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This note provides a description of the parareal method for American contracts, a numerical 
section to assess its performance. The scalar case is investigated. Least-Square Monte Carlo 
(LSMC) and parareal time decomposition with two or more levels are used, leading to an 
efficient parallel implementation. It contains also a convergence argument for the two-level 
parareal Monte Carlo method when the time step used for the Euler scheme at each level 
is appropriate. This argument provides also a tool for analyzing the multilevel case.
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article under the CC BY-NC-ND license 
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r é s u m é

Dans cette note, la méthode pararéelle est introduite pour le calcul d’options américaines. 
L’algorithme LSMC (Least-Square Monte Carlo) de Longstaff–Schartz est parallélisé grâce à 
une décomposition en temps multi-niveaux. Dans une section numérique, les performances 
de la méthode sont données dans deux cas scalaires. Un résultat partiel de convergence 
est énoncé lorsque la méthode d’Euler explicite est utilisée avec des pas de temps 
appropriés sur chaque niveau. Une estimation est obtenue, qui permet d’analyser la 
méthode pararéelle multi-niveaux.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In quantitative finance, risk assessment is computer intensive and expensive, and there is a market for cheaper and 
faster methods, as seen from the large literature on parallelism and GPU implementation of numerical methods for option 
pricing [1,6,7,11,12,14–16,21].

American contracts are not easy to compute on a parallel computer; even if a large number of them have to be computed 
at once, an embarrassingly parallel problem, still the cost of the transfer of data makes parallelism at the level of one 
contract attractive. But the task is not easy, especially when the number of underlying assets is large [3,5,22], ruling out the 
PDE approach [2]. Furthermore the most popular sequential algorithm is the Least-Square Monte Carlo (LSMC) method of 
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Longstaff and Schwartz [19]. Exploiting parallelism by allocating blocks of Monte Carlo paths to different processors is not 
convincingly efficient [7], because the backward regression is essentially sequential and needs all Monte Carlo paths in the 
same processor.

In this note, we investigate the parareal method, introduced in [18], for the task. An earlier study by Bal and Maday [4]
has paved the way but it is restricted to Stochastic Differential Equations (SDE) without LSMC. Yet it contains a convergence 
proof for the two-level method in the restricted case where the solution is computed exactly at the lowest level [4].

This note provides a description of the parareal method for American contracts, a numerical section to assess its perfor-
mance. The scalar case is investigated. Least-Square Monte Carlo (LSMC) and parareal time decomposition with two or more 
levels are used, leading to an efficient parallel implementation. It contains also a convergence argument for the two-level 
parareal Monte Carlo method when the time step used for the Euler scheme at each level is appropriate.

Convergence of LSMC for American contracts has been proved by Clément, Lamberton and Protter [9]; it is not unrea-
sonable to expect an extension of their estimates for the parareal method, but this note does not contain such a result, only 
a numerical assessment.

2. The problem

With the usual notations [17], consider a probability space (�, A, P), and functions b, σ , f : [0, T ] × R �→ R, uniformly 
Lipschitz continuous in x, t .

Let W = (Wt)t∈[0,T ] be a standard Brownian motion on (�, A, P). Let X = (Xt)t∈[0,T ], Xt ∈ R, be a diffusion process, 
strong solution to the SDE

dXt = b (t, Xt)dt + σ(t, Xt)dWt , X(0) = X0 ∈R. (1)

A (vanilla) European contract on X is defined by its maturity T and its payoff E[ f (T , XT )], typically f (t, x) = er(T −t)(κ − x)+
in the case of a put of strike price κ and interest rate r. An American style contract allows the owner to claim the payoff 
f (t, Xt) at any time ∈ [0, T ]. So a rational strategy to maximize the average profit V at time t is to find the [t, T ]-valued 
F -stopping time solution to the Snell envelope problem:

V(t, Xt) := E[e−r(τt−t) f (τt, Xτt )|Ft] = P-ess supτ∈T F
t
E[e−r(τ−t) f (τ , Xτ )|Ft]

where F = (Ft)t∈(0,T ) is the (augmented) filtration of W and T F
t denotes the set of [t, T ]-valued F -stopping times. Such 

an optimal stopping time exists (see [8,20]). We do not specify b, σ or f to stay in a general Optimal Stopping framework. 
In practice, American style options are replaced by the so-called Bermuda options where the exercise instants are restricted 
to a time grid tk = kh, k = 0, . . . , K , where h = T

K (K ∈ N
∗). Owing to the Markov property of {Xtk }K

k=0, the corresponding 
Snell envelope reads (V (tk, Xtk ))k=0,...,K and satisfies a Backward Dynamic Programming recursion on k:

V (T , XT ) = f (T , XT ), V (tk, Xtk ) = max{ f (tk, Xtk ),e−rh
E[V (tk+1, Xtk+1)|Xtk ]}, k = K − 1, . . . ,0. (2)

The optimal stopping times τk (from time tk) are given by a similar backward recursion:

τK = T , τk = tk if f (tk, Xtk ) > e−rh
E[V (tk+1, Xtk+1)|Xtk ], τk = τk+1 otherwise, k = K − 1, . . . ,0. (3)

When (Xtk )k=0,...,K cannot be simulated at a reasonable computational cost, it can be approximated by the Euler scheme 
with step h, denoted ( X̄h

tk
)k=0,...,K , which is a simulable Markov chain recursively defined by

X̄h
tk+1

= X̄h
tk

+ b(tk, X̄h
tk
)h + σ(tk, X̄h

tk
)�Wk, X̄h

0 = X0, k = 0, . . . , K − 1, (4)

where �Wk := Wtk+1 − Wtk = √
h Zk so that {Zk}K−1

k=0 are i.i.d. N (0, 1)-distributed random variables. From now on we switch 
to the Euler scheme, its Snell envelope, etc.

In LSMC, for each k, the conditional expectation E[V (tk+1, X̄h
tk+1

)| X̄h
tk
] as a function of x = X̄h

tk
, is approximated by its 

L2-projection on the linear space spanned by the monomials {xp}P
p=0 from the values {e−rh V (tk+1, X̄

h,(m)
tk+1

)}M
m=1 generated 

by M Monte Carlo paths using (4); then each path has its own optimal stopping time at each k ∈ {0, . . . , K − 1} given by 
(for the stopping problem starting at k)

τ
(m)
K = T , τ

(m)

k = tk if f (tk, X̄h,(m)
tk

) > e−rh
P∑

p=0

āp
k ( X̄h,(m)

tk
)p, τ

(m)

k = τ
(m)

k+1 otherwise

where

{āo
k, . . . , āP

k } = arg min
{(a0

k ,...,aP
k )∈RP+1}

M∑
m=1

(
V

(
tk+1, X̄h,(m)

tk+1

) −
P∑

p=0

ap
k

(
X̄h,(m)

tk

)p
)2

.

Finally the price of the American contract is computed by
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V (0, X0) = max{ f (0, X0),
1

M

M∑
m=1

e−rτ (m)
1 f (τ (m)

1 , X̄h,(m)

τ
(m)
1

)}.

Note that 
∑P

0 āp
k ( X̄h

tk
)p is the best approximation of E[V (tk+1, X̄h

tk+1
)| X̄h

tk
] in the least-square sense (e.g., Longstaff and 

Schwartz’s paper [19]) in the vector subspace 〈( X̄h
tk
)p, p = 0 : P 〉 of L2(P).

3. A two-level parareal algorithm

3.1. The parareal method

Consider an ODE

ẋ = f (x, t), x(0) = x0, t ∈ [t0, tK ] = ∪K−1
0 [tk, tk+1].

Assume that Gδ(xk, tk) is a high-precision integrator that computes x at tk+1 from xk at tk . Assume G� is a similar integrator 
but of low precision. The parareal algorithm is an iterative process with n = 0, . . . , N − 1 above a forward loop in time, 
k = 0, . . . , K − 1

xn+1
k+1 = G�(xn+1

k , tk) + Gδ(xn
k , tk) − G�(xn

k , tk). (5)

So the coarse-grid solution is corrected by the difference between the fine-grid prediction computed from the old value on 
that interval and the coarse-grid old solution. In this analysis, Gδ and G� are Euler explicit schemes with time steps δt < �t
respectively.

The same method can be applied to an SDE in the context of the Monte Carlo method provided the random variables 
{Zm

k, j}m=1,...,M
j:=1,..., J−1,k:=1,...,K defining �Wk in (4) are sampled once and for all in the initial phase of the algorithm and reused 

for all n (see the initialization step in Algorithm 3.2 for the notations).
The iterative process (5) is applied on each sample path with G� a single step of (4) with h = �t and Gδ the result of J

steps of (4) with h = δt . An error analysis is available in [4] for the stochastic case in the limit case δt = 0, i.e. when the fine 
integrator is the exact solution. For further results of the parareal method applied to deterministic ODEs and PDEs, see [18]
and [13]. In this note, we also extend the result of [4] to the case 0 < δt < �t .

3.2. Algorithm

We denote by Vk a realization of V (tk, Xtk ), k = 0, . . . , K = T
�t ; consider a refinement of each interval (tk, ttk+1 ) by a 

uniform sub-partition of time step δt = �t
J , for some integer J > 1. Then

[tk, tk+1] = ∪ J−1
j=0 [tk, j, tk, j+1] with tk, j+1 = tk, j + δt, j = 0, . . . , J − 1, so that tk = tk,0 = tk−1, J .

Denote by P f the L2-projection of f on the monomials 1, x, . . . , xP .
Let n = 0, . . . , N − 1 be the iteration index of the parareal algorithm.

Initialization Generate {Zm
k, j}m=1,...,M

k=1,...,K , j=1,..., J for the M paths of the Monte Carlo method with the coarse and fine mesh.

Compute recursively forward all Monte Carlo paths { X̂0
tk
(ωm)}M

m=1 from X̂0
0 = X0 by using (4) with h = �t and then 

recursively backward V̂ 0
k = max{ f (tk, X̂0

tk
), e−r�tP E[V̂ 0

k+1| X̂0
tk
]}, k = K − 1, . . . , 0 from V̂ 0

K (ωm) = e−rT f (T , X̂0
T (ωm)), 

m = 1 . . . , M .

for n = 0, . . . , N − 1
for all M paths,

for k = 0, . . . , K − 1 (forward loop):
(i) compute the fine-grid solution { X̃δ,n

tk, j
} J

j=0 of (4) with refined step h = δt = �t
J , started at tk,0 = tk from X̂n

tk
.

(ii) compute the coarse-grid solution at tk+1: X̄�
tk+1

= X̂n+1
tk

+ b(tk, X̂n+1
tk

)�t + σ(tk, X̂n+1
tk

)�Wk;

(iii) set X̂n+1
tk+1

= X̄�
tk+1

+ X̃δ,n
tk, J

− X̂n
tk+1

.
end k-loop

end M-loop.
initialization: Compute V̄ n+1

K = V̂ n+1
K = f (T , X̂n+1

T )

for k = K − 1, . . . , 0 (backward loop):
(i) on each (tk, tk+1), from Ṽ δ,n

k, J = PE(V̂ n
k+1 | X̃δ,n

k, J ), compute by a backward loop in j

Ṽ δ,n
k, j = max

{
f (tk, j, X̃δ,n

tk, j
),e−rδtPE[Ṽ δ,n

k, j+1| X̃δ,n
tk, j

]}, j = J − 1, . . . ,0;
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(ii) compute V̄ n+1
k = max

{
f (tk, X̂n+1

tk
), e−r�tP E[V̄k+1| X̂n+1

tk
]};

(iii) set V̂ n+1
k = V̄ n+1

k + Ṽ δ,n
k,0 − V̂ n

k .
end backward k-loop
end n-loop

Remark 1. Note that all fine-grid computations are local and can be allocated to a separate processor for each k, for paral-
lelization.

The following partial results can be established for Algorithm 3.2bis obtained from 3.2 by changing the first step into 
Ṽ δ,n

k, J =PE(V̄ n
k+1 | X̃δ,n

k, J ) and the last step into: V̂ n+1
k = V̄ n+1

k + Ṽ δ,n
k,0 − V̄ n

k .

Theorem 3.1. Assume b, σ : [0, T ] ×R continuous, C2 in x with spatial derivatives uniformly Lipschitz in t ∈ [0, T ]. Then there exist C , 
independent of k, �t and n, such that for k = 0, . . . , K , n = 0, . . . , N:

‖ X̂n
tk

− X̄δ
tk
‖L2(P) ≤ (C�t)n

√(
k
n

)
‖ X̄�

tk
− X̄δ

tk
‖L2(P) ≤ (C�t)n

√(
k
n

)√
�t. (6)

Furthermore, X̂n
tk

= X̄δ
tk

for all n ≥ k (e.g., definition (iii)).

Corollary 3.2. For a fixed δt and n parareal iterations, the final and uniform errors satisfy

‖ X̂n
T − X̄δ

T ‖L2(P) ≤ (C�t)
n
2

√
�t

n! and
∥∥∥ max

k=0,...,K
| X̂n

tk
− X̄δ

tk
|
∥∥∥

L2(P)
≤ (C�t)

n
2√

(n + 1)! (7)

respectively where C only depends on the Lipschitz constants and norms of b, b′, b′′, σ , σ ′, σ ′′ and on T.

This estimate shows that when �t << C , the method converges exponentially in n and geometrically in �t .

Remark 2. The estimate (6) indicates that a recursive use of parareal with each sub-interval redivided into J = O (�t−1)

smaller intervals, the so-called multilevels parareal, is better than many iterations at the second level only. Indeed, as the 
error decreases proportionally to (�t)

n
2 at each level and as �t becomes �t2 at the next grid level, the error after L levels 

is decreased by (�t)
nL
2 .

Proposition 3.3. (a) Let

Ṽ �,n
tk

= P-ess supτ∈T F
tk
E[e−r(τ−tk) f (τ , X̂n

τ )|Ftk ], V̄ �,δ
tk

= P-ess supτ∈T F
tk
E[e−r(τ−tk) f (τ , X̄δ

τ )|Ftk ]

where T F
tk

denotes the set of {tk, tk+1, . . . , tK }-valued F -stopping times. Then, for some constant C ,

∥∥∥ max
k=0,...,K

∣∣Ṽ �,n
tk

− V̄ �,δ
tk

∣∣∥∥∥
L2(P)

≤ [ f ]Lip
(C�t)

n
2√

(n + 1)! .

(Note that (V̄ �,δ
tk

)k=0,...,K is but the coarse Snell envelope of the refined Euler scheme.) At a fixed time tk, we have the better estimate

∥∥Ṽ �,n
tk

− V̄ �,δ
tk

∥∥
2 ≤ [ f ]Lip(C�t)n+ 1

2

√(
K + 1
n + 1

)
−

(
k

n + 1

)
. (8)

(b) Let (V̄ δ
tk
)k=0,K denote the “fine” Snell envelope of the refined Euler scheme at times tk defined by

Ṽ δ
tk

= P-ess supτ∈T F
tk
E[e−r(τ−tk) f (τ , X̄δ

τ )|Ftk ].
Then, for some constant C ′,∥∥Ṽ δ,n

tk,0
− V̄ δ

tk

∥∥
L2(P)

≤ C
√

�t.

Remark 3. A result similar to (a) can be obtained for (V̄ n
tk
)k=0,...,K , i.e. when Ftk is replaced by X̂n

tk
in the expectation 

defining V n
tk

at the cost of losing a 
√

�t in the error estimate. Both quantities Ṽ �,n
tk

and V̄ n
tk

do not coincide as X̂n is not 
Markovian (it also depends on X̂n−1).
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Table 1
Absolute error from the American payoff computed on the fine grid by a sequential LSMC standard algorithm and the 
same computed using the parareal iterative Algorithms 3.2 and 3.2bis. The coarse grid has K intervals; the coarse time 
step is �t/K ; the fine grid has a fixed number of points, hence each interval (tk, ttk+1 ) has J sub-intervals. The top 4 
lines of numbers correspond to Algorithm 3.2, while the last 4 lines correspond to Algorithm 3.2bis, for which a partial 
convergence estimate can be obtained, but which does not work as well numerically.

K J �t n = 1 n = 2 n = 3 n = 4

2 16 0.666667 0.60338 0.152339 0.0171122 0.000833293
4 8 0.4 0.237451 0.0437726 0.00217885 0.000725382
8 4 0.222222 0.0854814 0.0156243 0.000735309 0.000515332
16 2 0.117647 0.0257407 0.00120513 0.000439038 0.000262921

2 16 0.666667 0.5912463 0.1434691 0.0418341 0.0414722
4 8 0.4 0.2245711 0.0743709 0.0225051 0.0224303
8 4 0.222222 0.0740923 0.0205441 0.0072178 0.0072066
16 2 0.117647 0.0194701 0.0021758 0.0021592 0.0021509

Fig. 1. Black–Scholes case: errors on the payoff versus �t on the left for several values of n and versus n on the right for several values of �t . Both graphs 
are for Algorithm 3.2 in log–log scales and indicate a general behavior of the error ε not incompatible with (3.1).

4. Numerical tests

The payoff is f (t, x) = er(T −t)(κ −x)+ with X0 = 36, r = 0.05, κ = 40, T = 2. We have chosen M = 100.000 as in Longstaff 
and Schwartz’s work [19]. The interpolation used in the LSMC is on the basis {1, x, x2}, i.e. P = 2. The American payoff is 
then 4.478 at an early exercise τ = 0.634.

4.1. Convergence of the parareal algorithm

4.1.1. The Black–Scholes case
Here the underlying asset is given by the Black–Scholes SDE, σ(x, t) = σ0x, b(x, t) = rx. In the test, σ0 = 0.2. We have 

chosen a fine grid with δt = T /32. The free parameters are �t , which governs the number of points on the coarse grid and 
n the number of parareal algorithms. The error between the American payoff computed on the fine grid by LSMC and the 
same computed by the parareal algorithm is displayed on Table 1 for both Algorithms 3.2 and 3.2bis.

The same information about convergence is now displayed in the two graphs in Fig. 1 for the errors versus �t and the 
errors versus n. We were not able to decrease �t to smaller values because the computing time becomes too large.

4.1.2. The constant elasticity case
The volatility is now a function of price [10]: σ(x, t) = σ0x0.7. All parameters have the same values as above. The results 

are shown in Fig. 2.

4.2. Multilevel parareal algorithm

The previous construction being recursive, one can again apply the two-level parareal algorithm to LSMC on each interval 
[tk, ttk+1 ]. The problem of finding the optimal strategy for parallelism and computing time is complex, because there are so 
many parameters; in what follows, the number of levels is L = 4; furthermore, when an interval with J +1 points is divided 
into sub-intervals, each one is endowed with a partition using J + 1 points as well. So, if the coarse grid has K intervals, 
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Fig. 2. Constant elasticity case: same legend as in Fig. 1.

Table 2
Absolute error between the computed payoff with the multilevels parareal method and the reference value of Longstaff–
Schwartz. The number of levels is L = 4, each level is subdivided into K intervals; K 4 is the number of intervals at the 
deepest level.

K K 4 n = 1 n = 2 n = 3 n = 4

2 16 0.353319 0.118118 0.0477764 0.0276106
3 81 0.208997 0.0390674 0.0225218 0.0186619
4 256 0.141692 0.0259727 0.0192504 0.0136437
5 625 0.105196 0.0220218 0.0179706 0.0129702

Table 3
Absolute error between the computed payoff with the multilevel parareal method and the reference value of Longstaff–
Schwartz. There are L = 4 levels; at level l − 1, to obtain level l each interval is divided into Jl intervals. The errors are 
given versus the number of parareal iterations n = 1, 2, 3, 4. Note that all subdivisions give more or less the same precision; 
computationally and for parallelism the last one is the best.

Time-step Total Absolute-error

J1 J2 J3 J4 n = 1 n = 2 n = 3 n = 4

6 5 4 3 360 0.108593 0.0305688 0.0202016 0.0142071
3 4 5 6 360 0.35365 0.0316707 0.0167488 0.0135151

20 2 2 2 160 0.0231221 0.0163731 0.0155624 0.013314
2 20 2 2 160 0.354477 0.0835047 0.0231243 0.0121775
2 2 20 2 160 0.351854 0.115285 0.015826 0.0137373
2 2 2 20 160 0.355166 0.119577 0.0444797 0.0110232

Fig. 3. Comparison between a standard LSMC solution and the parareal solution for the same number of time intervals at the finest level. The 4 points have 
respectively 1,2,3,4 levels; the first data point has one level and 4 intervals, the second has 2 levels and 16 intervals, the third one 3 levels and 64 intervals, 
the fourth one 4 levels and 256 intervals. The total number of time steps is on the horizontal axis, in log scale, and the error at n = 2 is on the vertical 
axis, in log scale as well.
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Fig. 4. Speed-up versus the number of processors, i.e. the parareal CPU time on a parallel machine divided by the parareal CPU time on the same machine 
but running on one processor. There are two levels only; the parameters are K = 1, 2.., 32, n = 2 and J = 100 so as to keep each processor fully busy.

the 4th grid has K 4 intervals. The results are compared with the reference value of Longstaff–Schwartz, 4.478, shown in 
Table 2 and in Fig. 3.

The number of parareal iterations is 4 and the error is displayed at each n. We have also carried out some tests with 
sub-partitions using J �= K . Thus each level has its own number of points per interval, J l . Errors shown on Table 3 are also 
shown in Fig. 3 for n = 2. It seems to be O (K 4) for K small and O (K 2) for K bigger. The method was implemented in 
parallel; each interval is allocated to a processor, at each level in a round-robin order. Almost perfect parallelism is obtained 
in our tests on a machine with 32 processors, as shown in Fig. 4 and Table 3.
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