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We establish the converse of Fortin’s Lemma in Banach spaces. This result is useful to 
assert the existence of a Fortin operator once a discrete inf–sup condition has been proved. 
The proof uses a specific construction of a right-inverse of a surjective operator in Banach 
spaces. The key issue is the sharp determination of the stability constants.
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r é s u m é

On montre une réciproque au lemme de Fortin dans les espaces de Banach. Ce résultat est 
utile afin d’affirmer l’existence d’un opérateur de Fortin une fois qu’une condition inf–sup 
discrète a été prouvée. La preuve utilise une construction spécifique d’un inverse à droite 
d’un opérateur surjectif dans les espaces de Banach. Le point crucial est la détermination 
précise des constantes de stabilité.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let V and W be two complex Banach spaces equipped with the norms ‖·‖V and ‖·‖W , respectively. We adopt the 
convention that dual spaces are denoted with primes and are composed of antilinear forms; complex conjugates are denoted 
by an overline. Let a be a sesquilinear form on V × W (linear w.r.t. its first argument and antilinear w.r.t. its second 
argument). We assume that a is bounded, i.e.

‖a‖ := sup
v∈V

sup
w∈W

|a(v, w)|
‖v‖V ‖w‖W

< ∞, (1)

and that the following inf–sup condition holds:
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α := inf
v∈V

sup
w∈W

|a(v, w)|
‖v‖V ‖w‖W

> 0. (2)

Here and in what follows, arguments in infima and suprema are implicitly assumed to be nonzero.
Assume that we have at hand two sequences of finite-dimensional subspaces {Vh}h∈H and {Wh}h∈H with Vh ⊂ V and 

Wh ⊂ W for all h ∈ H, where the parameter h typically refers to a family of underlying meshes. The spaces Vh and Wh
are equipped with the norms of V and W , respectively. A question of fundamental importance is to assert the following 
discrete inf–sup condition:

α̂h := inf
vh∈Vh

sup
wh∈Wh

|a(vh, wh)|
‖vh‖V ‖wh‖W

> 0. (3)

The aim of this Note is to prove the following result.

Theorem 1 (Fortin’s Lemma with converse). Under the above assumptions, consider the following two statements:

(i) there exists a map �h : W → Wh and a real number γ�h > 0 such that a(vh, �h w − w) = 0, for all (vh, w) ∈ Vh × W , and 
γ�h ‖�h w‖W ≤ ‖w‖W for all w ∈ W ;

(ii) the discrete inf–sup condition (3) holds.

Then, (i) ⇒ (ii) with α̂h ≥ γ�h α. Conversely, (ii) ⇒ (i) with γ�h = α̂h‖a‖ , and �h can be constructed to be idempotent. Moreover, �h can 
be made linear if W is a Hilbert space.

The statement (i) ⇒ (ii) in Theorem 1 is classical and is known in the literature as Fortin’s Lemma, see [5] and [1, 
Prop. 5.4.3]. It provides an effective tool to prove the discrete inf–sup condition (3) by constructing explicitly a Fortin 
operator �h . We briefly outline a proof that (i) ⇒ (ii) for completeness. Assuming (i), we have

sup
wh∈Wh

|a(vh, wh)|
‖wh‖W

≥ sup
w∈W

|a(vh,�h w)|
‖�h w‖W

= sup
w∈W

|a(vh, w)|
‖�h w‖W

≥ γ�h sup
w∈W

|a(vh, w)|
‖w‖W

≥ γ�hα ‖vh‖V ,

since a satisfies (2) and Vh ⊂ V . This proves (ii) with α̂h ≥ γ�h α.
The proof of the converse (ii) ⇒ (i) is the main object of this Note. This property is useful when it is easier to prove 

the discrete inf–sup condition directly rather than constructing a Fortin operator. Another application of current interest 
is the analysis framework for discontinuous Petrov–Galerkin methods (dPG) recently proposed in [3], which includes the 
existence of a Fortin operator among its key assumptions. The proof of the converse is not so straightforward if one wishes 
to establish a sharp stability bound for �h , i.e. that indeed one can take γ�h = α̂h‖a‖ . Incidentally, we observe that there is a 
gap in the stability constant γ�h between the direct and the converse statements, since the ratio of the two is equal to ‖a‖

α
(which is independent of the discrete setting).

This Note is organized as follows. In Section 2, we establish a sharp bound on the stability of the right-inverse of 
surjective operators in Banach spaces. Since this result can be of independent theoretical interest, we present it in the 
infinite-dimensional setting. Then in Section 3, we prove the converse of Fortin’s Lemma. The proof is relatively simple once 
the sharp stability estimate from Section 2 is available.

2. Right-inverse of surjective Banach operators

Let Y and Z be two complex Banach spaces equipped with the norms ‖·‖Y and ‖·‖Z , respectively. Let B : Y → Z be 
a bounded linear map. The following result is a well-known consequence of Banach’s Open Mapping and Closed Range 
Theorems, see, e.g., [2, Thm. 2.20] or [4, Lem. A.36 & A.40].

Lemma 2 (Surjectivity). The following three statements are equivalent:

(i) B : Y → Z is surjective;
(ii) B∗ : Z ′ → Y ′ is injective and im(B∗) is closed in Y ′;
(iii) the following holds:

inf
z′∈Z ′

‖B∗z′‖Y ′

‖z′‖Z ′
= inf

z′∈Z ′ sup
y∈Y

|〈B∗z′, y〉Y ′,Y |
‖z′‖Z ′ ‖y‖Y

=: β > 0. (4)

Let us now turn to the main result of this section. To motivate the result, assume that (4) holds; then B is surjective and 
thus admits a bounded right-inverse. The crucial question is whether the stability of this right-inverse can be formulated 
using precisely the constant β > 0 from (4).
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Lemma 3 (Right inverse). Assume that (4) holds and that Y is reflexive. Then there is a right-inverse map B† : Z → Y such that

∀z ∈ Z , (B ◦ B†)(z) = z and β‖B†z‖Y ≤ ‖z‖Z . (5)

Moreover, this right-inverse map B† is linear if Y is a Hilbert space.

Proof. Parts of this result can be found in [4, Lem. A.42]; for completeness, we present a proof. Owing to Lemma 2, B∗ is 
injective and R := im(B∗) is closed in Y ′ . Since the operator B∗ is injective, it admits a left-inverse linear map B∗‡ : R → Z ′
such that (B∗‡ ◦ B∗)(z′) = z′ for all z′ ∈ Z ′ . Moreover, the inf–sup condition (4) implies that ‖B∗‡ y′‖Z ′ ≤ β−1‖y′‖Y ′ for all 
y′ ∈ R . Consider now the adjoint B∗‡∗ : Z ′′ → R ′ . Let Ehb

R ′Y ′′ be the Hahn–Banach extension operator that extends antilinear 
forms over R ⊂ Y ′ into antilinear forms over Y ′ (see [2, Prop. 11.23]); Ehb

R ′Y ′′ maps from R ′ to Y ′′ . Let J Y (resp., J Z ) be the 
canonical isometry from Y to Y ′′ (resp., Z to Z ′′), and observe that J Y is an isomorphism since Y is assumed to be reflexive. 
Let us set

B† := J−1
Y ◦ Ehb

R ′Y ′′ ◦ B∗‡∗ ◦ J Z : Z → Y , (6)

and let us verify that B† satisfies the expected properties. We have, for all (z′, z) ∈ Z ′ × Z ,

〈z′, B(B†(z))〉Z ′,Z = 〈B∗z′, B†(z)〉Y ′,Y = 〈 J Y (B†(z)), B∗z′〉Y ′′,Y ′ = 〈Ehb

R ′Y ′′(B∗‡∗( J Z z)), B∗z′〉Y ′′,Y ′

= 〈B∗‡∗( J Z z), B∗z′〉R ′,R = 〈 J Z z, B∗‡ B∗z′〉Z ′′,Z ′ = 〈 J Z z, z′〉Z ′′,Z ′ = 〈z′, z〉Z ′,Z ,

where we have used that B∗z′ ∈ R to pass from the first to the second line. This shows that (B ◦ B†)(z) = z. Moreover, since 
J Y is an isometry and the extension operator Ehb

R ′Y ′′ preserves the norm, we observe that, for all z ∈ Z ,

‖B†z‖Y = ‖B∗‡∗( J Z z)‖R ′ = sup
z′∈Z ′

|〈B∗‡∗( J Z z), B∗z′〉R ′,R |
‖B∗z′‖Y ′

= sup
z′∈Z ′

|〈 J Z z, z′〉Z ′′,Z ′ |
‖B∗z′‖Y ′

≤ sup
z′∈Z ′

‖z′‖Z ′

‖B∗z′‖Y ′
‖z‖Z .

We conclude from (4) that β‖B†z‖Y ≤ ‖z‖Z . Finally, if Y is a Hilbert space, we can consider the orthogonal complement of 
R in Y ′ (recall that R is a closed subspace of Y ′) and write Y ′ = R ⊕ R⊥ . Then, the Hahn–Banach extension operator Ehb

R ′Y ′′
in (6) can be replaced by the linear map E⊥

R ′Y ′′ such that, for all φ ∈ R ′ , 〈E⊥
R ′Y ′′φ, y′〉Y ′′,Y ′ = 〈φ, r〉R ′,R for all y′ ∈ Y ′ with 

y′ = r + r⊥ , r ∈ R , r⊥ ∈ R⊥ . �
3. Proof of the converse in Theorem 1

Let Ah : Vh → W ′
h be the operator defined by 〈Ah vh, wh〉W ′

h,Wh
:= a(vh, wh) for all (vh, wh) ∈ Vh × Wh . We identify V ′′

h

with Vh and W ′′
h with Wh (since these spaces are finite-dimensional). We consider the adjoint operator A∗

h : Wh → V ′
h , and 

identify A∗∗
h with Ah . We apply Lemma 3 to Y := Wh , Z := V ′

h , and B := A∗
h . Owing to the discrete inf–sup condition (3), 

we infer that (4) holds with β = α̂h . Therefore, there exists a right-inverse map A∗†
h : V ′

h → Wh such that, for all θh ∈ V ′
h , 

(A∗
h ◦ A∗†

h )(θh) = θh and α̂h‖A∗†
h θh‖W ≤ ‖θh‖V ′

h
. Let us now set

�h := A∗†
h ◦ � : W → Wh, (7)

with the linear map � : W → V ′
h such that, for all w ∈ W , 〈�(w), vh〉V ′

h,Vh
:= a(vh, w) for all vh ∈ Vh . We then infer that

a(vh,�h(w)) = 〈Ah vh, A∗†
h (�(w))〉W ′

h,Wh
= 〈A∗

h(A∗†
h (�(w))), vh〉V ′

h,Vh
= 〈�(w), vh〉V ′

h,Vh
= a(vh, w),

which establishes that a(vh, �h(w) − w) = 0 for all w ∈ W . Moreover,

α̂h‖�h(w)‖W = α̂h‖A∗†
h (�(w))‖W ≤ ‖�(w)‖V ′

h
≤ ‖a‖‖w‖W ,

which proves that α̂h‖a‖ ‖�h(w)‖W ≤ ‖w‖W . In addition, we observe that

〈�(A∗†
h (θh)), vh〉V ′

h,Vh
= 〈Ah vh, A∗†

h (θh)〉W ′
h,Wh

= 〈A∗
h(A∗†

h (θh)), vh〉V ′
h,Vh

= 〈θh, vh〉V ′
h,Vh

,

for all vh ∈ Vh , which proves that �(A∗†
h (θh)) = θh for all θh ∈ V ′

h . As a result, �h(�h(w)) = A∗†
h (� ◦ A∗†

h (�(w))) =
A∗†

h (�(w)) = �h(w), i.e., �h is idempotent. Finally, if W is a Hilbert space, the right-inverse map A∗†
h is linear by Lemma 3, 

and so is the operator �h defined from (7).
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Remark 1 (Value of γ�h ). Without the use of Lemma 3, one only knows that A∗
h has a stable right-inverse, but a stability 

bound for this right-inverse is not available. Here, we obtain that, provided the discrete inf–sup condition (3) holds uni-
formly with respect to h, i.e. if there is α̂0 > 0 such that α̂h ≥ α̂0 for all h ∈H, then a uniform stability bound holds for �h

since γ�h ≥ γ�0 = α̂0‖a‖ for all h ∈H.

Remark 2 (Linearity). Even in the case of Banach spaces, the linearity of the map �h can be asserted if one has at hand a 
stable decomposition Wh = ker(A∗

h) ⊕ Kh such that there is κh > 0 such that the induced projector πKh : Wh → Kh satisfies 
κh‖πKh wh‖W ≤ ‖wh‖W for all wh ∈ Wh (this property holds in the Hilbertian setting with κh = 1). Then, one can adapt the 
reasoning at the end of the proof of Lemma 3 to build a stable, linear right-inverse map A∗†

h . The mild price to be paid is 
that the stability constant of �h now becomes γ�h = κhα̂h‖a‖ .

Remark 3 (Reflexivity). Whether Lemma 3 holds true when Y is not reflexive seems to be an open question.
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