple once the sharp stability estimate from Section 2 is available.

2. Right-inverse of surjective Banach operators

Let *Y* and *Z* be two complex Banach spaces equipped with the norms $\|\cdot\|_Y$ and $\|\cdot\|_Z$, respectively. Let $B: Y \to Z$ be a bounded linear map. The following result is a well-known consequence of Banach's Open Mapping and Closed Range Theorems, see, e.g., [2, Thm. 2.20] or [4, Lem. A.36 & A.40].

Lemma 2 (Surjectivity). The following three statements are equivalent:

(i) $B: Y \rightarrow Z$ is surjective;

(ii) $B^*: Z' \to Y'$ is injective and $im(B^*)$ is closed in Y';

(iii) the following holds:

$$\inf_{z'\in Z'} \frac{\|B^*z'\|_{Y'}}{\|z'\|_{Z'}} = \inf_{z'\in Z'} \sup_{y\in Y} \frac{|\langle B^*z', y\rangle_{Y',Y}|}{\|z'\|_{Z'}\|y\|_{Y}} =: \beta > 0.$$
(4)

Let us now turn to the main result of this section. To motivate the result, assume that (4) holds; then *B* is surjective and thus admits a bounded right-inverse. The crucial question is whether the stability of this right-inverse can be formulated using precisely the constant $\beta > 0$ from (4).

Lemma 3 (Right inverse). Assume that (4) holds and that Y is reflexive. Then there is a right-inverse map $B^{\dagger}: Z \to Y$ such that

$$\forall z \in Z, \quad (B \circ B^{\mathsf{T}})(z) = z \quad and \quad \beta \| B^{\mathsf{T}} z \|_{Y} \le \| z \|_{Z}. \tag{5}$$

Moreover, this right-inverse map B^{\dagger} is linear if Y is a Hilbert space.

Proof. Parts of this result can be found in [4, Lem. A.42]; for completeness, we present a proof. Owing to Lemma 2, B^* is injective and $R := im(B^*)$ is closed in Y'. Since the operator B^* is injective, it admits a left-inverse linear map $B^{*\ddagger} : R \to Z'$ such that $(B^{*\ddagger} \circ B^*)(z') = z'$ for all $z' \in Z'$. Moreover, the inf–sup condition (4) implies that $||B^{*\ddagger}y'||_{Z'} \le \beta^{-1}||y'||_{Y'}$ for all $y' \in R$. Consider now the adjoint $B^{*\ddagger*} : Z'' \to R'$. Let $E^{HB}_{R'Y''}$ be the Hahn–Banach extension operator that extends antilinear forms over $R \subset Y'$ into antilinear forms over Y' (see [2, Prop. 11.23]); $E^{HB}_{R'Y''}$ maps from R' to Y''. Let J_Y (resp., J_Z) be the canonical isometry from Y to Y'' (resp., Z to Z''), and observe that J_Y is an isomorphism since Y is assumed to be reflexive. Let us set

$$B^{\dagger} := J_Y^{-1} \circ E_{R'Y''}^{\mathrm{HB}} \circ B^{*\ddagger *} \circ J_Z : Z \to Y,$$

$$\tag{6}$$

and let us verify that B^{\dagger} satisfies the expected properties. We have, for all $(z', z) \in Z' \times Z$,

$$\langle z', B(B^{\dagger}(z)) \rangle_{Z',Z} = \langle B^{*}z', B^{\dagger}(z) \rangle_{Y',Y} = \overline{\langle J_{Y}(B^{\dagger}(z)), B^{*}z' \rangle_{Y'',Y'}} = \overline{\langle E^{HB}_{R'Y''}(B^{*\ddagger*}(J_{Z}z)), B^{*}z' \rangle_{Y'',Y'}}$$

$$= \overline{\langle B^{*\ddagger*}(J_{Z}z), B^{*}z' \rangle_{R',R}} = \overline{\langle J_{Z}z, B^{*\ddagger}B^{*}z' \rangle_{Z'',Z'}} = \overline{\langle J_{Z}z, z' \rangle_{Z'',Z'}} = \langle z', z \rangle_{Z',Z},$$

where we have used that $B^*z' \in R$ to pass from the first to the second line. This shows that $(B \circ B^{\dagger})(z) = z$. Moreover, since J_Y is an isometry and the extension operator $E_{R'Y''}^{HB}$ preserves the norm, we observe that, for all $z \in Z$,

$$\|B^{\dagger}z\|_{Y} = \|B^{*\ddagger*}(J_{Z}z)\|_{R'} = \sup_{z'\in Z'} \frac{|\langle B^{*\ddagger*}(J_{Z}z), B^{*}z'\rangle_{R',R}}{\|B^{*}z'\|_{Y'}}$$
$$= \sup_{z'\in Z'} \frac{|\langle J_{Z}z, z'\rangle_{Z'',Z'}|}{\|B^{*}z'\|_{Y'}} \le \sup_{z'\in Z'} \frac{\|z'\|_{Z'}}{\|B^{*}z'\|_{Y'}} \|z\|_{Z}.$$

We conclude from (4) that $\beta \| B^{\dagger} z \|_{Y} \le \| z \|_{Z}$. Finally, if *Y* is a Hilbert space, we can consider the orthogonal complement of *R* in *Y'* (recall that *R* is a closed subspace of *Y'*) and write $Y' = R \oplus R^{\perp}$. Then, the Hahn–Banach extension operator $E_{R'Y''}^{\text{HB}}$ in (6) can be replaced by the linear map $E_{R'Y''}^{\perp}$ such that, for all $\phi \in R'$, $\langle E_{R'Y''}^{\perp} \phi, y' \rangle_{Y'',Y'} = \langle \phi, r \rangle_{R',R}$ for all $y' \in Y'$ with $y' = r + r^{\perp}$, $r \in R$, $r^{\perp} \in R^{\perp}$. \Box

3. Proof of the converse in Theorem 1

Let $A_h : V_h \to W'_h$ be the operator defined by $\langle A_h v_h, w_h \rangle_{W'_h, W_h} := a(v_h, w_h)$ for all $(v_h, w_h) \in V_h \times W_h$. We identify V''_h with V_h and W''_h with W_h (since these spaces are finite-dimensional). We consider the adjoint operator $A_h^* : W_h \to V'_h$, and identify A_h^{**} with A_h . We apply Lemma 3 to $Y := W_h$, $Z := V'_h$, and $B := A_h^*$. Owing to the discrete inf-sup condition (3), we infer that (4) holds with $\beta = \hat{\alpha}_h$. Therefore, there exists a right-inverse map $A_h^{*\dagger} : V'_h \to W_h$ such that, for all $\theta_h \in V'_h$, $(A_h^* \circ A_h^{*\dagger})(\theta_h) = \theta_h$ and $\hat{\alpha}_h \|A_h^{*\dagger} \theta_h\|_W \le \|\theta_h\|_{V_h^*}$. Let us now set

$$\Pi_h := A_h^{*^{\mathsf{T}}} \circ \Theta : W \to W_h, \tag{7}$$

with the linear map $\Theta: W \to V'_h$ such that, for all $w \in W$, $\langle \Theta(w), v_h \rangle_{V'_h, V_h} := \overline{a(v_h, w)}$ for all $v_h \in V_h$. We then infer that

$$a(v_h, \Pi_h(w)) = \langle A_h v_h, A_h^{*\dagger}(\Theta(w)) \rangle_{W'_h, W_h} = \langle A_h^*(A_h^{*\dagger}(\Theta(w))), v_h \rangle_{V'_h, V_h} = \overline{\langle \Theta(w), v_h \rangle_{V'_h, V_h}} = a(v_h, w),$$

which establishes that $a(v_h, \Pi_h(w) - w) = 0$ for all $w \in W$. Moreover,

$$\hat{\alpha}_{h} \| \Pi_{h}(w) \|_{W} = \hat{\alpha}_{h} \| A_{h}^{*\dagger}(\Theta(w)) \|_{W} \le \| \Theta(w) \|_{V_{h}'} \le \| a \| \| w \|_{W},$$

which proves that $\frac{\hat{\alpha}_h}{\|a\|} \|\Pi_h(w)\|_W \le \|w\|_W$. In addition, we observe that

$$\langle \Theta(A_h^{*\dagger}(\theta_h)), \nu_h \rangle_{V'_h, V_h} = \overline{\langle A_h \nu_h, A_h^{*\dagger}(\theta_h) \rangle_{W'_h, W_h}} = \langle A_h^*(A_h^{*\dagger}(\theta_h)), \nu_h \rangle_{V'_h, V_h} = \langle \theta_h, \nu_h \rangle_{V'_h, V_h},$$

for all $v_h \in V_h$, which proves that $\Theta(A_h^{*\dagger}(\theta_h)) = \theta_h$ for all $\theta_h \in V'_h$. As a result, $\Pi_h(\Pi_h(w)) = A_h^{*\dagger}(\Theta \circ A_h^{*\dagger}(\Theta(w))) = A_h^{*\dagger}(\Theta(w)) = \Pi_h(w)$, i.e., Π_h is idempotent. Finally, if W is a Hilbert space, the right-inverse map $A_h^{*\dagger}$ is linear by Lemma 3, and so is the operator Π_h defined from (7).

Remark 1 (*Value of* γ_{Π_h}). Without the use of Lemma 3, one only knows that A_h^* has a stable right-inverse, but a stability bound for this right-inverse is not available. Here, we obtain that, provided the discrete inf–sup condition (3) holds uniformly with respect to h, i.e. if there is $\hat{\alpha}_0 > 0$ such that $\hat{\alpha}_h \ge \hat{\alpha}_0$ for all $h \in \mathcal{H}$, then a uniform stability bound holds for Π_h since $\gamma_{\Pi_h} \ge \gamma_{\Pi_0} = \frac{\hat{\alpha}_0}{\|\mathbf{a}\|}$ for all $h \in \mathcal{H}$.

Remark 2 (*Linearity*). Even in the case of Banach spaces, the linearity of the map Π_h can be asserted if one has at hand a stable decomposition $W_h = \ker(A_h^*) \oplus K_h$ such that there is $\kappa_h > 0$ such that the induced projector $\pi_{K_h} : W_h \to K_h$ satisfies $\kappa_h || \pi_{K_h} w_h ||_W \leq || w_h ||_W$ for all $w_h \in W_h$ (this property holds in the Hilbertian setting with $\kappa_h = 1$). Then, one can adapt the reasoning at the end of the proof of Lemma 3 to build a stable, linear right-inverse map $A_h^{*\dagger}$. The mild price to be paid is that the stability constant of Π_h now becomes $\gamma_{\Pi_h} = \frac{\kappa_h \hat{\alpha}_h}{|| \omega||}$.

Remark 3 (*Reflexivity*). Whether Lemma 3 holds true when Y is not reflexive seems to be an open question.

References

- [1] D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, Springer Ser. Comput. Math., vol. 44, Springer, Heidelberg, Germany, 2013.
- [2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011.
- [3] C. Carstensen, L. Demkowicz, J. Gopalakrishnan, A posteriori error control for DPG methods, SIAM J. Numer. Anal. 52 (3) (2014) 1335–1353.
- [4] A. Ern, J.-L. Guermond, Theory and Practice of Finite Elements, Appl. Math. Sci., vol. 159, Springer-Verlag, New York, 2004.
- [5] M. Fortin, An analysis of the convergence of mixed finite element methods, RAIRO Anal. Numér. 11 (1977) 341-354.