

Functional analysis

Contents lists available at ScienceDirect C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

On the singular values of compact composition operators $\stackrel{\star}{\sim}$

Sur les valeurs singulières des opérateurs de composition compacts

Omar El-Fallah, Mohamed El Ibbaoui

Laboratoire Analyse et Applications - URAC/03, Mohammed V University in Rabat, B.P. 1014, Rabat, Morocco

ARTICLE INFO

Article history: Received 11 May 2016 Accepted after revision 26 September 2016 Available online 11 October 2016

Presented by Gilles Pisier

ABSTRACT

Let μ be a positive Borel measure on the unit disc and let T_{μ} be the associated Toeplitz operator on a standard Bergman space. Under some convexity conditions on a positive function h, we give an upper and lower bounds of the trace of $h(T_{\mu})$. As consequence, we give some asymptotic estimates of eigenvalues of T_{μ} . We also apply these results to composition operators and give some concrete examples.

 $\ensuremath{\mathbb{C}}$ 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit μ une mesure de Borel positive sur le disque unité et soit T_{μ} l'opérateur de Toeplitz associé à μ sur un espace de Bergman standard. Pour une fonction positive h satisfaisant des conditions de convexité, nous donnons des bornes inférieures et supérieures de la trace de $h(T_{\mu})$. Ceci nous permet d'obtenir quelques estimations asymptotiques des valeurs propres de T_{μ} . Nous appliquons ces résultats pour les opérateurs de composition et donnons ensuite quelques exemples concrets.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Toeplitz operators on Bergman spaces

1.1. Introduction

Let $H(\mathbb{D})$ be the class of all holomorphic functions on the unit disc \mathbb{D} . Let *m* be the normalized Lebesgue measure on \mathbb{D} and let $dm_{\alpha}(z) = (1 + \alpha)(1 - |z|^2)^{\alpha} dm(z)$. The standard weighted Bergman spaces \mathcal{A}^2_{α} , $\alpha > -1$, are given by

$$\mathcal{A}_{\alpha}^{2} := \left\{ f \in H(\mathbb{D}) : \|f\|_{\alpha}^{2} = \int_{\mathbb{D}} |f(z)|^{2} \, \mathrm{d}m_{\alpha}(z) < \infty \right\}.$$

http://dx.doi.org/10.1016/j.crma.2016.09.012

^{*} Research partially supported by "Hassan II Academy of Science and Technology". *E-mail addresses:* elfallah@fsr.ac.ma (O. El-Fallah), elibbaoui@gmail.com (M. El Ibbaoui).

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let μ be a positive Borel measure on \mathbb{D} . The Toeplitz operator T_{μ} on \mathcal{A}^2_{α} is given by

$$T_{\mu}f(z) = \int_{\mathbb{D}} f(w)K^{\alpha}(z,w)(1-|z|^2)^{\alpha}\mathrm{d}\mu(w),$$

where $K^{\alpha}(z, w) = 1/(1 - z\bar{w})^{2+\alpha}$ is the reproducing kernel of \mathcal{A}^2_{α} . Recall that μ is said to be a Carleson measure for \mathcal{A}^2_{α} if the embedding operator $J_{\mu} : \mathcal{A}^2_{\alpha} \to L^2(\mu)$ is bounded, where $L^{2}(\mu)$ denotes the space of Borelian functions f on \mathbb{D} such that

$$\int_{\mathbb{D}} |f(z)|^2 \mathrm{d}\mu(z) < +\infty.$$

Let $d\mu_{\alpha} = (1 - |z|^2)^{\alpha} d\mu$; since $T_{\mu} = J_{\mu\alpha}^* J_{\mu\alpha}$, then T_{μ} is bounded if and only if μ_{α} is a Carleson measure for \mathcal{A}^2_{α} , that means by [4],

$$\mu(S(\zeta, h)) = O(h^2) \qquad (h \to 0^+), \quad (\zeta \in \mathbb{T}),$$

where $S(\zeta, h) = \{z \in \mathbb{D} : 1 - |z| < h, |\arg(z\overline{\zeta})| < h\}.$

In the same way, T_{μ} is compact if and only if

$$\mu(S(\zeta, h)) = o(h^2) \qquad (h \to 0^+), \quad (\zeta \in \mathbb{T})$$

Let *n*, *j* be integers such that $n \ge 1$ and $j \in \{0, 2, ..., 2^n - 1\}$. The dyadic square $R_{n,j}$ is given by

$$R_{n,j} = \left\{ z \in \mathbb{D} \; ; \; 2^{-n-1} < 1 - |z| \le 2^{-n} \text{ and } \frac{2j\pi}{2^n} \le \arg z < \frac{2(j+1)\pi}{2^n} \right\}.$$

Note that a geometric characterization of positive Borel measures μ such that T_{μ} belongs to p-Schatten classes, namely $T_{\mu} \in S_p(\mathcal{A}^2_{\alpha})$, has been given by D. Luecking in [7]. Indeed, he proved that $T_{\mu} \in S_p(\mathcal{A}^2_{\alpha})$ if and only if

$$\sum_{n,j} 2^{2np} \left(\mu(R_{n,j}) \right)^p < \infty.$$

1.2. Eigenvalues of Toeplitz operators

First, we will give a generalization of the Luecking characterization of membership in Schatten classes. We will denote by $(\lambda_n(T, \mathcal{H}))_n$ the decreasing sequence of the eigenvalues of the positive compact operator T on a separable Hilbert space \mathcal{H} .

Theorem 1.1. Let μ be a positive Borel measure on the unit disc such that T_{μ} is compact on \mathcal{A}^2_{α} . Let μ be an increasing function such that h(0) = 0 and satisfying one of the following conditions:

- h is convex.
- *h* is concave and $h(t)/t^{\varepsilon}$ is increasing for some $\varepsilon > 0$.

We have

$$B\sum_{n,j}h\left(b2^{2n}\mu(R_{n,j})\right)\leq \sum_{n,j}h\left(\lambda_n(T_{\mu},\mathcal{A}^2_{\alpha})\right)\leq A\sum_{n,j}h\left(a2^{2n}\mu(R_{n,j})\right),$$

where A, B, a, b > 0 are constants that depend only on α in the first case and depend on α and ε in the second case.

Note that if $h(2t) \simeq h(t)$, then the trace of $h(T_{\mu})$ is finite if and only if $\sum h(2^{2n}\mu(R_{n,j})) < \infty$. In particular, we recover

Luecking's theorem, $(h(t) = t^p, p > 0)$. Note also that this result extends Theorem 1.1 of [1].

Applying Theorem 1.1 with particular functions, $h_{\delta}(t) = (t - \delta)^+$ and

$$h_{\delta,\varepsilon}(t) = \begin{cases} t & \text{if } t \in [0,\delta] \\ \delta^{1-\varepsilon} t^{\varepsilon} & \text{if } t \ge \delta, \end{cases}$$

we get the following.

Corollary 1.2. Let μ be a positive Borel measure on \mathbb{D} such that T_{μ} is a compact operator on \mathcal{A}^2_{α} . Let $\rho : [0, +\infty] \to [1, +\infty[$ be an increasing function. Suppose that ρ satisfies one of the following conditions:

- there exists $\gamma \in (0, 1)$ such that $\rho(t)/t^{\gamma}$ is decreasing.
- there are $\beta \in (0, \infty)$, $\gamma \in (1, \infty)$ such that $\rho(t)/t^{\beta}$ is decreasing and $\rho(t)/t^{\gamma}$ is increasing.

Then the following are equivalent:

(1) $\lambda_n(T_\mu, \mathcal{A}^2_\alpha) \simeq 1/\rho(n);$ (2) $a_n(\mu) \simeq 1/\rho(n)$, where $(a_n(\mu))_{n \ge 1}$ is a decreasing enumeration of $(2^{2n}\mu(R_{n,j}))_{n,j}$.

2. Composition operators

We will consider composition operators on standard weighted analytic spaces on the unit disc \mathbb{D} . For $\alpha \ge 0$, \mathcal{H}_{α} will denote the space of analytic functions $f \in H(\mathbb{D})$ such that

$$\int_{\mathbb{D}} |f'(z)|^2 \,\mathrm{d} m_{\alpha}(z) < \infty.$$

It becomes a Hilbert space if endowed with the norm $\|.\|_{\mathcal{H}_{\alpha}}$, given by

$$||f||^{2}_{\mathcal{H}_{\alpha}} =: |f(0)|^{2} + \int_{\mathbb{D}} |f'(z)|^{2} \,\mathrm{d}m_{\alpha}(z).$$

By the classical Littlewood–Paley identity, we have $\mathcal{H}_1 = H^2$ the Hardy space. Note also that for $\alpha \in [0, 1)$, $\mathcal{H}_{\alpha} = \mathcal{D}_{\alpha}$ are the weighted Dirichlet spaces and for $\alpha > 1$, \mathcal{H}_{α} are the standard weighted Bergman spaces.

Let φ be a holomorphic self-map of \mathbb{D} . The composition operator C_{φ} acting on \mathcal{H}_{α} with symbol φ is defined by

 $C_{\varphi}f = f \circ \varphi, \quad f \in \mathcal{H}_{\alpha}.$

Several papers gave some general criterion for boundedness, compactness and membership in Schatten classes of composition operators (see, for instance, [10,7,11,3,5,8]).

The Nevanlinna counting function, $N_{\varphi,\alpha}$, of φ associated with \mathcal{H}_{α} is defined by

$$N_{\varphi,\alpha}(w) = \begin{cases} \sum_{z \in \varphi^{-1}(w)} (1 - |z|^2)^{\alpha} & \text{if } w \in \varphi(\mathbb{D}), \\ 0 & \text{if } w \notin \varphi(\mathbb{D}). \end{cases}$$

In what follows, $\mu_{\varphi,\alpha}$ will denote the measure given by

$$\mathrm{d}\mu_{\varphi,\alpha}(w) = \frac{N_{\varphi,\alpha}(w)}{(1-|w|^2)^{\alpha}} \,\mathrm{d}m(w), \quad (w \in \mathbb{D}).$$

It is known that the composition operators C_{φ} are closely related to the Toeplitz operator $T_{\mu_{\varphi,\alpha}}$. More precisely, we have the following result.

Proposition 2.1. Let φ be an analytic self map of \mathbb{D} . Then C_{φ} is compact on \mathcal{H}_{α} if and only if $T_{\mu_{\varphi,\alpha}}$ is compact on \mathcal{A}^2_{α} , and

$$K^{-1}\lambda_{n+1}(T_{\mu_{\varphi,\alpha}},\mathcal{A}_{\alpha}^{2}) \leq s_{n+1}^{2}(C_{\varphi},\mathcal{H}_{\alpha}) \leq K\lambda_{n}(T_{\mu_{\varphi,\alpha}},\mathcal{A}_{\alpha}^{2})$$

where K is a positive constant that depends only on α and $|\varphi(0)|$.

The asymptotic behavior of singular values of composition operators, for some particular symbols, was considered by several authors; see, for instance, [6,9] and references therein. The following theorem gives us a method to estimate the singular values in some cases, as we will see in the sequel.

Theorem 2.2. Let φ be an analytic self map of \mathbb{D} and let $h : [0, +\infty) \to [0, +\infty)$ be an increasing function. Let h be an increasing function such that h(0) = 0 and satisfying one of the following conditions:

- h is convex.
- *h* is concave and $h(t)/t^{\varepsilon}$ is increasing for some $\varepsilon > 0$.

We have

$$B\sum_{n,j}h\left(b2^{2n}\mu_{\varphi,\alpha}(W_{n,j})\right) \leq \sum_{n}h\left(s_{n}^{2}(C_{\varphi},\mathcal{H}_{\alpha})\right) \leq A\sum_{n,j}h\left(a2^{2n}\mu_{\varphi,\alpha}(W_{n,j})\right),$$

where A, B, a, b > 0 depend on $|\varphi(0)|$ and α in the first case, and depend in addition on ε in the second case.

2.1. Composition operators with univalent symbol

Let $\Omega \subset \mathbb{D}$ be a simply connected domain. Let φ be a conformal map from \mathbb{D} onto Ω . Let σ be an automorphism of \mathbb{D} . Since C_{σ} is an invertible operator on \mathcal{H}_{α} , we have $s_n(C_{\varphi}, \mathcal{H}_{\alpha}) \simeq s_n(C_{\varphi \circ \sigma}, \mathcal{H}_{\alpha})$ $(n \to \infty)$. Then the asymptotic behavior of singular values depends only on Ω . In the sequel, we will suppose that $\varphi(0) = 0$. Let us first introduce the pull-back measure associated with φ . It will be denoted by m_{φ} and it is the positive Borelian measure defined by

 $m_{\varphi}(B) = m(\{\zeta \in \mathbb{T} : \varphi(\zeta) \in B\}),$

where *m* here is the normalized Lebesgue measure of \mathbb{T} .

Theorem 2.3. Let $\Omega \subset \mathbb{D}$ be a simply connected domain such that $0 \in \Omega$. Let φ be a conformal mapping from \mathbb{D} onto Ω such that $\varphi(0) = 0$. Let *h* be an increasing function such that h(0) = 0 and satisfying one of the following conditions:

- h is convex.
- *h* is concave and $h(t)/t^{\varepsilon}$ is increasing for some $\varepsilon > 0$.

We have

$$B\sum_{n,j}h\left(b\left(2^{n}m_{\varphi}(W_{n,j})\right)^{\alpha}\right)\leq \sum_{n}h\left(s_{n}^{2}(C_{\varphi},\mathcal{H}_{\alpha})\right)\leq B\sum_{n,j}h\left(b\left(2^{n}m_{\varphi}(W_{n,j})\right)^{\alpha}\right),$$

where A, B, a, b > 0 depend on α in the first case and on α and ε in the second case.

2.2. Example

Let Ω be a Jordan subdomain of \mathbb{D} that contains 0. Let φ be a conformal map of \mathbb{D} onto Ω such that $\varphi(0) = 0$. By Caratheodory's theorem, φ can be extended continuously from $\overline{\mathbb{D}}$ onto $\overline{\Omega}$. The extension will also be noted by φ . By definition, the harmonic measure $\omega(., E, \Omega)$ is the harmonic extension of χ_E , where *E* is a closed subset of $\partial\Omega$. By conformal invariance of the harmonic measure, we have:

$$\omega(0, E, \Omega) = m(\varphi^{-1}(E)) = m_{\varphi}(E).$$

Let Ω be a subdomain of \mathbb{D} such that $0 \in \Omega$, $\partial \Omega \cap \partial \mathbb{D} = \{1\}$ and $\partial \Omega$ has, in a neighborhood of +1, a polar equation $1 - r = \gamma(|\theta|)$, where $\gamma : [0, \pi] \to [0, 1]$ is a continuous, increasing function with $\gamma(0) = 0$, and satisfying the following conditions

$$\lim_{t \to 0^+} \frac{\gamma(t)}{t} = 0, \ \gamma'(t) = O(\gamma(t)/t) \ (t \to 0^+)$$
(1)

and

$$\gamma(t) = O\left(t/\log^{\beta}(1/t)\right) \text{ for some } \beta > 1/2.$$
(2)

Let φ be a univalent map of \mathbb{D} onto Ω with $\varphi(0) = 0$ and $\varphi(1) = 1$. Recall that, by Tsuji–Warschawski's theorem, C_{φ} is compact if and only if

$$\int_{0} \frac{\gamma(s)}{s^2} \, \mathrm{d}s = \infty.$$

Recently, it was proved in [2] that the composition operator C_{φ} on \mathcal{H}_{α} is in *p*-Schatten class (*p* > 0) if and only if

$$\int_{0}^{\infty} \frac{\mathrm{e}^{-\frac{p\alpha}{2}\Gamma(t)}}{\gamma(t)} \,\mathrm{d}t < \infty,$$

where

$$\Gamma(t) = \frac{2}{\pi} \int_{t}^{1} \frac{\gamma(s)}{s^2} \,\mathrm{d}s. \tag{3}$$

To take advantage of Theorem 2.3, we need an estimation of the harmonic measure of our domains. To this end, we will use a variant of Ahlfors' and Warschawski's theorems, which is the subject of the following lemma. For the proof, one can exploit the same arguments as those used in [2].

Lemma 2.4. Under the same hypothesis and notations as above, there exist constants $C, \varepsilon > 0$ such that

(1)
$$\omega(0, W_{n,j} \cap \partial\Omega, \Omega) \leq \frac{C}{2^n} \exp\{-\Gamma\left(\frac{2\pi(j+1)}{2^n}\right)\}, (0 \leq j \leq \frac{2^n}{2\pi}\gamma^{-1}(2\pi/2^n)).$$

(2) $\operatorname{Card}\left\{j \in \{2^k, ..., 2^{k+1}\}: \omega(0, W_{n,j} \cap \partial\Omega, \Omega) \geq \frac{\epsilon}{2^n} \exp{-\Gamma\left(\frac{2\pi j+1}{2^n}\right)}\right\} \asymp 2^k.$

Combining these estimates and Theorem 2.3, we obtain

Theorem 2.5. Let γ , Ω and φ as above. Let $h : [0, +\infty) \rightarrow [0, +\infty)$ be an increasing function. Let h be an increasing function such that h(0) = 0 and satisfying one of the following conditions

- h is convex;
- *h* is concave and $h(t)/t^{\varepsilon}$ is increasing for some $\varepsilon > 0$.

We have

$$B\int_{0}^{1}\frac{h(b\,\mathrm{e}^{-\alpha\Gamma(s)})}{\gamma(s)}\mathrm{d}s \leq \sum_{n}h\left(s_{n}^{2}(C_{\varphi},\mathcal{H}_{\alpha})\right) \leq A\int_{0}^{1}\frac{h(a\,\mathrm{e}^{-\alpha\Gamma(s)})}{\gamma(s)}\mathrm{d}s$$

where A, B, a, b > 0 depend on α and γ in the first case and on α , γ and ε in the second case.

This can be applied to have an asymptotic behavior of singular values of this kind of composition operators. As an illustration, we give the following examples.

Corollary 2.6. Let γ , Ω and φ as above. We have

(1) If
$$\gamma(t) = \frac{ct}{\log(e/t)}$$
 with $c \neq \pi/\alpha$, then

$$s_n(C_{\varphi}, \mathcal{H}_{\alpha}) \asymp \frac{1}{n^{\frac{\alpha c}{2\pi}}}.$$

(2) If $\gamma(t) = \frac{ct}{\log(e/t)\log\log(e/t)}$ with c > 0, then

$$s_n(C_{\varphi},\mathcal{H}_{\alpha}) \asymp \frac{1}{\log^{\alpha c/\pi} n}.$$

The first part of Corollary 2.6 gives, in particular, $C = \frac{2\pi}{\alpha}$, an example of composition operator on \mathcal{H}_{α} which is in the Dixmier class without being in $S_1(\mathcal{H}_{\alpha})$.

References

- [1] O. El-Fallah, H. Mahzouli, I. Marrich, H. Naqos, Asymptotic behavior of eigenvalues of Toeplitz operators on the weighted analytic spaces, J. Funct. Anal. 270 (12) (2016) 4614–4630.
- [2] O. El-Fallah, M. El Ibbaoui, H. Naqos, Composition operators with univalent symbol in Schatten classes, J. Funct. Anal. 266 (3) (2014) 1547–1564.
- [3] O. El-Fallah, K. Kellay, M. Shabankhah, H. Youssf, Level sets and composition operators on the Dirichlet space, J. Funct. Anal. 260 (2011) 1721–1733.
- [4] W.W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1) (1975) 237-241.
- [5] K. Kellay, P. Lefèvre, Compact composition operators on weighted Hilbert spaces of analytic functions, J. Math. Anal. Appl. 386 (2) (2012) 718–727.
- [6] P. Lefèvre, D. Li, H. Queffélec, L. Rodríguez-Piazza, Some examples of compact composition operators on H^2 , J. Funct. Anal. 255 (11) (2008) 3098–3124. [7] D. Luecking, Trace ideal criteria for Toeplitz operators, J. Funct. Anal. 73 (1987) 345–368.
- [8] J. Pau, P.A. Pérez, Composition operators acting on weighted Dirichlet spaces, J. Math. Anal. Appl. 401 (2) (2013) 682–694.
- [9] H. Queffélec, K. Seip, Decay rates for approximation numbers of composition operators, J. Anal. Math. 125 (1) (2015) 371-399.
- [10] J.H. Shapiro, Composition Operators and Classical Function Theory, Springer Verlag, New York, 1993.
- [11] K. Zhu, Schatten class composition operators on weighted Bergman spaces of the disk, J. Operator Theory 46 (2001) 173-181.